Видимая звездная величина солнца равна. Звездная величина солнца и луны. Видимая и абсолютная звёздные величины

Неодинаковая яркость (или блеск) различных объектов на небе – наверно первое, что замечает человек при наблюдениях; потому, в связи с этим, ещё давно, возникла необходимость во введении удобной величины, которая позволяла бы классифицировать светила по яркости.

История

Впервые такую величину для своих наблюдений невооружённым глазом применил древнегреческий астроном, автор первого европейского звёздного каталога – Гиппарх. Все звёзды в своём каталоге он классифицировал по яркости, обозначив самые яркие – звёздами 1-ой величины, а самые тусклые – звёздами 6-ой величины.Данная система прижилась, а в середине XIX-го века была усовершенствована до своего современного вида английским астрономом Норманом Погсоном.

Таким образом, получили безразмерную физическую величину, логарифмически связанную с освещённостью, которую создают светила (собственно звёздную величину):

m1-m2 =-2,5*lg(L1/L2)

где m1 и m2 звёздные величины светил, а L1 и L2 – освещённости в люксах (лк – единица измерения освещённости в системе СИ), создаваемые этими объектами. Если подставить в левую часть данного уравнения значение m1-m2 = 5, то произведя несложное вычисление, обнаружится, что освещённости в этом случае соотносятся как 1/100, так что разница в блеске на 5 звёздных величин, соответствует разнице в освещённости от объектов в 100 раз.

Продолжая решать эту задачу, извлечём корень 5-ой степени из 100 и мы получим изменение освещённости при разнице в блеске в одну звёздную величину, изменение освещённости составит 2,512 раза.

Это весь основной математический аппарат, необходимый для ориентации в данной шкале яркости.

Шкала звёздных величин

С введением этой системы также нужно было задать начало отсчёта шкалы звёздных величин. Для этого за нулевую звёздную величину (0m), изначально был принят блеск звезды Вега (альфа Лиры). В настоящее же время наиболее точным началом отсчёта является блеск звезды, которая на 0,03m ярче Веги. Однако глаз такую разницу не заметит, так что для визуальных наблюдений – блеск, соответствующий нулевой звёздной величине по-прежнему можно принимать по Веге.

Что ещё важно помнить касаемо данной шкалы – чем меньше звёздная величина, тем ярче объект. К примеру, та же Вега со своим блеском в +0,03 m будет почти в 100 раз ярче звезды с блеском в +5m. Юпитер же со своим максимумом блеска в -2,94m, будет ярче Веги в:

2,94-0,03 = -2,5*lg(L1/L2)
L1/L2 = 15,42 раз

Можно решить эту задачу и другим способом – просто возведя 2,512 в степень, равную разнице звёздных величин объектов:

2,512^(-2,94-0,03) = 15,42

Классификация звёздной величины

Теперь, окончательно разобравшись с матчастью, рассмотрим классификацию применяемых в астрономии звёздных величин.

Первая классификация – по спектральной чувствительности приёмника излучения. В этом плане звёздная величина бывает: визуальной (яркость учитывается только в видимом глазу диапазоне спектра); болометрической (яркость учитывается во всём диапазоне спектра, не только видимый свет, а также ультрафиолетовый, инфракрасный и остальные спектры вместе взятые); фотографической (яркость с учётом чувствительности к спектру фотоэлементов).

Сюда же можно отнести и звёздные величины в конкретном участке спектра (например, в диапазоне голубого света, жёлтого, красного или ультрафиолетового излучения).

Соответственно, визуальная звёздная величина предназначена для оценки блеска светил при визуальных наблюдениях; болометрическая – для оценки общего потока всего излучения от светила; а фотографическая и узкополосные величины – для оценки показателей цвета светил в какой-либо фотометрической системе.

Видимая и абсолютная звёздные величины

Второй тип классификации звёздных величин – по количеству зависимых физических параметров. В этом плане звёздная величина может быть – видимой и абсолютной. Видимая звёздная величина – это тот блеск объекта, который глаз (или другой приёмник излучения) воспринимает непосредственно со своего текущего положения в пространстве.

Зависит этот блеск сразу от двух параметров – это мощность излучения светила и расстояние до него. Абсолютная звёздная величина зависит только от мощности излучения и не зависит от расстояния до объекта, поскольку последнее принимается общим для конкретного класса объектов.

