Влияние среды на распространение радиоволн. Модели распространения радиоволн в системах сотовой связи. Геометрия зон Френеля

Под распространением радиоволны в свободном пространстве понимается распространение ее в атмосфере Земли, вдоль поверхности Земли, в космическом пространстве, т. е. в условиях, когда отсутствуют неоднородности трассы.

На процессы свободного распространения радиоволн оказывают влияние параметры среды распространения. Радиоволны принято классифицировать по двум основным признакам: по длине волны (частоте) и по способу (механизму) распространения.

Помимо перечисленных в таблице наименований волн и полос частот, пользуются также другими условными названиями: сверхдлинные волны (СДВ), длинные (ДВ), средние (СВ), короткие (KB), ультракороткие (УКВ).

По способу распространения различают четыре типа волн: прямые, поверхностные (земные), тропосферные и пространственные (ионосферные).

Прямыми называют волны, распространяющиеся в свободном пространстве, т. е. в пространстве, не заполненном каким-либо веществом, по прямолинейным траекториям. На практике принято считать, что трассы Земля — Космос, Космос — Земля также обеспечиваются прямыми волнами, хотя атмосфера Земли и оказывает небольшое влияние на условия распространения. Убывание амплитуды поля прямых волн связано не с наличием потерь (распространение происходит в свободном пространстве), а с естественным сферическим рассеянием энергии.

Рассмотренные типы трасс в настоящее время не являются определяющими для систем связи. В большинстве случаев приемная и передающая антенны располагаются на поверхности Земли или в непосредственной близости от нее. Очевидно, влияние на распространение, кроме полупроводящей почвы, будет оказывать и атмосфера, являющаяся неоднородной средой.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, частично огибающие выпуклость земного шара вследствие дифракции, получили название поверхностных, или земных волн. Из курса физики известно, что дифракция наблюдается тогда, когда размеры препятствия соизмеримы с длиной волны. В данном случае препятствием является шаровой сегмент. Высота последнего зависит от расстояния между корреспондентами, поэтому ясно, что чем больше рабочая длина волны, тем на большее расстояние она может распространяться за счет дифракции. Дифрагируя вокруг сферической поверхности Земли, поверхностная волна частично поглощается полупроводящей землей, степень поглощения которой зависит от структуры почвы (песок, глина, камни и т. п.) и ее влажности. Атмосфера Земли оказывает малое влияние на условия распространения этой волны.

На распространение тропосферных и пространственных (ионосферных) волн основное влияние оказывает атмосфера Земли. Под атмосферой понимают газообразную оболочку Земли, простирающуюся на высоту до 800… 1000 км. В ней можно выделить три основных слоя: тропосферу - приземный слой высотой 10… 14 км; стратосферу-слой до 60 … 80 км; ионосферу - ионизированный воздушный слой малой плотности над стратосферой, переходящий в радиационные пояса Земли.

Однако каждый из слоев нельзя считать однородной средой. Электрические параметры тропосферы зависят от высоты над поверхностью Земли. Кроме того, в ней непрерывно дуют ветры, перемещая огромные воздушные массы и увеличивая их неоднородность.

Ионосфера подвергается воздействию солнечного излучения, потока заряженных космических частиц, космической пыли и др., что вызывает расщепление молекул на электроны и ионы. Концентрация ионов и электронов на различных высотах различна.

В ионосфере можно выделить четыре слоя: слой D - высота 60 …90 км, концентрация электронов не более 103 эл/см3; слой Е - высота ПО… 130 км, концентрация - 2×104… 105 эл/см3, слой F1 - высота 200…300 км, концентрация 105… 5×105 эл/см3; слой F2 - высота 300… 400 км, концентрация - 5×105… 106 эл/см3. Состояние ионосферы непрерывно меняется, при этом наблюдаются периодические и случайные изменения. Области слоев характеризуются суточной периодичностью изменения концентрации электронов и высоты расположения, причем степень ионизации является различной в летнее и зимнее время. Эти особенности тропосферы и ионосферы и оказывают влияние на особенности распространения радиоволн. В неоднородной среде из-за различных скоростей распространения волн в различных по свойствам объемах в первую очередь наблюдается искривление или преломление волн, которое получило название рефракции. Кроме того, на неоднородности происходит рассеивание энергии радиоволн в различных направлениях, в том числе и по направлению к точке приема.

