Биомасса организмов земли. Биомасса. Поток энергии и цепи питания. Экологическая пирамида. Социальные, экономические и экологические

Биомасса Земли . На суше Земли, начиная от полюсов к экватору, биомасса постепенно увеличивается. Вместе с тем возрастает и количество видов растений. Тундра с лишайниками и мхами сменяется хвойными и широколиственными лесами, затем степями и субтропической растительностью. Наибольшее сгущение и многообразие растений имеет место во влажных тропических лесах. Высота деревьев достигает 110-120м. Растения растут в несколько ярусов, эпифиты покрывают деревья. Количество и разнообразие видов животных зависят от растительной массы и тоже увеличиваются к экватору. В лесах животные расселены в различных ярусах. Наибольшая плотность жизни наблюдается в биогеоценозах, где виды связаны цепями питания. Цепи питания, переплетаясь, образуют сложную сеть передачи химических элементов и энергии от одного звена к другому. Между организмами идет жесточайшее состязание за обладание пространством, пищей, светом, кислородом. Большое влияние на биомассу суши оказывает человек. Под его воздействием сокращаются площади, производящие биомассу.

Биомасса почвы . Почва - среда, необходимая для жизни растений и биогеоценоз с разнообразными мельчайшими живыми организмами. Это рыхлый поверхностный слой земной коры, изменяемый атмосферой и организмами и постоянно пополняемый органическими остатками. Образование живого органического вещества происходит на земной поверхности; разложение органических веществ, их минерализация осуществляются главным образом в почве. Почва образовалась под воздействием организмов и физико-химических факторов. Мощность почвы наряду с поверхностной биомассой и под влиянием ее увеличивается от полюсов к экватору. В северных широтах особое значение имеет перегной.

Распространение биомассы на поверхности суши.

Почва плотно заселена живыми организмами. Вода от дождей, тающих снегов обогащает ее кислородом и растворяет минеральные соли. Часть растворов удерживается в почве, часть выносится в реки и океан. Почва испаряет поднимающуюся по капиллярам грунтовую воду. Происходит движение растворов и выпадение солей в разных почвенных горизонтах.

В почве происходит и газообмен. Ночью при охлаждении и сжатии газов в неё проникает некоторое количество воздуха. Кислород воздуха поглощается животными и растениями и входит в состав химических соединений. Проникший в почву с воздухом азот улавливается некоторыми бактериями. Днем при нагревании почвы выделяются газы: углекислый, сероводород, аммиак. Все процессы, происходящие в почве, входят в круговорот веществ биосферы.

Некоторые виды хозяйственной деятельности человека (химизация сельскохозяйственного производства, переработка нефтепродуктов и др.) вызывают массовую гибель почвенных организмов, играющих важную роль в биосфере.

Биомасса Мирового океана . Гидросфера Земли, или Мировой океан, занимает более 2/3 поверхности планеты. Вода обладает высокой теплоемкостью, делает более равномерной температуру океанов и морей, смягчая крайние изменения температуры зимой и летом. Океан замерзает только у полюсов, но и подо льдом существуют живые организмы.

Вода - хороший растворитель. В состав воды океана входят минеральные соли, содержащие около 60 химических элементов, в ней растворяются поступающие из воздуха кислород и углекислый газ. Водные животные также выделяют при дыхании углекислый газ, а водоросли в процессе фотосинтеза обогащают воду кислородом.

Физические свойства и химический состав вод океана весьма постоянны и создают среду, благоприятную для жизни. Фотосинтез водорослей происходит главным образом в верхнем слое воды - до 100м. Поверхность океана в этой толще заполнена микроскопическими одноклеточными водорослями, образующими микропланктон.

В питании животных океана преимущественное значение имеет планктон. Водорослями и простейшими питаются веслоногие рачки. Рачков поедают сельди и другие рыбы. Сельди идут в пищу хищным рыбам и чайкам. Исключительно планктоном питаются усатые киты. В океане, кроме планктона и свободноплавающих животных, много организмов, прикрепленных ко дну и ползающих по нему. Население дна носит название бентоса. В океане наблюдаются сгущения организмов: планктонное, прибрежное, донное. К живым сгущениям относятся и колонии кораллов, образующие рифы и острова. В океане, особенно на дне его, распространены бактерии, превращающие органические остатки в неорганические вещества. Отмершие организмы медленно оседают на дно океана. Многие из них покрыты кремневыми или известковыми оболочками, а также известковыми раковинами. На дне океана они образуют осадочные породы.

