Электричества и магнетизма. Магнитные свойства вещества. Естественные и искусственные магниты

15:07 13/03/2018

👁 314

Мы привыкли к тому, что магнитные процессы происходят главным образом в маленьких, но важных деталях всяких технических устройств и связаны с тонкими квантово-механическими явлениями, а в статьях о них, прикидывающихся популярными, то и дело повторяется таинственное и малопонятное слово «спин». Но магнетизм бывает и в космосе, и там он выглядит совсем по-другому.

Астрономы установили, что очень многие небесные тела, например или наша - , являются гигантскими магнитами, причем размеры магнитного поля сравнимы с размерами самого небесного тела. Вещество, из которого состоит Солнце - солнечная плазма, - очень горячее, а межзвездный газ в Млечном Пути очень разреженный. Поэтому магнитное поле в них связано не с упорядочиванием спинов, как в ферромагнетиках, а с какими-то процессами, принадлежащими к области классической физики, которую, надеемся, еще проходят в средней школе.

Космические магнитные поля существенно сильнее привычных нам полей. Не стоит сравнивать непосредственно напряженности магнитного поля в DVD-плеере, сотовом телефоне и часах с полем Солнца или галактики. Для тел очень разного размера приходится выбирать соразмерные им масштабы. Нерадивый школьник прогулял занятия и, оправдываясь, говорит, что не смог дойти до школы потому, что магнитное поле около школы было слишком велико. Нетрудно предвидеть реакцию родителей… Однако для объяснения движений космических сред это объяснение вполне естественно - именно магнитное поле мешает выброшенному Солнцем облаку плазмы достичь поверхности Земли.

Магнитное поле Земли - единственный пример космического магнетизма, который можно наблюдать невооруженным глазом (рис. 1). Полярное сияние - это визуализация магнитного поля Земли заряженными частицами, подобная визуализации лазерного луча пылью в воздухе. Стрелка компаса показывает на север, потому что она сама - маленький ферромагнетик, ее свойства определяются теми самыми спинами. Но почему магнитом является сама Земля и почему ее магнитный полюс примерно совпадает с географическим?

На Земле есть месторождения железных руд, намагниченность которых кое-что вносит в геомагнитное поле, создает магнитные аномалии, например Курскую магнитную аномалию. Но они вносят небольшие искажения в общее (как говорят, главное) геомагнитное поле. Это поле формируется где-то в глубине Земли, а температура там достаточно высока для того, чтобы о ферромагнетиках не заходила и речь.

Какие процессы приводят к образованию магнитных полей небесных тел - , и галактик? Выбор невелик: мы в области классической физики, а она знает только один процесс, который в принципе может приводить к росту магнитного поля. Это - явление электромагнитной индукции. В школе рассказывают (а иногда и показывают), что при движении проводящей рамки в магнитном поле в ней начинает течь ток. Этот наведенный или индуцированный ток тоже создает магнитное поле. Может ли случиться так, что это наведенное поле сложится с исходным так, чтобы общее магнитное поле увеличилось? Почти век назад, в 1919 году, физик Джозеф Лармор понял, что именно индуцированный ток в глубинах Солнца - единственный шанс объяснить магнитное поле нашей звезды, не прибегая к фантастическим гипотезам о каких-то новых взаимодействиях (за такими гипотезами дело не стало, но все они не выдержали сопоставления с реальностью).

Короткая заметка Лармора (в ней была всего одна страница) оказалась первым шагом в изучении процесса самовозбуждения магнитного поля в движущихся проводящих средах. Начало XX века - время развития электричества, язык откликнулся популярностью новых слов, в том числе слова «динамо». Устройство, которое преобразует механическую работу в электрическую, назвали «динамо-машиной», а новый раздел физики - «теорией динамо». Именно так и принято было говорить долгие годы, так говорят и ныне - теория динамо.

Физика - наука экспериментальная: можно долго обсуждать модели физических процессов, которыми оперируют теоретики, но физики скоро начали говорить, что неплохо было бы подтвердить все эти домыслы экспериментально. А именно: надо подтвердить, что наведенное поле может сложиться с исходным. Этого подтверждения пришлось ждать почти век.

В чем проблема?

Трудность в экспериментальной проверке идеи динамо состоит вот в чем. Если нажать на выключатель и разорвать проводящий контур, по которому идет ток, свет погаснет, а заодно исчезнет магнитное поле, порожденное током. Энергия магнитного поля перейдет в тепло из-за омических потерь (и отчасти из-за излучения). Для того чтобы работало динамо, индукционный эффект должен побороть омические потери. Чтобы оценить относительную величину индукционных эффектов и омические потери, вводят так называемое безразмерное магнитное число Рейнольдса Rm = vL/νm. Числитель этой дроби содержит величины, с которыми связаны индукционные эффекты, - скорость движения рамки и ее размер, а знаменатель - коэффициент магнитной диффузии, который пропорционален удельному электрическому сопротивлению среды. Для того чтобы индукция победила омические потери, магнитное число Рейнольдса должно быть достаточно велико - расчеты показывают, что нужно достичь значения около 17.

Поиск возможной схемы динамо-эксперимента - прежде всего борьба за высокое магнитное число Рейнольдса. Возможности лабораторной физики здесь не слишком велики - движущихся хорошо проводящих сред не так много. Если мы хотим моделировать планетарные и космические эффекты, то речь не идет о твердых проводниках. В космосе твердые тела редкость, а те, что есть - твердые оболочки Земли, например, - заведомо не создают интересных индукционных эффектов. Проводящие газы - это плазма. Из нее в огромном большинстве состоят небесные тела. Не исключено, что в будущем нас ждут и лабораторные динамо-эксперименты с плазмой, но сейчас эти возможности еще в стадии обсуждения.