Абсолютная звёздная величина для звёзд определяется, как их видимая звёздная величина если бы расстояние до звезды составляло бы 10 парсек (32,616 световых лет). Абсолютная звёздная величина для объектов Солнечной системы определяется как их видимая звёздная величина, если бы они находились на расстоянии в 1 а.е. от Солнца и показывали бы для наблюдателя свою полную фазу, а сам бы наблюдатель при этом также бы находился в 1 а.е. (149,6 млн. км) от объекта (т.е. в центре Солнца).

Абсолютная звёздная величина метеоров определяется как их видимая звёздная величина, если бы они находились от наблюдателя на расстоянии 100 км и в точке зенита.

Применение звёздных величин

Данные классификации могут применяться совместно. Например, абсолютная визуальная звёздная величина Солнца составляет M(v) = +4,83. а абсолютная болометрическая M(bol) = +4,75, поскольку Солнце светит не только в видимом диапазоне спектра. В зависимости от значения температуры фотосферы (видимой поверхности) звезды, а также её принадлежности к классу светимости (главная последовательность, гигант, сверхгигант и т.д.).

Различаются визуальные и болометрические абсолютные звёздные величины звезды. Например, горячие звёзды (спектральные классы B и О) светят в основном в невидимом глазу ультрафиолетовом диапазоне. Так что их болометрический блеск куда сильнее, чем визуальный. То же касается и холодных звёзд (спектральные классы K и М), которые светят преимущественно в инфракрасном диапазоне.

Абсолютная визуальная звёздная величина самых мощных звёзд (гипергиганты и звёзды Вольфа-Райе) порядка -8, -9. Абсолютная болометрическая может доходить до -11, -12 (что соответствует видимой звёздной величине полной Луны).

Мощность излучения (светимость) при этом в миллионы раз превышает мощность излучения Солнца. Видимая визуальная звёздная величина Солнца с орбиты Земли составляет -26,74m; в районе орбиты Нептуна будет -19,36m. Видимая визуальная звёздная величина самой яркой звезды – Сириуса, составляет -1,5m, а абсолютная визуальная звёздная величина данной звезды +1,44, т.е. Сириус почти в 23 раза ярче Солнца в видимом спектре.

Планета Венера на небе всегда ярче всех звёзд (её видимых блеск колеблется в пределах от -3,8m до -4,9m); несколько менее ярок Юпитер (от -1,6m до -2,94m); Марс во время противостояний имеет видимую звёздную величину порядка -2m и ярче. В общем и целом, большинство планет в большинстве случаев являются самыми яркими объектами неба после Солнца и Луны. Поскольку в окрестностях Солнца нет звёзд с большой светимостью.

(обозначается m — от англ. M agnitude) — безразмерная величина, характеризующая блеск небесного тела (количество света, поступающего от него) с точки зрения земного наблюдателя. Чем ярче объект, тем меньше его видимая звездная величина.

Слово «видимая» в названии означает лишь то, что звездная величина наблюдается с Земли, и используется для того, чтобы отличать ее от абсолютной звездной величины. Это название относится не только видимого света. Величина, которая воспринимается человеческим глазом (или другим приемником с такой же спектральной чувствительностью), называется визуальной.

Звездная величина обозначается маленькой буквой m в виде верхнего индекса до числового значения. Например, 2 m означает вторую звездную величину.

История

Понятие звездной величины ввел древнегреческий астроном Гиппарх во II веке до нашей эры. Он распределил все доступные невооруженному глазу звезды на шесть величин: яркие он назвал звездами первой величины, найтьмяниши — шестой. Для промежуточных величин считалось, что, скажем, звезды третьей величины, столь же тусклее звезды второй, насколько они ярче звезды четвертой. Этот способ измерения блеска получил распространение благодаря «Альмагесту» — звездном каталога Клавдия Птолемея.

Такая классификационная шкала почти без изменений применялась до середины 19 века. Первым, кто отнесся к звездной величины как в количественной, а не качественной характеристики, был Фридрих Аргеландер. Именно он начал уверенно применять десятичные доли звездных величин.

1856 Норман Погсон формализовал шкалу звездных величин, установив, что звезда первой величины ровно в 100 раз ярче звезду шестой величины. Поскольку в соответствии с закон Вебера — Фехнера изменение освещенности в одинаковое количество раз воспринимается глазом как изменение на одинаковую величину, то разница в одну звездную величину соответствует изменению интенсивности света в ≈ 2,512 раз. Это иррациональное число, которое называют числом Погсон.