В настоящее время в ряде стран решается проблема добычи из океана пресной воды, металлов и более полного использования его пищевых ресурсов с охраной наиболее ценных животных.

Гидросфера оказывает мощное влияние на всю биосферу. Суточные и сезонные колебания нагревания поверхности суши и океана вызывают циркуляцию тепла и влаги в атмосфере и влияют на климат и круговороты веществ во всей биосфере.

Добыча нефти в морях, перевозка ее в танкерах и другие виды деятельности человека приводят к загрязнению Мирового океана и сокращению его биомассы.

Одним из главных общебиологических показателей является масса биосферы, или биомасса. Биомасса – это общая масса всех видов живого на Земле в определенный момент времени. На нашей планете биомасса состоит из трех главных видов: растения (99,75% массы биосферы), животные (0,25%) и микроорганизмы (10 - 6%). Биомасса на Земле изменяется в процессе эволюции. Она сначала медленно возрастала на протяжении 3340 миллионов лет, а потом стала сравнительно быстро уменьшаться на протяжении 263 миллионов лет. Для точной ориентации в эрах и периодах приводится таблица, где длительность периодов указана в миллионах лет.

А схема отражает этапы изменения массы биосферы.


Изменение растительной и животной биомассы Земли на протяжении 6 миллиардов лет существования планеты

Современную биомассу ученые оценивают в 10 14 кг (В.И. Вернадский), что составляет в 10 миллионов раз меньшую массу, чем «теоретически максимальная» масса биосферы Земли.

Можно выделить следующие эволюционные стадии количественного изменения биомассы.

1 . Безжизненная горячая Земля . Стадия длилась от возникновения планеты в течение 1500 миллионов лет до начала архейского эона.

2 . Медленное увеличение биомассы Земли . Длительность 3000 миллионов лет; время архейского, протерозойского эонов. Жизнь возникла, и начала медленно увеличивать свою биомассу до 10 13 - 10 15 кг к концу протерозоя, живые организмы содержались исключительно в морях и океанах. Несмотря на изобилие углекислого газа в атмосфере (80%) повсеместная теплота поверхности континентов планеты (в среднем около +250° С) не давало возможности распространению растений по суши. Растения существовали только в океанах.

3 . Быстрое увеличение биомассы происходило в течение палеозойской эры (на протяжении 335 миллионов лет) . Растительно-животный мир вышел из океанов и распространился по континентам. Изобилие углекислого газа в атмосфере (20-65%) и повсеместная теплота поверхности планеты (в среднем около +50° С) привели к сверхвысокому насыщению растительной жизнью океанов и континентов. В конце этой стадии, в каменноугольном и пермском периодах, из растительности образовались самые мощные пласты органического ископаемого - каменного угля.

В эти периоды возникает максимальная масса растительного мира на Земле в количестве 10 2 0 кг, что в миллион раз выше современной массы биосферы. Современную биомассу В.И. Вернадский оценивал массой в 10 14 кг.

4 . Медленное уменьшение биомассы . Происходило в мезозойскую эру (длительность 169 миллионов лет). При сверхбольшом количестве растительной массы началось глобальное и интенсивное поглощение углекислого газа из атмосферы. Процентное содержание углекислого газа медленно понижалось. Хотя атмосфера постоянно пополнялась им от десятков тысяч вулканов, но вулканическая деятельность медленно затихала. В Кайнозойскую эру (началась 70 миллионов лет назад - сайт) снизилось процентное содержание углекислого газа в атмосфере до 1-3%, охлаждение поверхности планеты и атмосферы достигло ниже 30° С. Поэтому растительная биомасса начала медленно сокращаться. К концу мезозоя ее масса уменьшилась в 3-5 раз и равнялась 5·10 19 кг. Жизнедеятельность растений привела к увеличению количества кислорода в атмосфере Земли с 5-10% до 15-20%. Это способствовало резкому увеличению биомассы животного мира, так как животные дышат кислородом. Триасовый и юрский периоды этой эры можно назвать «золотым веком» животного царства.