Среди жидкостей выбор тоже невелик. У электролитов проводимость плохая, остаются жидкие металлы. Ртуть дорогая, опасная, очень тяжелая и плохой проводник. Чтобы разогнать большое количество ртути до необходимых скоростей, нужна огромная энергия. В лабораторных экспериментах по изучению течений жидких металлов широко используется галлий - он вдвое легче ртути и плавится при 29°C (а его сплавы даже при 17°C), но галлий тоже дорогой и не так хорошо, как хотелось бы, проводит электрический ток. Большая плотность и слабая проводимость - недостатки и других низкотемпературных сплавов (например, широко известного сплава Вуда). Следующий кандидат, натрий, взрывоопасен, и его придется нагревать до сотни градусов. Но он дешевый, проводит ток лучше галлия и очень легкий. Есть еще эвтектический сплав натрия с галлием, который плавится при 12°C, правда, он очень агрессивен, как и литий.

Итак, мы определились с возможным веществом для динамо-экспериментов: это натрий, разумный компромисс требуемых физических свойств и опасности. Выбор был ясен уже в самом начале пути, полвека назад.

Что касается скорости движений, то возможности лабораторной физики явно проигрывают возможностям космической среды. Однако главное преимущество космосу дают огромные размеры. Лабораторная установка размером в 10 метров, в которой среда движется со скоростью 10 м/сек, - зрелище циклопическое, а для космоса это очень скромные цифры.

В итоге для Солнца магнитное число Рейнольдса достигает миллионов, а для современной лаборатории сотня - предел мечтаний, результат многолетнего упорного труда. Тем не менее это уже больше заветных 17, так что шансы есть.

Однако не все так просто с самим механизмом динамо. На Солнце, да и в Земле нет металлических рамок с током - их работу должны воспроизводить потоки среды. Организовать нужное движение потока жидкости значительно сложнее, чем двигать нужным образом провод. Однако гораздо хуже то, что простые течения заведомо не могут работать как динамо. Про это тоже рассказывают в школе: согласно правилу Ленца, магнитное поле, возникшее в проводящей рамке за счет явления электромагнитной индукции, направлено противоположно исходному магнитному полю и не усиливает его, а ослабляет. Поэтому движение одной рамки не может привести к самовозбуждению в ней магнитного поля.

Умный Ленца обойдет

И все же физики нашли лазейку в правиле Ленца. Рассмотрим две рамки, движущиеся в магнитном поле. Индукционный эффект в первой рамке ослабляет магнитное поле в этой же самой рамке, но может усиливать его во второй, если она подходящим образом расположена. Это правилу Ленца не противоречит. Теперь можно добиться того, чтобы индукционный эффект во второй рамке усиливал магнитное поле в первой, но, конечно, ослаблял его во второй. Можно надеяться, что совместная работа двух рамок приведет к тому, что в каждой из них индукция станет больше потерь и магнитное поле начнет лавинообразно нарастать.

Конечно, в принципе можно надеяться на все, что прямо не запрещено законами природы, но от надежды до уверенности расстояние заметное. Его удалось преодолеть в 60-е годы прошлого века, и сделал это Ю. Б. Пономаренко. Он придумал такое конкретное течение проводящей жидкости, которое оказалось достаточно сложным для того, чтобы в нем генерировалось магнитное поле, но достаточно простым, чтобы уравнение индукции, которое описывает поведение магнитного поля, можно было решить точно.

Судьба первопроходцев в науке часто бывает трудной. Работа Пономаренко - одна из наиболее известных работ, посвященных динамо. Этого совсем нельзя сказать о самом Пономаренко - его биография совершенно исчезла из памяти научного сообщества. Честно говоря, мы могли бы лучше помнить своих героев.

Течение, придуманное Пономаренко, - это бесконечная вращающаяся струя проводящей жидкости, окруженная проводящей средой (рис. 2). Такое течение удобно воспроизводить в лаборатории, и у него самое низкое из известных критическое магнитное число Рейнольдса, так что идея Пономаренко стала одной из основных в динамо-экспериментах.

Сейчас экспериментально подтверждено, что течение, примерно так и устроенное, действительно генерирует магнитное поле. Однако на самом деле оно генерирует его не очень хорошо, и поле растет медленно. В то же время астрономические наблюдения показывают, что, скажем, на Солнце магнитные поля изменяются быстро. Каждый цикл солнечной активности, то есть каждые 11 лет, солнечный магнитный диполь меняет знак на противоположный - для звезд это очень быстрые изменения. Ничего подобного динамо Пономаренко обеспечить не может. Причина в том, что в работе динамо Пономаренко магнитная диффузия не только вызывает омические потери, но и обеспечивает работу одного из контуров, в которых происходит индукция магнитного поля. Это еще один тонкий эффект в нашей науке: векторная величина, то есть магнитное поле, диффундирует не так, как скалярная величина, то есть температура.

Для того чтобы магнитное поле изменялось быстро, так, как это бывает в солнечном цикле, необходим более сложный механизм, чем динамо Пономаренко. Такой механизм предложил в 1955 году Юджин Паркер. Представим себе поле магнитного диполя, направленного вдоль оси вращения Солнца. Поскольку солнечная плазма - относительно хороший проводник, то магнитные линии двигаются вместе с солнечной плазмой. Но Солнце вращается не как твердое тело - разные его слои вращаются с различной угловой скоростью, это называется дифференциальным вращением. В результате одни частицы солнечного вещества обгоняют другие, магнитные линии вытягиваются в азимутальном направлении, а из дипольного поля получается магнитное поле, которое наматывается на некоторый тор внутри Солнца - его так и называют тороидальным. Это - индукционный эффект в первом контуре. Он достаточно прост, и в нем сомнений нет.