Итак, шкала звездных величин является логарифмической: разница звездных величин двух объектов определяется уравнением:

, , — Звездные величины объектов, , — Освещенности, создаваемые ими.

Эта формула дает возможность определить лишь разницу звездных величин, но не сами величины. Чтобы с ее помощью построить абсолютную шкалу, необходимо задать нуль-пункт — освещенность, которой соответствует нулевая звездная величина (0 m). Сначала Погсон применял как эталон Полярную звезду, положив, что она имеет ровно второй величины. После того, как выяснилось, что Полярная является переменной звездой, шкалу начали привязывать к Веге (которой приписывали нулевую величину), а затем (когда в Веги тоже заподозрили изменчивость) нуль-пункт шкалы переопределили с помощью нескольких других звезд. Впрочем, для визуальных наблюдений Вега может служить эталоном нулевой звездной величины и дальше, поскольку ее звездная величина в видимом свете равен 0,03 m, что на глаз не отличается от нуля.

Современная шкала звездных величин не ограничивается шестью величинами или только видимым светом. Звездная величина очень ярких объектов является отрицательной. Например, Сириус, самая яркая звезда ночного неба, имеет видимую звездную величину -1,47 m. Современная техника позволяет также измерить блеск Луны и Солнца: полная Луна имеет видимую звездную величину -12,6 m, а Солнце -26,8 m. Орбитальный телескоп "Хаббл" может наблюдать звезды до 31,5 m в видимом диапазоне.

Спектральная зависимость

Звездная величина зависит от спектрального диапазона, в котором осуществляется наблюдение, так как световой поток от любого объекта в различных диапазонах разный.

  • Болометрическая звездная величина показывает полную мощность излучения объекта, то есть суммарный поток во всех спектральных диапазонах. Измеряется болометра.

Наиболее распространенная фотометрическая система — система UBV — имеет 3 полосы (спектральные диапазоны, в которых осуществляются измерения). Соответственно, там существуют:

  • ультрафиолетовая звездная величина (U) — определяется в ультрафиолетовом диапазоне;
  • «Синяя» звездная величина (B) — определяется в синем диапазоне;
  • визуальная звездная величина (V) — определяется в видимом диапазоне; кривая спектральной чувствительности выбрана так, чтобы лучше соответствовать человеческому зрению. Глаз наиболее чувствителен к желто-зеленого света с длиной волны около 555 нм.

Разница (U-B или B-V) между звездными величинами одного и того же объекта в разных полосах показывает его цвет и называется показателем цвета. Чем больше показатель цвета, тем краснее объект.

Есть и другие фотометрические системы, в каждой из которых есть различные полосы и, соответственно, можно измерить различные величины. Например, в старой фотографической системе использовались следующие величины:

  • фотовизуальными звездная величина (m pv) — мера зчорнення изображение объекта на фотопластинке с оранжевым светофильтром;
  • фотографическая звездная величина (m pg) — измеряется на обычной фотопластинке, что чувствительна к синему и ультрафиолетового диапазонов спектра.