Континенты и океаны в то время заполняли самые крупные животные - динозавры. Это были травоядные и хищные звери, масса одного экземпляра достигала десятков тонн. Можно предположить, что по отношению к растительной массе животные занимали в то время около 1%, что составляет 10 18 кг. Если современная масса животных определяется цифрой 2,5·10 13 кг, то в юрский период она была в 4000 раз выше. Однако основную массу биосферы (99%) составляли растения. Наивысшая масса биосферы приходится на 5 периодов: два последних периода палеозойской эры (каменноугольный и пермский) и три периода мезозойской эры (триасовый, юрский и меловой).

5 . Быстрое уменьшение биомассы . Эта стадия уже длится на протяжении всей Кайнозойской эры (в течение 70 миллионов лет) и закончится полным исчезновением жизни на Земле приблизительно через 30 миллионов лет; общая длительность стадии 100 миллионов лет. Причина очень быстрого вымирания растений и животных в кайнозойскую эру состоит в катастрофическом уменьшении углекислого газа до 0,03% и в значительном похолодании атмосферы у поверхности Земли. Вулканическая деятельность почти затихла и не добавляет углекислого газа в атмосферу. Северный и южный полюса окружаются холодными зонами льдов и снегов, где почти нет растительно-животного мира. Через миллион лет процентный состав углекислого газа в атмосфере еще больше уменьшится, а планета станет значительно холоднее. Через 30 миллионов лет жизнь на Земле перестанет существовать.

6 . Безжизненная холодная Земля . Оставшееся время, вплоть до взрыва Солнца как «сверхновой», Земля будет без признаков жизни. Процесс уничтожения всех планет Солнечной системы, в том числе и планеты Земля, произойдет примерно через 3 миллиарда лет, когда ее возраст будет 8 миллиардов лет. За это время планета потеряет атмосферу и гидросферу, литосфера полностью остынет. Исчезнут все «среды жизни»: атмосфера, почва, гидросфера. Земля станет похожей на Луну.

7 . Сделаем некоторые общебиологические выводы .

Из 8 миллиардов лет существования Земли (в прошлом и будущем) жизнь будет сохраняться на планете около 3,57 миллиардов лет, то есть 45% времени существования планеты. Максимальная масса биосферы (мезозой) в количестве 1020 кг просуществовал на планете 0,1 миллиардов лет – 1,5% времени всего существования жизни на планете.

На протяжении 3340 миллионов лет происходил процесс возрастания биомассы, а за 263 миллионов лет биомасса уменьшится до минимума, до полного исчезновения жизни на Земле. Таким образом, вымирание жизни происходит в 13 раз быстрее, чем процесс возрастания биомассы.

Максимальная масса биосферы на Земле может быть не более 1,4×10 21 кг. Почему? Растительно-животный мир состоит из воды на 60-90%. На поверхности Земли находится 1,4×10 21 кг воды (в океанах, морях, озерах, реках, атмосфере). Следовательно, если даже растения и животные включат в свой состав всю воду океанов, морей, рек, озер (что практически невозможно), то их масса не сможет превысить эту величину (1,4×10 21 кг). Современная биомасса в 10 14 кг составляет в 10 миллионов раз меньшую массу, чем «теоретически максимальная» масса биосферы Земли.

Существуют две главные тенденции изменения биомассы планеты Земля. Первое: возрастание массы биосферы происходило во время протерозоя и палеозойской эры. Второе: уменьшение биомассы происходило во время мезозойской и кайнозойской эр. Следовательно, в определенные периоды палеозойской эры биомасса в количественном отношении была равнозначной биомассе определенного периода Мезозойской и Кайнозойской эрам. Определим некоторые периоды ее равенства. Биомасса в количестве 10 17 кг соответствует началу девонского периода палеозойской эры и началу Кайнозойской эры (палеогеновый период), в количестве 10 19 кг - каменноугольному периоду (палеозой) и середине юрского периода (мезозой). Биомасса 10 20 кг соответствует началу пермского (палеозой) и концу триасового (мезозой) периодов.

Рассчитано, что полное вымирание жизни на Земле произойдет через 30 миллионов лет. Понятно, что это очень приблизительная цифра. Невозможно установить точного момента исчезновения растительно-животного мира, так как нельзя предсказать время полного исчезновения углекислого газа из атмосферы, и трудно предвидеть темпы оледенения поверхности планеты.