Для того чтобы динамо заработало, нужно как-то превратить тороидальное магнитное поле в поле магнитного диполя (его называют полоидальным). Этого нельзя сделать простыми течениями. Паркер догадался, что для этого течения должны быть зеркально-асимметричными. В северном полушарии течения должны содержать больше вихрей, вращающихся в правую (по ходу общего движения вихря) сторону, а в южном полушарии - в левую. Оказывается, что именно так обстоит дело во вращающемся теле, в котором есть конвективные потоки и переменная плотность. Тогда в одном полушарии вихри действительно вращаются в основном вправо, а в другом - влево. И если эта среда проводящая, то возникает магнитное поле, направленное по электрическому току (а не перпендикулярно к нему, как обычно), а это, в свою очередь, приводит к искомому превращению тороидального поля в полоидальное (рис. 3).

Рис. 3. Полоидальное и тороидальное магнитные поля. На основном рисунке показано, как выглядят магнитные линии магнита, находящегося внутри сферы, - полоидальное магнитное поле. На белом поле показано, как по наблюдениям солнечных пятен визуализируется тороидальное магнитное поле

На рис. 3 изображены магнитные линии магнита, находящегося внутри сферы, - полоидальное магнитное поле, то, которое рисуют в школьных учебниках. На белом прямоугольнике показано, как по наблюдениям солнечных пятен визуализируется тороидальное магнитное поле. Это поле непосредственно не наблюдаемо, поскольку сосредоточено под поверхностью Солнца. Зато на поверхность Солнца в виде групп солнечных пятен выплывают отдельные магнитные трубки, отделяющиеся от тороидального поля. Показано, как в ходе солнечного цикла (11 лет) меняются широты тех мест, куда выплывают группы пятен (по горизонтальной оси - время, по вертикальной - широта). Видно, что пятна образуют кластеры, находящиеся в разных полушариях. Темным и светлым показаны кластеры с группами пятен противоположной полярности, а отдельные точки - те немногие пятна, для которых использованный метод разделения кластеров дал ненадежные результаты. Видно, что тороидальное магнитное поле дрейфует в ходе цикла солнечной активности от средних широт к солнечному экватору, оно антисимметрично по отношению к экватору и меняет знак каждый цикл. Это правило полярности Хейла.

Паркер аргументировал свои мысли с помощью аналогии с циклонами на Земле. Такая аргументация выглядела не очень убедительно, хотя сейчас мы знаем, что он правильно угадал нужные уравнения и характер их решения. Подвести под эти соображения базу в виде продуманных уравнений, вытекающих из уравнений Максвелла, а не из аналогий, удалось десятилетием позже, в замечательной работе Макса Штеенбека, Фрица Краузе и Карла Хайнца Рэдлера.

Альфа-эффект приходит в динамо

Макс Штеенбек вообще был колоритным человеком. В молодости ведущий инженер фирмы «Сименс», он изобрел массу занятных вещей, например торпеду, которая взрывается не при первом контакте с корпусом корабля, как все нормальные торпеды, а когда проникнет внутрь корпуса. Разрушения при этом возрастают многократно. Изобретение произвело такое впечатление на противников Германии во Второй мировой войне, что десять лет после ее окончания ему пришлось провести в специальном закрытом институте («шарашке») в Сухуми. Как, кстати, и многим другим немецким физикам и инженерам. Потом его отпустили в ГДР и сделали президентом Академии наук этой страны. Сделали заслуженно: обсуждаемая работа - наиболее яркое достижение физики ГДР. Младшие соавторы Штеенбека вспоминают, что он - заядлый курильщик - говорил им, куря сигару: «Вы живете как свиньи, те тоже не курят!»

Работа была написана тяжелым языком, конечно, по-немецки, символы физических величин набраны готическим шрифтом, и опубликована в малоизвестном журнале. Однако ее быстро перевели на английский язык, и она стала популярной среди специалистов. При переводе все символы были последовательно обозначены буквами греческого алфавита, а процесс преобразования тороидального магнитного поля в полоидальное получил название «альфа-эффект». Говорят, что у истории есть своя логика, но иногда она несколько странная.

Роль альфа-эффекта подтверждается математическими выкладками, но одними выкладками физиков убедить трудно. Ясную физическую картину того, как можно без участия магнитной диффузии генерировать магнитное поле, дал Я.Б. Зельдович. Поскольку он был одним из создателей атомной и водородной бомб, за рубеж его выпускали очень редко, и каждая поездка за границу была для него большим событием. Поэтому на симпозиуме в Кракове, уже в 70-х, он был в состоянии легкой эйфории и, отвечая на вопрос, как же может работать динамо - ведь для этого нужно на месте, где была одна магнитная линия, получить две, а эти линии приклеены к жидкости, - проделал следующий трюк. Он попросил одного из слушателей, сидевшего в первом ряду, дать ему брючный ремень и показал на этом ремне, как течение сначала вытягивает магнитную петлю (это делает дифференциальное вращение), а потом сворачивает ее в восьмерку и складывает вдвое (здесь уже нужен альфа-эффект - ведь надо сделать зеркально-асимметричную операцию). История умалчивает о том, что стало с брючным ремнем и его хозяином, но эту иллюстрацию усвоили все специалисты, а ее автор не нашел нужным описать ее в какой-нибудь специальной работе. Видимо, ему казалось, что этого замечания достаточно.

Забавно, что все эти эпизоды были совершенно независимы - немецкие физики не читали Паркера и так далее. Наука может развиваться совершенно алогично, люди придумывают решения еще не написанных уравнений, делают все для того, чтобы их идеи не стали достоянием публики, но из всего этого со временем вырастает последовательная наука.

У альфа-эффекта есть и еще одна важная черта. В окружающем нас мире почти нет явлений, связанных с зеркально-асимметричными средами, пожалуй, только закон Бэра в географии (о том, какой берег подмывает река в данном полушарии), да то, что органические молекулы в живом веществе имеют только одну ориентацию, напоминают нам о роли зеркальной асимметрии. В последнее время физики стали делать зеркально-асимметричные заполнения волноводов и пробуют извлечь из этого интересные эффекты. Совершенно по-другому обстоит дело в микромире - есть реакции между элементарными частицами, которые идут иначе после отражения в зеркале. Оказывается, что и в физике космических сред, как и в микрофизике, зеркальная асимметрия тоже играет роль. В современной физике любят говорить о том, что космология смыкается с микрофизикой. При изучении динамо такое смыкание тоже, как мы видим, происходит, но каким-то неожиданным образом.