Видимые звездные величины некоторых объектов

Объект m
Солнце -26,73
Полнолуние -12,92
Вспышка Иридиуму (максимум) -9,50
Венера (максимум) -4,89
Венера (минимум) -3,50
Юпитер (максимум) -2,94
Марс (максимум) -2,91
Меркурий (максимум) -2,45
Юпитер (минимум) -1,61
Сириус (самая яркая звезда неба) -1,47
Канопус (2-я по яркости звезда неба) -0,72
Сатурн (максимум) -0,49
Альфа Центавра совокупная яркость А, В -0,27
Арктур ​​(3-я по яркости звезда неба) 0,05
Альфа Центавра А (4-я по яркости звезда неба) -0,01
Вега (5-я по яркости звезда неба) 0,03
Сатурн (минимум) 1,47
Марс (минимум) 1,84
SN 1987A — сверхновая звезда 1987 году в Большом Магеллановом Облаке 3,03
Туманность Андромеды 3,44
Слабые звезды, которые видны в мегаполисах 3 … + 4
Ганимед — спутник Юпитера, самый большой спутник Солнечной системы (максимум) 4,38
4 Веста (яркий астероид), в максимуме 5,14
Уран (максимум) 5,32
Галактика Треугольника (М33), видимая невооруженным глазом при хорошем небе 5,72
Меркурий (минимум) 5,75
Уран (минимум) 5,95
Найтьмяниши звезды, видимые невооруженным глазом в сельской местности 6,50
Церера (максимум) 6,73
NGC 3031 (М81), видимая невооруженным глазом при идеальном небе 6,90
Найтьмяниши звезды, видимые невооруженным глазом на идеальном небе (Обсерватория Мауна-Кеа, пустыня Атакама) 7,72
Нептун (максимум) 7,78
Нептун (минимум) 8,01
Титан — спутник Сатурна, 2-й по величине спутник Солнечной системы (максимум) 8,10
Проксима Центавра 11,10
Самый яркий квазар 12,60
Плутон (максимум) 13,65
Макемаке в оппозиции 16,80
Хаумеа в оппозиции 17,27
Эрида в оппозиции 18,70
Слабые звезды, видимые на снимке CCD-детектора на 24 "телескопе при выдержке в 30 мин 22
Найтьмяниший объект, доступный на 8-метровом наземном телескопе 27
Найтьмяниший объект, доступный на орбитальном телескопе «Хаббл» 31,5
Найтьмяниший объект, который будет доступен на 42-метровом наземном телескопе 36
Найтьмяниший объект, который будет доступен на орбитальном телескопе OWL (запуск планируется 2020 года) 38

Звездная величина

Безразмерная физическая величина, характеризующая , создаваемую небесным объектом вблизи наблюдателя. Субъективно ее значение воспринимается как (у ) или (у ). При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды. Звездную величину сначала ввели как указатель видимого блеска оптических звезд, но позже распространили и на другие диапазоны излучения: , . Шкала звездных величин логарифмическая, как и шкала децибеллов. В шкале звездных величин разность на 5 единиц соответствует 100-кратному различию в потоках света от измеряемого и эталонного источников. Таким образом, разность на 1 звездную величину соответствует отношению потоков света в 100 1/5 = 2.512 раза. Обозначают звездную величину латинской буквой "m" (от лат. magnitudo, величина) в виде верхнего курсивного индекса справа от числа. Направление шкалы звездных величин обратное, т.е. чем больше значение, тем слабее блеск объекта. Например, звезда 2-й звездной величины (2 m ) в 2.512 раза ярче звезды 3-й величины (3 m ) и в 2.512 x 2.512 = 6.310 раза ярче звезды 4-й величины (4 m ).

Видимая звездная величина (m ; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т.е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него. Шкала видимых величин ведет начало от звездного каталога Гиппарха (до 161 ок. 126 до н.э.), в котором все видимые глазом звезды впервые были разбиты на 6 классов по яркости. У звезд Ковша Б.Медведицы блеск около 2 m , у Веги около 0 m . У особо ярких светил значение звездной величины отрицательно: у Сириуса около -1.5 m (т.е. поток света от него в 4 раза больше, чем от Веги), а блеск Венеры в некоторые моменты почти достигает -5 m (т.е. поток света почти в 100 раз больше, чем от Веги). Подчеркнем, что видимая звездная величина может быть измерена как невооруженным глазом, так и с помощью телескопа; как в визуальном диапазоне спектра, так и в других (фотографическом, УФ-, ИК-). В данном случае "видимая" (англ. apparent) означает "наблюдаемая", "кажущаяся" и не имеет отношения конкретно к человеческому глазу (см.: ).

Абсолютная звездная величина (М) указывает, какую видимую звездную величину имело бы светило в том случае, если бы расстояние до него составляло 10 и отсутствовало бы . Таким отразом, абсолютная звездная величина, в отличие от видимой, позволяет сравнивать истинные светимости небесных объектов (в заданном диапазоне спектра).