Человечество возникло в период интенсивного вымирания жизни на Земле - в антропогеновый (четвертичный) период кайнозойской эры. Холод и голод заставили наших предков думать. Мышление является одним из способов борьбы за существование определенных видов животных, какими оказались древние обезьяны. Сильная воля к жизни трансформировалась в разум. Интересно отметить, что Человек Разумный возник 5 миллионов лет назад и в то же самое время образовались льды Арктики и Антарктиды. Если астрономы обнаружат планету с растительно-животным миром (с кислородом и углекислым газом в атмосфере), полюса которой начали покрываться снежно-ледяными шапками, то можно утверждать о возможности возникновения Разумных Существ на данной планете.

8 . Какова причина уменьшения растительно-животной массы (биомассы) на Земле ? Существует всего четыре главных причин, из-за которых биомасса стремительно уменьшается, и, в конце концов, полностью ликвидируется, станет равной нулю. Причины эти следующие: постоянное уменьшение углекислого газа в атмосфере, постоянное охлаждение поверхности Земли, резкое уменьшение испарения воды в атмосферу из-за холода и возникновение глобальной засухи (безжизненных песчаных пустынь), а также - медленное исчезновение атмосферы, окружающей планету.. Наивысшее развитие растительной массы происходило при концентрации углекислого газа в 10 - 30% в пермский и триасовый периоды. Дальнейшее уменьшение углекислого газа до 7% в мезозойскую эру привело к медленному сокращению биомассы (стадия 4), а уменьшение концентрации углекислого газа ниже 3% в начале кайнозойской эры (стадия 5) окончательно подорвало приспособительные механизмы земной растительности. Похолодание планеты вместе с углекислым «голодом» способствовало началу быстрого уменьшения биомассы планеты (стадия 5).

Многие виды растений (папоротники, лепидодендроны, сигиллярии) не смогли выработать в своих ферментативных системах способов поглощения углекислого газа CO 2 из атмосферы и водных растворов при значительном падении концентрации углекислого газа в атмосфере до 0,03%. Эти виды растений интенсивно вымирали. В меловом периоде (мезозойская эра) возникают первые покрытосеменные и распространяются лиственные и хвойные леса. Они оказались более приспособленными к холоду и низкому содержанию углекислого газа в атмосфере, когда в кайнозойскую эру его содержание упало с 3 до 0,03%. Дальнейшее снижение процентного содержания углекислого газа в атмосфере приведет к уменьшению существующей сейчас биомассы (сначала растений, а потом и животных), а при достижении концентрации 0,00003% (через 10 миллионов лет) на Земле останутся единичные виды растений, биомасса уменьшится в тысячи раз. Тогда на Земле, вероятно, будут существовать только мхи и травы, а из животного мира - мелкие насекомые.

Биомасса - термин, используемый для описания всего органического вещества, полученного путем фотосинтеза, существующего на поверхности Земли. Он включают в себя всю водную и наземную растительность и деревья, и все отходы живых организмов, такие как твердые бытовые отходы, вещества биологического происхождения (сточные воды), отходы лесного хозяйства, животноводства (навоз), сельскохозяйственные отходы и отдельные виды промышленных отходов. Мировые энергетические рынки полагаются в большой степени на ископаемые виды топлива. Биомасса - единственный энергетический ресурс естественного происхождения, содержащий углерод в количестве, достаточном, чтобы применяться в качестве их замены.

В отличие от ископаемого топлива, биомасса - возобновляемый источник энергии. Требуется относительно короткий период времени, чтобы восстановить энергетический ресурс. Биомасса также - единственный возобновляемый источник энергии, выделяющий углекислый газ при переработке. Однако это компенсируется тем, что биомасса была выращена с помощью поглощения углекислого газа из атмосферы в процессе фотосинтеза. Если ресурс биомассы используется устойчиво, то со временем в цикле переработки биомассы не происходит увеличение выброса углерода.

Способы переработки биомассы

Биомасса может быть конвертирована в тепловую энергию, жидкое, твердое или газообразное топливо и другие химические продукты с помощью различных процессов переработки. Сегодня значительная часть электроэнергии из биомассы вырабатывается путем прямого сжигания. При развитии технологий повышение эффективности будет достигаться за счет сжигания смеси биомассы и угля в котлах и внедрения высокоэффективной газификации, систем комбинированного цикла, систем топливных элементов, а также модульных систем.