Видимо, сказанного достаточно для того, чтобы читатель почувствовал: изучение динамо полно совершенно нестандартными идеями, которые диковато выглядят для человека, не соприкасающегося близко с этой областью физики. При этом список нестандартных идей из теории динамо легко продолжить, но ограничение объема статьи удерживает нас от этого.

Эксперимент

Конечно, нет никакой надежды, что люди до конца поверят в нестандартные идеи, если их не поддержать хоть какими-то экспериментами. Это было понятно уже в 60-х годах, когда Макс Штеенбек, вероятно используя служебное положение, договорился с советскими физиками о постановке первого динамо-эксперимента. Магнитная гидродинамика, к которой по своему смыслу должен был принадлежать этот эксперимент, была одной из сильных областей советской физики. Эта область науки пользовалась вниманием правительства, оно нашло время принять специальное решение о том, что центром исследований в области магнитной гидродинамики должна была стать Латвийская ССР, а именно Институт физики Латвийской ССР в Саласпилсе под Ригой.

С тех пор прошло много лет, теперь Рига - далекое зарубежье. Латвийские физики подружились с немецкими физиками и за несколько дней до конца прошлого тысячелетия впервые получили самовозбуждение магнитного поля в потоке жидкого натрия. Это был действительно циклопический эксперимент. Тонны натрия прокачивались мощными насосами через систему труб и емкостей, занимавших трехэтажное здание. Немало времени ушло на решение самых разнообразных технических проблем, хотя бы на устранение пробок при течении натрия. Тем не менее успех был достигнут, и работа нашла мировое признание. Через несколько дней самовозбуждение магнитного поля было получено в другом динамо-эксперименте, на этот раз чисто немецком, который проводили в Карлсруэ. Эта работа тоже приобрела мировую известность.

Российским физикам пришлось начинать с нуля. Некоторый задел был у физиков Института механики сплошных сред в Перми, и на исходе 90-х приняли решение начать там экспериментальные работы по магнитной гидродинамике жидких металлов при больших магнитных числах Рейнольдса, ориентированные на изучение процесса динамо.

При планировании динамо-эксперимента в Перми было ясно, что в обозримом будущем не удастся соревноваться с зарубежными физиками в размерах установки, то есть в том самом L, которое входит в магнитное число Рейнольдса, - просто не хватит денег. К счастью, удалось найти свежий подход к задаче. Прежние установки создавали течение, которое в принципе можно поддерживать неопределенно долгое время. Насосы разгоняют жидкий натрий, и это требует больших затрат энергии - вязкость натрия маленькая, так что турбинами разогнать его нелегко.

Идея пермской установки в другом: ее действие импульсное, а быстрое течение возникает лишь на короткое время. Берется тороидальная емкость и долго разгоняется сравнительно маломощным мотором, а потом быстро тормозится мощными тормозами. При этом жидкость внутри емкости продолжает свое движение - вязкость-то маленькая, - а стоящие в канале диверторы формируют нужный профиль потока. Конечно, такой поток довольно быстро теряет скорость, но за это время многое удается померить (рис. 4).

Лаборатория начинала работу тогда, когда самовозбуждение магнитного поля еще не было достигнуто нигде в мире, но после успехов в Риге и в Карлсруэ стало ясно, что нужно искать новые ориентиры. Это же пришлось делать и другим группам, работающим с динамо-экспериментами, в частности нашим французским коллегам из Лиона.

Рис. 4. Сравнительно небольшая установка пермского эксперимента имеет внушительные размеры. На фото один из участников эксперимента, профессор С. Ю. Хрипченко, за сборкой установки

При решении этой стратегической проблемы было важно увидеть, что динамо-эксперименты в чем-то родственны разнообразным работам по электротехнике и электронике. Во всех этих случаях речь идет о построении сложного прибора, который обеспечивает желаемое поведение электромагнитного поля. При этом возникает два типа задач. Одни задачи - как сделать из известных материалов то, что хочется, и как оно будет себя вести, а другие - каковы свойства различных материалов и почему они такие. В физике это два разных класса задач. Никому не приходит в голову одновременно разрабатывать телевизор и выяснять, почему медь - хороший проводник и какова ее электропроводность. В астрофизике по многим причинам эти две области деятельности практически не разделены, так что во многих теоретических работах по динамо одновременно вычисляли, скажем, альфа-эффект и выясняли, какие конфигурации магнитного поля генерируются в солнечной плазме с таким альфа-эффектом. Возникающие при этом трудности легко вообразить, представив себе команду разработчиков нового телевизора, если они заодно ставят разные материаловедческие эксперименты с материалами, из которых сделаны схемные элементы - лампы, транзисторы, резисторы и т. д.

Командам, работающим в области динамо-экспериментов, удалось достичь разумного разделения труда в этой области. Лионские физики научились воспроизводить на своей установке разнообразные режимы работы динамо, которые моделируют поведение магнитного поля на Солнце и на Земле. В этих небесных телах временное поведение магнитных полей очень различно, и оба типа поведения им удалось воспроизвести в Лионе. В Перми же пошли по другому пути - стали измерять разнообразные коэффициенты переноса магнитного поля в турбулентном потоке. Впервые в мире удалось измерить сам альфа-эффект, то есть основную величину, с которой связана генерация магнитного поля. Этот результат тоже общепризнан в кругу специалистов. Специалисты разных стран, работающие в области динамо-эксперимента, сотрудничают друг с другом. Пермские физики ездят в Лион, французские физики бывают в Перми, вместе с пермскими коллегами проводят измерения на пермских установках, публикуют совместные работы. Наша область еще находится в начале своего развития. Пройдены лишь первые рубежи, достигнуты первые результаты, пережиты первые разочарования. Однако мы уже знаем, откуда берется то, что двигает стрелочку компаса.