Радиоволны, распространяющиеся на значительные расстояния (до 1000 км) за счет рассеяния на неоднородностях тропосферы, а также за счет явления тропосферной рефракции, получили название тропосферных волн. Отметим, что тропосфера оказывает влияние только на электромагнитные волны, длина которых меньше 10 м.

Радиоволны, распространяющиеся на большие расстояния и даже огибающие земной шар в результате многократных отражений от ионосферы и поверхности земли (в диапазоне волн длиннее 10 м), а также волны, рассеивающиеся на неоднородностях ионосферы (в диапазоне короче 10 м), получили название пространственных, или ионосферных волн.

Механизм распространения, а следовательно, и тип распространяющейся волны определяется конкретными условиями на трассе и частотным диапазоном. Расчет распространения радиоволн сводится к определению напряженности поля в точке приема при заданных мощностях излучения, расстоянии, трассе прохождения волн, длине волны и т. д.

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой ДН обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более, в сантиметровом диапазоне, в то время как остронаправленная антенна для длин волн порядка 10 км имела бы совершенно неприемлемые габариты.

Всякая система передачи сигналов состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена - соединяющей линии. Для радиосистем промежуточным звеном является среда - пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т.е. в условиях, когда средой служат земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.

Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов с не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой - применять широкополосные системы модуляции, например, частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.

При распространении радиоволн в среде происходит изменение амплитуды поля волны (обычно - уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:

  • рассчитать энергетические параметры линии радиосвязи (определить мощность передающего устройства или мощность сигнала на входе приемного устройства);
  • определить оптимальные рабочие волны при заданных условиях распространения;
  • определить истинную скорость и направление прихода сигналов;
  • учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.

Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны), называют земными радиоволнами (1 на рис. 6.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь, с относительной диэлектрической проницаемостью е , равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.

В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простирающийся до тропопаузы (переходного слоя между тропосферой и стратосферой), лежащей над экватором на высоте 16-18 км, в умеренных широтах - на 10-12 км и в полярных областях - на 7-10 км. В тропосфере происходит искривление траектории земных радиоволн, называемое рефракцией. Распространение тропосферных радиоволн (2 на рис. 6.1) возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазона в тропосфере поглощаются.

Рис. 6.1.

Стратосфера простирается от тропопаузы до высот 50-60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30-35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высотах 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т.е. имеется большое число свободных электронов (примерно 10 3 ... 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис. 6.1). На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Условия распространения радиоволн (4 , 5 на рис. 6.1) при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Земли.

КУРСОВОЙ ПРОЕКТ

По профессиональному модулю ПМ01

Междисциплинарный курс: МДК 01.01. Технология монтажа систем мобильной связи

Тема: «Проектирование сети сотовой связи с равномерным распределением абонентов в заданной зоне»

Специальность: 210705 Средства связи с подвижными объектами

Выполнил студент(ка) группы 3ССПО9-5(у): ___________

Проверил преподаватель: Ручко В.М. ___________

Москва 2015 г.

ГБПОУ КОЛЛЕДЖ СВЯЗИ №54

Согласовано

Председатель модульной

комиссии

Н.Г.Лобанова

«____»_______2015 г

На курсовое проектирование по профессиональному модулю ПМ 01

Междисциплинарный курс : МДК 01.01 Технология монтажа систем мобильной связи

Специальность: 210705, Средства связи с подвижными объектами

Студенту гр. 3ССПО9-5(у): __________________________

Тема: «Проектирование сети сотовой связи с равномерным распределением абонентов в заданной зоне»

Вариант:_____

Спроектировать сети сотовой связи с равномерным распределением абонентов в заданной зоне при следующих исходных данных:

1.Тип территории в зоне обслуживания__________________________

2.Испрользуемый стандарт сотовой связи________________________

3.Число абонентов зоне обслуживания (М сети, тыс. чел.)____________

4.Плошадь зоны обслуживания (S сети, км 2)________________________

5.Вероятность отказа абоненту в предоставлении канала в час наибольшей нагрузки(ЧНН) p от к.=0.02

6.Допустимый трафик в соте в соответствие с числом каналов A сот____

7.Средний трафик одного абонента в ЧНН, А 1 =0,015-0,025Эрл.