Известные биоэнергетические технологии: непосредственное сжигание, совместное сжигание, газификация, пиролиз, анаэробное брожение и ферментация.

1. Прямое сжигание

Это, пожалуй, самый простой способ получения энергии из биомассы. Промышленные объекты способны сжечь много видов топлива на основе биомассы, в том числе дрова, сельскохозяйственные отходы, древесную целлюлозу, твердые бытовые отходы. При сжигании в котлах производится пар, который вращает турбину. Последняя приводит во вращение ротор генератора, вырабатывающего электроэнергию. Из-за потенциального накопления золы, которая засоряет котел, снижая его эффективность и увеличивая затраты, только определенные типы материалов биомассы используются для прямого сжигания.

2. Газификация

Газификация - процесс, воздействия на твердое топливо высокой температуры при ограниченном доступе кислорода для получения газообразного топлива. Таким способом получается смесь газов, таких как окись углерода, углекислый газ, азот, водород и метан. После газ используется для привода газовой турбины. Газификация имеет ряд преимуществ над сжиганием твердого топлива. Важный плюс технологии - один из получаемых газов - метан. Он может быть обработан так же, как природный газ, и использоваться для тех же целей.

Преимущество заключается в том, что при газификации производится топливо без примесей. Следовательно, его сжигание вызывает меньше проблем загрязнения. При определенных условиях можно производить синтез-газ - смесь угарного газа и водорода, который может являться сырьем для производства углеводород (например, метана и метанола) для замены ископаемых видов топлива. Сам водород также потенциальное экологически чистое топливо, которое предположительно может заменить нефть и нефтепродукты в обозримом будущем.

3. Пиролиз

В своей простейшей форме пиролиз представляет собой нагревание биомассы с отводом летучих веществ, в результате чего образуется древесный уголь. Этот процесс преобразует исходный материал в более энергоемкий, так как древесный уголь весит в два раза меньше исходной биомассы, но содержит такое же количество энергии, что делает топливо более транспортабельным. Уголь также горит при значительно более высокой температуре, чем исходная биомасса. Это делает его более полезным для производственных процессов. Более сложные методы пиролиза разработаны недавно для сбора летучих веществ, которые в противном случае теряются в системе. Собранные летучие вещества производят газ, который богат водородом и окисью углерода. Эти соединения синтезируются в метан, метанол и другие углеводороды.

Быстрый пиролиз используется для производства бионефти - горючего топлива. Тепло используется для химического преобразования биомассы в синтетическую нефть, которую легче хранить и транспортировать, чем твердые материалы биомассы. Затем ее сжигают для производства электричества. Пиролиз может также преобразовывать биомассу в феноловое масло - химическое вещество, используемое для изготовления древесных клеев, литьевых пластмасс и изоляционной пены.

4. Анаэробное брожение

Анаэробное брожение биомассы осуществляется за счет анаэробных бактерий. Эти микроорганизмы обычно живут на дне болот или в других местах, где нет воздуха, потребляя мертвое органическое вещество с образованием метана и водорода. Мы можем использовать эти бактерии для работы на нас. Подавая органические вещества, такие как навоз животных или сточные воды, в резервуары, называемые варочными, и добавляя туда бактерий, мы можем собирать выделившейся газ, чтобы использовать его в качестве источника энергии. Этот процесс - очень эффективное средство извлечения полезной электроэнергии из биомассы. Как правило, до двух третей энергии топлива из навоза животных можно восстановить.

Другой способ связан со сбором метана из мусорных свалок. Большая часть бытовых отходов биомассы, таких как пищевые отходы или обрезки травы, собираются на местных свалках. В течение нескольких десятилетий анаэробные бактерии в нижних слоях таких свалок разлагают органическое вещество, выделяя метан. Газ может быть извлечен и использован путем установки верхнего упора из непроницаемого слоя глины и установки перфорированных труб, которые будут собирать газ и выводить его на поверхность.

5. Ферментация

На протяжении многих веков люди использовали дрожжи и другие микроорганизмы для ферментации сахара различных растений в этиловый спирт. Производство топлива из биомассы путем ферментации - это лишь продолжение этого процесса. При этом есть возможность использования более широкого спектра растительного материала от сахарного тростника до древесного волокна. Например, отходы от помола пшеницы на мельницах в Новом Южном Уэльсе применяются для производства этанола путем ферментации. Этанол затем смешивается с дизельным топливом для производства топлива, используемого для заправки грузовых автомобилей и автобусов в Австралии.