Научное сообщество с нетерпением ожидает результатов запланированного эксперимента,информацию о котором недавно опубликовали в Physical Review Letters .

«Мы также ожидаем детального понимания общей динамики потоков металлов, находящихся в жидком состоянии под воздействием магнитных полей», – считают ученые.

Исследование, недавно опубликованное в Physical Review Letters , сообщает о шансах эксперимента на успех.
Подобно динамо-велосипеду, преобразующему движение в электричество, движущиеся жидкости могут генерировать магнитные поля. Так называемое магнитное число Рейнольдса в первую очередь определяет, действительно ли генерируется магнитное поле.

Во время эксперимента ученые из команды Фрэнка Стефани в Институте HZDR стремятся достичь критического значения, необходимого для возникновения эффекта динамо. С этой целью стальной цилиндр диаметром 2 метра, содержащий восемь тонн жидкого натрия, будет вращаться вокруг одной оси до 10 раз в секунду и один раз в секунду вокруг другой оси, которая наклонена относительно первой.

«Наш эксперимент на новом объекте DRESDYN призван продемонстрировать, что прецессия, как естественный драйвер потока, достаточна для создания магнитного поля», – говорит Андре Гиеске, ведущий автор исследования.

Центр Земли состоит из твердого ядра, окруженного слоем расплавленного железа. «Расплавленный металл индуцирует электрический ток, который, в свою очередь, генерирует магнитное поле», – объясняет Гизеке. Однако роль, которую играет прецессия в формировании магнитного поля Земли, до сих пор остается неясной.

Ось Земли наклонена на 23,5 градуса от ее орбитальной плоскости и меняет положение в течение примерно 26 000 лет. Это прецессивное движение считается одним из возможных источников энергии. Миллионы лет назад на также было мощное магнитное поле, о чем свидетельствуют образцы горных пород из миссий «Аполлон». По мнению экспертов, прецессия могла быть основной причиной.

Ожидается, что эксперименты с жидким натрием в HZDR начнутся в 2020 году. В отличие от предыдущих лабораторных экспериментов в 1999 году в стальном барабане не будет пропеллера, как это было использовано в первом эксперименте в Риге, Латвия, в 1999 году, в котором ученые HZDR принимали участие. Этот и другие эксперименты в Карлсруэ, Германия и Кадараше, Франция, дали новаторские исследования для лучшего понимания геодинамики.

«В принципе, мы можем определить три разных параметра для экспериментов на DRESDYN: вращение, прецессию и угол между двумя осями», – говорит Гизеке. Он и его коллеги ожидают получить ответы на фундаментальный вопрос о том, действительно ли прецессия создает магнитное поле в проводящей жидкости.

Известна теория, что теплый воздух, как более легкий по отношению холодного воздуха, он вытесняется холодным воздухом вверх от земли, а холодный воздух при этом, оседает на поверхность земли.. Данная теория не отвечает на следующие вопросы: Почему холодный воздух становится тяжелее? То есть, почему он становится более плотным, ведь на верху воздух находится более в разряженном состоянии, а внизу воздух находится в сжатом состоянии, так как на поверхности земли давление атмосферного воздуха...

В 17 веке Ньютон открыл « ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ» . Этот Закон гласит::

«Движение тела с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них действуют сила, направленная вниз, к Земле». Автор данной статьи не оспаривает формулы и расчеты, проведенные Ньютоном по данному Закону, но категорически не согласен с его выводами! Так как эти выводы являются прямо противоположными! А именно, не тела приближаются к Земле с ускорением, а наоборот...

Философские определения, по вопросам мировоззрения, основанные на теории « Новый взгляд на теорию магнетизма и энергетические силы природы», а так же « Сущность гравитации и всемирного тяготения».

21.Известно, что в природе существует материя вещества, но при этом не дается ее определение.

Отличается, материя вещества, есть частица, не имеющая структурной формы. То есть она не содержит в себе: протонов. нейтронов, электронов.

22.Известно, что максимальная скорость света составляет 300...

Почему земля круглая.Мир теоретически бесконечен,поэтому любое тело в пространстве практически является центром вселенной. Следовательно наше солнце является центром вокруг которого в форме сферы расположены миллиарды звезд.

При этом, их энергия выделяемая в пространство направлена в сторону солнца.При этом, приближаясь к солнцу эта энергия сжимается,так как уменьшается в объеме.пространства. Сжатая материя солнца превратилась в энергию теплоты.,которую она извергает с давлением примерно два...

Известна теория,что приливы морей и океанов происходят в результате притяжения луны! При этом, возникает вопрос: "Почему луна не притягивает атмосферный воздух,ведь он в 1000 раз легче воды? Или, почему она не притягивает тучи? Ведь они содержат пары воды, что в многократно раз,легче воды? Где логика? Ответ однозначен! Луна здесь не причем! Ответ: земля сжимается внешней энергетической силой со всех сторон.При этом, с 4-х сторон пространства вдоль поверхности земли, эта энергия работает...

Эти теории, приняты за догму и не подвергаются критическому анализу. В результате чего, многие явления природы не имеют объяснения или объясняются ошибочно! И как результат, человечество несет миллиардные убытки, а практические результаты не имеют успеха. В частности: получение вещества с абсолютной теплотой или с абсолютным холодом. Неудачные запуски спутников или загадочные падения самолетов при абсолютно, исправных двигателях! С целью приблизить теорию о природе к истине, автор данной статьи...

Теория Дарвина и теория Большого Взрыва это новые лжеалтари, за которыми «тёмные» намерены прятать правду о разумной жизни Вселенной.

Постоянно читаю на различных форумах, задают люди друг другу вопросы о теории Дарвина, происхождении Вселенной.