Что касается спектральных диапазонов, то существует множество систем звездных величин, различающихся выбором конкретного диапазона измерения. При наблюдении глазом (невооруженным или через телескоп) измеряется визуальная звездная величина (m v ). По изображению звезды на обычной фотопластинке, полученному без дополнительных светофильтров, измеряется фотографическая звездная величина (m P). Поскольку фотоэмульсия чувствительна к синим лучам и нечувствительна к красным, на фотопластинке более яркими (чем это кажется глазу) получаются голубые звезды. Однако и с помощью фотопластинки, используя ортохроматическую и желтый , получают так называемую фотовизуальную шкалу звездных величин (m Pv ), которая практически совпадает с визуальной. Сопоставляя яркости источника, измеренные в различных диапазонах спектра, можно узнать его цвет, оценить температуру поверхности (если это звезда) или (если планета), определить степень межзвездного поглощения света и другие важные характеристики. Поэтому разработаны стандартные , в основном определяемых подбором светофильтров. Наиболее популярна трехцветная : ультрафиолетовый (Ultraviolet), синий (Blue) и желтый (Visual). При этом желтый диапазон очень близок к фотовизуальному (B m Pv ), а синий - к фотографическому (B m P).

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звезд, могут, помимо неподвижных звезд, найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звездную величину Солнца и Луны. Звездная величина Солнца выражается числом минус 26,8, а полной Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может его приведет в недоумение недостаточно большая разница между звездной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звездной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звездные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчет.

Если звездная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,5 27,8 раза.

Луна же ярче звезды первой величины

в 2,5 13,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты , выделяемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см 2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду.

Распространенное убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:


т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчет: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звездного неба, т. е. всех звезд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звезды от первой до шестой величины включительно светят вместе так, как сотня звезд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звезд первой величины.

Это отношение равно

Итак, в ясную безлунную ночь мы получаем от звездного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700 х 447 000, т. е. в 1200 миллионов раз меньше, чем дает в безоблачный день Солнце.

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звёзд, могут, помимо неподвижных звёзд; найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звёздную величину Солнца и Луны. Звёздная величина Солнца выражается числом минус 26,8, а полной1) Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может, его приведёт в недоумение недостаточно большая разница между звёздной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звёздной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звёздные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчёт.

Если звёздная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,527,8 раза. Луна же ярче звезды первой величины

в 2,513,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

2,5 27,8 2,5 14,2раза. 2,5 13,6

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты, отбрасываемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду2) .

1) В первой и в последней четверти звёздная величина Луны минус 9.

2) Вопрос о том, может ли Луна влиять на погоду своим притяжением, будет рассмотрен в конце книги (см. «Луна и погода»).

Распространённое убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:

2,5 27,8

2,5 25,2

2,52,6

т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчёт: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звёздного неба, т. е. всех звёзд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звёзды от первой до шестой величины включительно светят вместе так, как сотня звёзд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звёзд первой величины.

Это отношение равно

2,5 13,6

100 2700.

Итак, в ясную безлунную ночь мы получаем от звёздного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700×447 000, т. е. в 1200 миллионов раз меньше, чем даёт в безоблачный день Солнце.

Прибавим ещё, что звёздная величина нормальной международной

«свечи» на расстоянии 1 м равна минус 14,2, значит, свеча на указанном расстоянии освещает ярче полной Луны в 2,514,2-12,6 т. е. в четыре раза.

Небезынтересно, может быть, отметить ещё что прожектор авиационного маяка силой в 2 миллиарда свечей виден был бы с расстояния Луны звездой 4½-й величины, т. е. мог бы различаться невооружённым глазом.

Истинный блеск звёзд и Солнца

Все оценки блеска, которые мы делали до сих пор, относились только к их видимому блеску. Приведённые числа выражают блеск светил на тех расстояниях, на каких каждое из них в действительности находится. Но мы хорошо знаем, что звёзды удалены от нас неодинаково; видимый блеск звёзд говорит нам поэтому как об их истинном блеске, так и об их удалении от нас, – вернее, ни о том, ни о другом, пока мы не расчленим оба фактора. Между тем важно знать, каков был бы сравнительный блеск или, как говорят, «светимость» различных звёзд, если бы они находились от нас на одинаковом расстоянии.

Ставя так вопрос, астрономы вводят понятие об «абсолютной» звёздной величине звёзд. Абсолютной звёздной величиной звезды называется та, которую звезда имела бы, если бы находилась от нас на рас-

стоянии 10 «парсеков». Парсек – особая мера длины, употребляемая для звёздных расстояний; о её происхождении мы побеседуем позднее особо, здесь скажем лишь, что один парсек составляет около 30 800 000 000 000 км. Самый расчёт абсолютной звёздной величины произвести нетрудно, если знать расстояние звезды и принять во внимание, что блеск должен убывать пропорционально квадрату расстояния1) .