Технический прогресс неизбежно улучшит этот метод. Например, ученые в Австралии и США заменили дрожжи генетически сконструированными бактериями в процессе ферментации. Эффективность процесса значительно повысилась. Теперь можно перерабатывать отходы бумаги и другие формы древесного волокна в этанол.

Биомасса превращается в топливо, такое как этанол, метанол, биодизель и добавки для риформинга бензинов. Биотопливо используются в чистом виде или в смеси с бензином.

Этанол - наиболее широко используемое биотопливо. Производится путем ферментации биомассы в процессе, подобном пивоварению.

Сегодня большая часть этанола производится из кукурузы. Он смешивается с бензином для увеличения эффективности транспортного средства и уменьшения загрязнения воздуха.

Метанол из биомассы производится путем газификации. Биомасса превращается в синтез-газ, который перерабатывается в метанол. Большая часть метанола производится из природного газа и используется в качестве растворителя, антифриза или для синтеза других химических веществ. Около 38 процентов используется для транспортировки в виде смеси или в риформинге бензинов.

Биодизельное топливо состоит из масел и жиров, которые содержатся в микроводорослях и других растениях. Им заменяют дизельное топливо или разбавляют его.

  • < Назад
  • Вперёд >

Биомасс а - Cуммарная масса особей вида, группы видов или сообщества организмов, выражаемая обычно в единицах массы сухого или сырого вещества, отнесённых к единицам площади или объёма любого местообитания (кг/га, г/м2, г/м3, кг/м3 и др.).

Орг-мы конт-ой части: Зелен. растения - 2400 млрд, тонн (99,2%) 0,2 6,3. Жив- е и микроорганизмы - 20 млрд тонн (0,8%) Орг. океанов: Зеленые растения - 0,2 млрд. тонн (6,3%) животные и микроорганизмы - 3 млрд тонн (93,7%)

Люди как млекопитающие дают около 350 миллионов тонн биомассы в живом весе или около 100 миллионов тонн в пересчете на сухую биомассу - пренебрежимо малое количество в сравнении со всей биомассой Земли.

Таким образом , Большая часть биомассы Земли сосредоточена в лесах Земли. На суше преобладает масса растений, в океанах масса животных и микроорганизмов. Однако скорость прироста биомассы (оборот) намного больше в океанах.

Биомасса поверхности суши – это все живые организмы, обитающие в наземно-воздушной среде на поверхности Земли.

Плотность жизни на континентах зональна, хотя и с многочисленными аномалиями, связанными с местными природными условиями (так, в пустынях или в высокогорьях она значительно меньше, а в местах с благоприятными условиями – больше, чем зональная). Самая высокая она на экваторе, а по мере приближения к полюсам уменьшается, что связано с низкими температурами. Наибольшая плотность и многообразие жизни отмечены во влажных тропических лесах. Растительные и животные организмы, находясь во взаимосвязи с неорганической средой, включаются в непрерывный круговорот веществ и энергии. Наиболее высока Биомасса лесов (500 т/га и выше в тропических лесах, около 300 т/га в широколиственных лесах зон умеренного климата). Среди питающихся за счёт растений гетеротрофных организмовнаибольшей Биомасса обладают микроорганизмы - бактерии, грибы, актиномицеты и др.; их Биомасса в продуктивных лесах достигает нескольких т/га.

Биомасса почвы – это совокупность живых организмов, обитающих в почве. Они играют важную роль в почвообразовании. В почве живет огромное количество бактерий (до 500 т на 1 га), в ее поверхностных слоях распространены зеленые водоросли и цианобактерии (иногда их называют синезелеными водорослями). Толща почвы пронизана корнями растений, грибами. Она является средой обитания для многих животных: инфузорий, насекомых, млекопитающих и др. Большая часть общей Биомассы животных в поясе умеренного климата приходится на почвенную фауну (дождевые черви, личинки насекомых, нематоды, многоножки, клещи и др.). В лесной зоне она составляет сотни кг/га, главным образом за счёт дождевых червей (300-900 кг/га). Средняя Биомасса позвоночных животных достигает 20 кг/га и выше, но чаще остаётся в пределах 3-10 кг/га.