Разумеется, никто не читал главную работу моей жизни «Бесконечность». Кто я такой? Пропагандируется религия. В школе ввели изучение Холокоста и религии. Религия рвётся контролировать и высшее образование, все сферы жизни общества. Отчего? Отчего...

Теория Большого взрыва сейчас считается столь же несомненной, как и система Коперника. Однако вплоть до второй половины 1960-х она отнюдь не пользовалась всеобщим признанием, и не только потому, что многие ученые с порога отрицали саму идею расширения Вселенной. Просто у этой модели имелся серьезный конкурент.

Через 11 лет космология как наука сможет отмечать свой столетний юбилей. В 1917 году Альберт Эйнштейн осознал, что уравнения общей теории относительности позволяют вычислять физически...

Теория распространения электромагнитных волн и света до своего завершения Максвеллом была связана с понятием эфира как некой механической среды, передающей колебания. При этом предполагалось, что уравнения Максвелла справедливы в системе отсчета, покоящейся относительно эфира.

В отличие от уравнений Ньютона, которые, как известно, годились во всех системах отсчета, уравнения Максвелла как будто требовали преимущественной системы отсчета.

Представления об эфире - одна из самых известных...

Взаимодействия.

Магнитное взаимодействие между железом и магнитом или между магнитами происходит не только при непосредственном их соприкосновении, но и на расстоянии. С увеличением расстояния сила взаимодействия уменьшается, и при достаточно большом расстоянии она перестает быть заметной. Следовательно, свойства части пространства вблизи магнита отличаются от свойств той части пространства, где магнитные силы не проявляются. В пространстве, где проявляются магнитные силы, имеется магнитное поле.

Если магнитную стрелку внести в магнитное поле, то она установится вполне определенным образом, причем в различных местах поля она будет устанавливаться по-разному.

В 1905 году Поль Ланжевен на основе теоремы Лармора и электронной теории Лоренца развил классическую трактовку теории диа- и парамагнетизма.

Естественные и искусственные магниты

Магнетит (магнитный железняк) – камень, притягивающий железо, был описан ещё древними учеными. Он представляет собой так называемый естественный магнит, встречающийся в природе довольно часто. Это широко распространенный минерал состава: 31% FeO и 69% Fe2O3, содержащий 72,4% железа.

Если вырезать из такого материала полоску и подвесить ее на нить, то она будет устанавливаться в пространстве вполне определенным образом: вдоль прямой, проходящей с севера на юг. Если вывести полоску из этого состояния, т. е. отклонить от направления, в котором она находилась, а затем снова предоставить самой себе, то полоска, совершив несколько колебаний, займет прежнее положение, установившись в направлении с севера на юг.

Если погрузить эту полоску в железные опилки, то они притянутся к полоске не везде одинаково. Наибольшая сила притяжения будет на концах полоски, которые были обращены к северу и югу.

Эти места полоски, на которых обнаруживается наибольшая сила притяжения, носят название магнитных полюсов. Полюс, направленный к северу, получил название северного полюса магнита (или положительного) и обозначается буквой N (или С); полюс, направленный к югу» получил название южного полюса (или отрицательного) и обозначается буквой S (или Ю). Взаимодействие полюсов магнита можно изучить следующим образом. Возьмем две полоски из магнетита и одну из них подвесим на нити, как уже указывалось выше. Держа вторую полоску в руке, будем подносить ее к первой разными полюсами.

Окажется, что если, к северному полюсу одной полоски приближать южный полюс другой, то возникнут силы притяжения между полюсами, и подвешенная на нити полоска притянется. Если к северному полюсу подвешенной полоски поднести вторую полоску также северным полюсом, то подвешенная полоска будет отталкиваться.

Проводя такие опыты, можно убедиться в справедливости установленной Гильбертом закономерности о взаимодействии магнитных полюсов: одноименные полюсы отталкиваются, разноименные притягиваются.

Если бы мы захотели разделить магнит пополам, чтобы отделить северный магнитный полюс от южного, то, оказывается, нам не удалось бы сделать этого. Разрезав магнит пополам, мы получим два магнита, причем каждый с двумя полюсами. Если мы продолжали бы этот процесс и дальше, то, как показывает опыт, нам никогда не удастся получить магнит с одним полюсом. Этот опыт убеждает нас, что полюсы, магнита не существуют раздельно, подобно тому как раздельно существуют отрицательные и положительные электрические заряды. Следовательно, и элементарные носители магнетизма, или, как их называют, элементарные магнитики, также должны обладать двумя полюсами.

Описанные выше естественные магниты в.настоящее время практически не используются. Гораздо более сильными и более удобными оказываются искусственные постоянные магниты. Постоянный искусственный магнит проще всего изготовить из стальной полоски, если натирать ее от центра к концам противоположными полюсами естественных или других искусственных магнитов. Магниты, имеющие форму полоски, носят название полосовых магнитов. Часто удобнее бывает пользоваться магнитом, напоминающим по форме подкову. Такой магнит носит название подковообразного магнита.

Искусственные магниты обычно изготовляются так, что на их концах создаются противоположные магнитные полюса. Однако это совсем не обязательно. Можно изготовить такой магнит, у которого оба конца будут иметь один и тот же полюс, например, северный. Изготовить такой магнит можно, натирая от середины к концам стальную полоску одинаковыми полюсами.

Однако северный и южный полюсы и у такого магнита неотделимы. Действительно, если его погрузить в опилки, то они сильно притянутся не только по краям магнита, но и к его середине. Легко проверить, что по краям расположены северные полюсы, а южный – посередине.