Мы познакомим читателя с результатом лишь двух таких расчётов: для Сириуса и для нашего Солнца. Абсолютная величина Сириуса +1,3, Солнца +4,8. Это значит, что с расстояния 30 800 000 000 000 км Сириус сиял бы нам звездой 1,3-й величины, а паше Солнце 4,8-й величины, т. е. слабее Сириуса в

2,5 3,8 2,53,5 25раз,

2,50,3

хотя видимый блеск Солнца в 10 000 000 000 раз больше блеска Сириуса.

Мы убедились, что Солнце – далеко не самая яркая звезда неба. Не следует, однако, считать наше Солнце совсем пигмеем среди окружающих его звёзд: светимость его всё же выше средней. По данным звёздной статистики, средними по светимости из звёзд, окружающих Солнце до расстояния 10 парсеков, являются звёзды девятой абсолютной величины. Так как абсолютная величина Солнца равна 4,8, то оно ярче, нежели средняя из «соседних» звёзд, в

2,58

2,54,2

50 раз.

2,53,8

Будучи в 25 раз абсолютно тусклее Сириуса, Солнце оказывается всё же в 50 раз ярче, чем средние из окружающих его звёзд.

Самая яркая звезда из известных

Самой большой светимостью обладает недоступная простому глазу звёздочка восьмой величины в созвездии Золотой Рыбы, обозначаемая

1) Вычисление можно выполнить по следующей формуле, происхождение которой станет ясно читателю, когда немного позднее он познакомится ближе с «парсеком» и «параллаксом»:

Здесь М – абсолютная величина звезды,m – её видимая величина,π – параллакс звезды в

секундах. Последовательные преобразования таковы: 2,5M = 2,5m · 100π 2 ,

M lg 2,5 =m lg 2,5 + 2 + 2 lgπ , 0,4M = 0,4m +2 + 2 lgπ ,

M =m + 5 + 5 lgπ .

Для Сириуса, например, m = –1,6π = 0",38. Поэтому его абсолютная величина

M = –l,6 + 5 + 5 lg 0,38 = 1,3.

латинской буквой S. Созвездие Золотой Рыбы находится в южном полушарии неба и не видно в умеренном поясе нашего полушария. Упомянутая звёздочка входит в состав соседней с нами звёздной системы – Малого Магелланова Облака, расстояние которого от нас оценивается примерно в 12 000 раз больше, чем расстояние до Сириуса. На таком огромном удалении звезда должна обладать совершенно исключительной светимостью, чтобы казаться даже восьмой величины. Сириус, заброшенный так же глубоко в пространстве, сиял бы звездой 17-й величины, т. е. был бы едва виден в самый могущественный телескоп.

Какова же светимость этой замечательной звезды? Расчёт даёт такой результат: минус восьмая величина. Это значит, что наша звезда абсолютно в: 400 000 раз (примерно) ярче Солнца! При такой исключительной яркости звезда эта, будучи помещена на расстоянии Сириуса, казалась бы на девять величин ярче его, т. е. имела бы примерно яркость Луны в фазе четверти! Звезда, которая с расстояния Сириуса могла бы заливать Землю таким ярким светом, имеет бесспорное право считаться самой яркой из известных нам звёзд.

Звёздная величина планет на земном и чужом небе

Возвратимся теперь к мысленному путешествию на другие планеты (проделанному нами в разделе «Чужие небеса») и оценим более точно блеск сияющих там светил. Прежде всего укажем звёздные величины планет в максимуме их блеска на земном небе. Вот табличка.

На небе Земли:

Венера.............................

Сатурн..............................

Марс..................................

Уран..................................

Юпитер...........................

Нептун.............................

Меркурий......................

Просматривая её, видим, что Венера ярче Юпитера почти на две звёздные величины, т. е. в 2,52 = 6,25 раза, а Сириуса в 2,5-2,7 = 13 раз

(блеск Сириуса – 1,6-й величины). Из той же таблички видно, что тусклая планета Сатурн всё же ярче всех неподвижных звёзд, кроме Сириуса и Канопуса. Здесь мы находим объяснение тому факту, что планеты (Венера, Юпитер) бывают иногда днём видны простым глазом, звёзды же при дневном свете совершенно недоступны невооружённому зрению.