Биомасса Мирового океана –совокупность всех живых организмов, населяющих основную часть гидросферы Земли. Как упоминалось, ее биомасса значительно меньше биомассы суши, причем отношение растительных и животных организмов здесь прямо противоположное. В Мировом океане на долю растений приходится лишь 6,3 %, а животные составляют 93,7 %. Это связано с тем, что использование солнечной энергии в воде составляет всего 0,04 %, тогда как на суше – до 1 %.

В водной среде растительные организмы представлены главным образом одноклеточными водорослями фитопланктона. биомасса фитопланктона мала, нередко меньше Биомассы питающихся за его счёт животных. Причиной является интенсивный обмен веществ и фотосинтез одноклеточных водорослей, обеспечивающий высокую скорость прироста фитопланктона. Годовая продукция фитопланктона в наиболее продуктивных водах не уступает годовой продукции лесов, биомасса которых, отнесённая к той же площади поверхности, в тысячи раз больше.

В разных частях биосферы плотность жизни неодинакова: наибольшее количество организмов находится у поверхности литосферы и гидросферы.

Закономерности распространения биомассы в биосфере:

1) скопление биомассы в зонах с наиболее благоприятными условиями среды обитания (на границе разных сред, например атмосферы и литосферы, атмосферы и гидросферы); 2) преобладание на Земле биомассы растений (97%) по сравнению с биомассой животных и микроорганизмов (всего 3%); 3) увеличение биомассы, числа видов от полюсов к экватору, наибольшее сгущение ее во влажных тропических лесах; 4) проявление указанной закономерности распространения биомассы на суше, в почве, в Мировом океане. Значительное превышение биомассы суши (в тысячу раз) по сравнению с биомассой Мирового океана.

Оборот биомассы

Интенсивное деление микроскопических клеток фитопланктона, быстрый их рост и кратковременность существования способствуют быстрому обороту фитомассы океана, который в среднем происходит за 1-3 суток, тогда как полное обновление растительности суши осуществляется за 50 лет и более. Поэтому несмотря на небольшую величину фитомассы океана, образуемая ею годовая суммарная продукция сопоставима с продукцией растений суши.

Небольшой вес растений океанов связан с тем, что они за несколько суток поедаются животными и микроорганизмами, но также за несколько суток восстанавливаются.

Ежегодно в биосфере в процессе фотосинтеза образуется около 150 млрд т сухого органического вещества. В континентальной части биосферы самыми продуктивными являются тропические и субтропические леса, в океанической - эстуарии (расширяющиеся в сторону моря устья рек) и рифы, а также зоны подъема глубинных вод - апвеллинга. Низкая продуктивность растений характерна для открытого океана, пустынь и тундры.

Луговые степи дают больший годовой прирост Биомасса , чем хвойные леса: при средней фитомассе 23 т/га годовая продукция их 10 т/га , а у хвойных лесов при фитомассе 200 т/га годовая продукция 6 т/га. Популяции мелких млекопитающих, обладающих большой скоростью роста и размножения, при равной Биомассе дают более высокую продукцию, чем крупные млекопитающие.

Эстуа́рий (- затопляемое устье реки) - однорукавное, воронкообразное устье реки, расширяющееся в сторону моря.

В настоящее время Закономерности географического распределения и продуцирования Биомассы интенсивно изучаются в связи с решением вопросов рационального использования биологической продуктивности и охраныбиосферыЗемли.

Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.

Для осуществления любых жизненных процессов необходима энергия. Единственным источником энергии для земных растений является Солнце. Солнечная энергия, попадающая на фотосинтезирующие органы растений, аккумулируется во вновь образующихся органических соединениях. Эта энергия используется продуцентами по-разному. Часть ее тратится на дыхание, т.е. на биологическое окисление, часть запасается в виде вновь возникшей биомассы.

Биомасса – это масса организмов определенной группы или сообщества в целом. Некоторую долю созданной продуцентами биомассы съедают травоядные животные. Хищники потребляют травоядных животных и получают долю энергии. Большая часть энергии, полученная консументами с пищей, тратится на процессы, происходящие в клетках, а также выводится с продуктами жизнедеятельности в окружающую среду. Меньшая часть энергии идет на увеличение массы тала, рост и размножение. Часть биомассы продуцентов, не съеденная животными, отмирает, и с отмершей аккумулированная в ней энергия поступает в почву в виде растительного опада.