Магнитные свойства. Классы веществ

Именно совокупное поведение таких мини-магнитов атомов кристаллической решетки и определяет магнитные свойства вещества. По своим магнитным свойствам вещества делятся на три основных класса: ферромагнетики , парамагнетики и диамагнетики . Имеется также два обособленных подкласса материалов, выделенных из общего класса ферромагнетиков - антиферромагнетики и ферримагнетики . В обоих случаях эти вещества относятся к классу ферромагнетиков, но обладают особыми свойствами при низких температурах: магнитные поля соседних атомов выстраиваются строго параллельно, но в противоположных направлениях. Антиферромагнетики состоят из атомов одного элемента и, как следствие, их магнитное поле становится равным нулю. Ферримагнетики представляют собой сплав двух и более веществ, и результатом суперпозиции противоположно направленных полей становится макроскопическое магнитное поле, присущее материалу в целом.

Ферромагнетики

Некоторые вещества и сплавы (прежде всего, следует отметить железо, никель и кобальт) при температуре ниже точки Кюри приобретают свойство выстраивать свою кристаллическую решетку таким образом, что магнитные поля атомов оказываются однонаправленными и усиливают друг друга, благодаря чему возникает макроскопическое магнитное поле за пределами материла. Из таких материалов получаются вышеупомянутые постоянные магниты. На самом деле магнитное выравнивание атомов обычно не распространяется на неограниченный объем ферромагнитного материала: намагничивание ограничивается объемом, содержащим от нескольких тысяч до нескольких десятков тысяч атомов, и такой объем вещества принято называть доменом (от английского domain - «область»). При остывании железа ниже точки Кюри формируется множество доменов, в каждом из которых магнитное поле ориентировано по-своему. Поэтому в обычном состоянии твердое железо не намагничено, хотя внутри него образованы домены, каждый из которых представляет собой готовый мини-магнит. Однако под воздействием внешних условий (например, при застывании выплавленного железа в присутствии мощного магнитного поля) домены выстраиваются упорядоченно и их магнитные поля взаимно усиливаются. Тогда мы получаем настоящий магнит - тело, обладающее ярко выраженным внешним магнитным полем. Именно так устроены постоянные магниты.

Парамагнетики

В большинстве материалов внутренние силы выравнивания магнитной ориентации атомов отсутствуют, домены не образуются, и магнитные поля отдельных атомов направлены случайным образом. Из-за этого поля отдельных атомов-магнитов взаимно гасятся, и внешнего магнитного поля у таких материалов нет. Однако при помещении такого материала в сильное внешнее поле (например, между полюсами мощного магнита) магнитные поля атомов ориентируются в направлении, совпадающем с направлением внешнего магнитного поля, и мы наблюдаем эффект усиления магнитного поля в присутствии такого материла. Материалы, обладающие подобными свойствами, называются парамагнетиками. Стоит, однако, убрать внешнее магнитное поле, как парамагнетик тут же размагничивается, поскольку атомы снова выстраиваются хаотично. То есть, парамагнетики характеризуются способностью к временному намагничиванию.

Диамагнетики

В веществах, атомы которых не обладают собственным магнитным моментом (то есть в таких, где магнитные поля гасятся еще в зародыше - на уровне электронов), может возникнуть магнетизм иной природы. Согласно второму закону электромагнитной индукции Фарадея, при увеличении потока магнитного поля, проходящего через токопроводящий контур, изменение электрического тока в контуре противодействует увеличению магнитного потока. Вследствие этого, если вещество, не обладающее собственными магнитными свойствами, ввести в сильное магнитное поле, электроны на атомных орбитах, представляющие собой микроскопические контуры с током, изменят характер своего движения таким образом, чтобы воспрепятствовать увеличению магнитного потока, то есть, создадут собственное магнитное поле, направленное в противоположную по сравнению с внешним полем сторону. Такие материалы принято называть диамагнетиками.

Магнетизм в природе

Множество явлений природы определяется именно магнитными силами. Они являются источником многих явлений микромира: поведения атомов, молекул, атомных ядер и элементарных частиц – электронов, протонов, нейтронов и др. Кроме того, магнитные явления характерны и для огромных небесных тел: Солнце и Земля – это огромные магниты. Половина энергии электромагнитных волн (радиоволн, инфракрасного, видимого и ультрафиолетового излучения, рентгеновых и гамма-лучей) является магнитной. Магнитное поле Земли проявляется в целом ряде явлений и оказывается, в частности, одной из причин возникновения полярных сияний.

Немагнитных веществ, в принципе, не существует. Любое вещество всегда «магнитно», т. е. изменяет свои свойства в магнитном поле. Иногда эти изменения совсем небольшие и обнаружить их можно только с помощью специальной аппаратуры; иногда они довольно значительны и обнаруживаются без особого труда с помощью весьма простых средств. К слабомагнитным веществам можно отнести алюминий, медь, воду, ртуть и др., к сильномагнитным или просто магнитным (при обычных температурах) – железо, никель, кобальт, некоторые сплавы.

Использование магнетизма

Современная электротехника очень широко использует магнитные свойства вещества для получения электрической энергии, для ее превращения в различные другие виды энергии. В аппаратах проволочной и беспроволочной связи, в телевидении, автоматике и телемеханике употребляются материалы с определенными магнитными свойствами. Магнитные явления играют существенную роль также в живой природе.

Необычайная общность магнитных явлений, их огромная практическая значимость, естественно, приводят к тому, что учение о магнетизме является одним из важнейших разделов современной физики.

Магнетизм также неотъемлемая часть компьютерного мира: до 2010-х годов в мире были очень распространены магнитные носители информации (компакт-кассеты , дискеты и др), однако ещё «котируются» магнитооптические носители (DVD-RAM

Следующее большое открытие произошло почти случайно. Ханс Кристиан Эрстед (1777-1851), профессор физики Копенгагенского университета, готовился к лекции об электричестве и магнетизме; для этого он принес в аудиторию батарею, чтобы продемонстрировать действие электрического тока. Рядом с батареей он положил компас — для демонстрации магнитных сил. Прежде он уже заме-чал, что между электричеством и магнетизмом существует некоторая связь: например, стрелка компаса беснуется во время грозы.