Растительный и животный опад (трупы, экскременты) пища редуцентов. Определенное количество энергии запасается в биомассе редуцентов, а часть рассеивается. Таким образом, энергия аккумулируется на уровне продуцентов, проходит через консументы и редуценты, входит в состав органических веществ, почвы, и рассеивается при разрушении ее разнообразных соединений. Через любую экосистемы проходит поток энергии, определенная часть которого используется каждым живым существом.

Биомасса представляет собой концентрацию живого вещества. Вторым важным показателем экосистемы является продуктивность, которая выражается в скорости нарастания биомассы. За счет на Земле создается 98 % органического вещества; 2 % приходится на хемосинтез. Различают валовую первичную продукцию (ВПП), которая представляет собой все органическое вещество экосистемы с затратами на дыхание. Чистая первичная продукция (ЧПП) – это то количество органического вещества, которое остается в экосистеме после затрат на дыхание. Формулой это можно выразить так:

ЧПП = ВПП – затраты на дыхание.

ЧПП очень различается в разных экосистемах. Например, на коралловых рифах она составляет 2500 г/м кв. в год, во влажных тропических лесах – 2300 г/м кв. в год. Коралловые рифы и влажные тропические леса являются самыми продуктивными экосистемами. Наиболее бедными экосистемами являются открытый океан (125 г/м кв. в год) и пустыня (3 г/м кв. в год).

Цепь питания – перенос энергии от его источника через ряд организмов. Все живые организмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Травоядные животные (потребители первого порядка) поедают растения, первичные хищники (потребители второго порядка) поедают травоядных, вторичные хищники (потребители третьего порядка) поедают хищников помельче.

Таким образом, создаются пищевые цепи из продуцентов и консументов, которые на разных этапах смыкаются с сообществом редуцентов.

Цепи питания представляют собой возможные варианты поедания организмами друг друга. Цепи питания, как правило, состоят из трех звеньев:

Продуценты консументы редуценты неорганические вещества

Приведем несколько примеров пищевых цепей, где для удобства изображения опустим группу редуцентов, представленных бактериями.

В лесу : малина рыжая полевка ушастая сова

В озере : диатомовая дафния карась

Приведенные пищевые цепи конечно являются крайне упрощенными. На практике цепи питания разветвляются и образуют пищевую сеть, так как каждый из консументов не может потреблять в пищу только один вид организмов.

Каждый из уровней питания называется трофическим уровнем. Фактически при поедании организмами друг друга по трофическим уровням переносится энергия. В каждом последующем трофическом звене количество энергии убывает. Это связано с тем, что какое-то количество энергии, поступившей в трофический уровень, всегда будет рассеиваться в виде тепла.

Состояние экосистемы описывается с помощью пирамиды. Экологическая пирамида представляет собой график состояния каждого трофического уровня. Эти графики строятся на основе изменения в каждом последующем трофическом уровне таких показателей как численность на единицу площади; биомассе на единицу площади, энергии. Пирамиды, построенные на основе изменений численности и биомассы могут иметь перевернутый вид, а на основе изменений энергии – никогда.

В классической пирамиде каждое следующее основание меньше предыдущего. При составлении экологической пирамиды в нижних основаниях пирамиды оказываются продуценты, а вверху – консументы.

Согласно исследованиям американского гидробиолога Линдеманна только часть энергии поступает на следующий трофический уровень (закон передачи энергии по цепям питания). Это количество энергии равно 10–20 % от предыдущего. Согласно этому закону в природе не может быть более 3–5 трофических звеньев в одной цепи. Наиболее выгодные с энергетической точки зрения цепи, содержащие 2 – 3 звена.

Пищевые цепи разделяются на два типа:

Цепь выедания – начинается с растений, идет к растительноядным животным, далее к хищникам.
Цепь разложения – начинается от растительных и животных остатков, экскрементов животных, далее мелкие животные и микроорганизмы.
Все типы пищевых цепей всегда существуют в сообществе таким образом, что член одной цепи является также членом другой. Соединения цепей образую пищевую сеть экосистемы. Угнетение или разрушение любого звена экосистемы с неизбежностью отразится на экосистеме в целом.