До начала лекции оставалось немного времени, и профессор решил провести небольшой опыт. Эрстед положил компас рядом с проводом, по которому тек электрический ток, и его подозрения подтвердились: под действием тока стрелка компаса начала двигаться. Таким образом, два отдельных феномена, электричество и магнетизм, которые до этого рассматривались совершенно раздельно, в действительности оказались связаны друг с другом. Эрстед продолжил свои исследования и опубликовал результаты в 1820 году.
Новость об открытии Эрстеда распространилась очень быстро. Через несколько лет его статья была зачитана на собрании Французской академии наук. На этом собрании был и Ампер, который тут же начал работать над объяснением явления, обнаруженного Эрстедом. Теория была готова через неделю и послужила основой для объединения электричества и магнетизма в теорию электромагнетизма.
Андре Мари Ампер (17751836) родился недалеко от Лиона. Его отец, состоятельный купец, занимавший должность мирового судьи в Лионе, был казнен во время Французской революции. Теперь дом Ампера превращен в музей и открыт для посещения. В детстве Ампер не ходил в школу, а приобрел свои знания путем чтения книг. Вот эпизод, говорящий о его прекрасной памяти и способностях к обучению. Будучи еще маленьким мальчиком, он отправился в Лионскую библиотеку и попросил книги знаменитых математиков — Эйлера и Бернулли. Библиотекарь объяснил мальчику, что это сложные математические книги, которые ему будет трудно понять, к тому же — они написаны на латинском языке. Новость о латинском языке смутила Ампера, но он решил, что незнание латинского языка не должно мешать ему. Спустя несколько недель он вернулся в библиотеку, уже зная латынь, и начал читать эти книги.
Ампер женился в 24 года и содержал семью, работая школьным учителем. В 1808 году он был назначен инспектором школ и на этой должности оставался всю жизнь. Кроме того, он работал профессором в Париже. К 1820 году, когда Ампер заинтересовался электромагнетизмом, он был уже широко известен своими трудами по математике и химии. Этот разносторонний ученый начинал как профессор математики, затем стал профессором философии, а позднее — профессором астрономии! Начиная с 1824 года Ампер был уже профессором физики Коллеж де Франс.

Ампер не удовлетворился только лишь объяснением результатов Эрстеда и начал свои исследования.

Например, он показал, что, смотав электрический провод в виток, можно создать искусственный магнит — электромагнит, который действует точно так же, как естественные магниты. Ампер смело, но совершенно верно предположил, что естественные магниты содержат внутри себя небольшие витки непрерывного тока, которые действуют вместе и создают естественный магнетизм.
Ампер сразу же понял важность феномена электромагнетизма в передаче информации. Включая и выключая ток, можно привести в движение стрелку компаса, находящегося довольно далеко. Послание может быть передано с такой скоростью, с какой распространяется электрический ток. Вскоре началось производство телеграфных аппаратов, работающих по этому принципу. Одна из первых телеграфных линий была протянута в 1834 году в Геттингене между лабораторией Вильгельма Вебера и астрономической обсерваторией Карла Фридриха Гаусса. В том же году первую коммерческую телеграфную линию, соединившую Вашингтон и Балтимор (США), наладил Сэмюэл Морзе, изобретатель азбуки Морзе.
Другим ученым, сразу же оценившим огромное значение открытия Эрстеда, стал англичанин Майкл Фарадей. Он был сыном кузнеца и получил минимальное образование. В13 лет он стал подмастерьем переплетчика. Переплетая книги, он их читал. Один из клиентов дал ему бесплатный абонемент на посещение публичных лекций Гемфри Дэви (17781829). Фарадей сделал аккуратный конспект лекций, красиво переплел его и послал Дэви с запиской, в которой спрашивал, нет ли у Дэви работы для него. Каково же было удивление Фарадея, когда Дэви пригласил его к себе. Конспект был написан очень аккуратно и произвел на Дэви хорошее впечатление. В 1820 году он предложил мальчику должность своего ассистента в Королевском институте в Лондоне. Так началась одна из наиболее знаменитых карьер в науке. Говорили, что самым большим открытием Дэви был Фарадей.


Фарадей учился у самого Дэви. Когда Дэви отправился в полуторагодичный тур на континент, он взял с собой Фарадея, который познакомился там, среди прочих, с Ампером и Вольтой. Когда Дэви работал в Париже с Луи ГейЛ юсе а ком, изучая новый химический элемент — йод, им помогал Фарадей. Впрочем, и дома в его служебные обязанности входило проведение химических опытов.
Если не считать временного интереса к электромагнетизму, вызванного открытием Эрстеда, Фарадей до 1830 года был профессиональным химиком. В 1833 году он стал профессором химии в Королевском институте. Но к этому моменту его научные интересы уже поменялись. Фарадей был убежден, что если электрический ток может быть причиной возникновения магнитных сил, то и магнит должен быть способен создавать электрический ток. Это мнение разделяли многие, среди которых был и Ампер, не сумевший, однако, подтвердить эту захватывающую идею.
В течение ю лет Фарадей проводил различные опыты по электромагнетизму. В 1831 году он вложил одну катушку внутрь другой. Когда по одной из катушек пускали ток, она становилась электромагнитом. Фарадей хотел выяснить, способен ли магнит вызвать появление электрического тока во второй катушке. Действительно, ток возникал, но лишь на мгновение — только при включении или выключении электромагнита. Это привело Фарадея к важному открытию: изменение магнита — например, изменение силы магнита или его вращение — генерирует электрический ток в соседней катушке. Ключевым моментом здесь было изменение магнита.
Это позволило Фарадею сконструировать электрический генератор — простое динамо, ставшее в будущем основой электротехники. Однажды он демонстрировал свое открытие Уильяму Гладстону, который в то время был министром финансов, и тот спросил: «Ну и как же это можно использовать?» Фарадей ответил: «Вполне возможно, сэр, что когда-нибудь вы сможете обложить это налогом».

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.