При выполнении курсовой работы:

1.Произвести оптимальный выбор частотных каналов

3.Найти максимальное удаление в соте абонентской станции от базовой станции

4.Определить мощность передатчика базовой станции

8.Нарисовать трассу прохождения сигнала от БС к АС

9.Нарисовать конфигурацию сети (по вариантам)

Преподаватель Ручко В.М.

Введение………………………………………………………… 4

1.Выбор частотных каналов…………………………………..

2.Расчет числа сот в сети………………………………………

3.Расчет удаления АС от БС………………………………….

4.Расчет баланса мощностей………………………………….

5.Расчет потерь на трассе…………………………………….

6.Расчет электропитания базовой станции………………….

7.Рассчет надежности сети сотовой связи…………………..

8.Литература……………………………………………………

Приложение 1…………………………………………………..

Трасса прохождения сигнала от БС к АС

Приложение 2………………………………………………….

Модель Эрланга В (система с отказами)

Приложение 3…………………………………………………..

Конфигурация сети

Введение

Проектирование – один из наиболее сложных и ответственных этапов развертывания систем сотовой связи (ССС), поскольку он должен обеспечить возможно более близкое к оптимальному построение сети по критерию эффективность-стоимость. При проектировании необходимо определить места установки БС и распределить имеющиеся частотные каналы между ячейками (составить территориально-частотный план в соответствии с принципом повторного использования частот) таким образом, чтобы обеспечить обслуживание сотовой связью заданной территории с требуемым качеством при минимальном числе БС, т.е. при минимальной стоимости инфраструктуры сети. Фактически эта задача очень сложна. С одной стороны чрезмерно частая расстановка БС невыгодна. Так как влечет за собой неоправданные затраты. С другой стороны, слишком редкое расположение БС может привести к появлению необслуживаемых участков территории, что недоступно. Задача дополнительно осложняется трудностью аналитической оценки характеристики расположения сигналов и расчета напряженности поля, а также необходимостью учета неравномерности трафика в пределах обслуживаемой территории.

В проектируемой сети обязательно производиться экспериментальные измерения характеристик электромагнитного поля, и по результатам измерений схема сети также корректируется. Необходимый объем экспериментальных измерений, и частота их повторения определяется на основании опыта проектировщиков. Окончательно качество проекта оценивается уже на этапе эксплуатации сети, где также неизбежны его корректировка и доработка, особенно в самом начале работы, когда производятся настройка и оптимизация сети. Этот этап работы фактически оказывается наиболее трудоемким. Доработки проекта требуются по мере развития и совершенствования сети, для повышения ее качества.

Качество услуг, предоставляемых ССС, во многом определяется характеристиками ее подсистемы БС. В процессе планирования сети БС решаются следующие задачи: обеспечения радиопокрытия территории, на которой должны предоставляться услуги связи; построение сети, емкости которой будет достаточно для обслуживания создаваемого абонентами трафика с допустимым уровнем перегрузок; оптимизация решения указанных выше задач (с использованием минимального числа сетевых подсистем и элементов) на протяжении всего цикла сети.

Без решения перечисленных задач нельзя обеспечить высокое качество предоставляемых услуг. Согласно определению Международного союза электросвязи (МСЭ), под качеством обслуживания понимают – совокупный эффект от предоставления услуг, который определяет степень удовлетворения ими абонента. Кроме технических аспектов качества работы сети в это определение включены и аспекты, связанные с предоставлением дополнительных услуг (например, таких, как передача коротких сообщений), стоимостью обслуживания, ценой и качеством работы мобильных терминалов и т.д.

На протяжении всего жизненного цикла сети число ее абонентов, объем трафика и его распределение по обслуживаемой территории постоянно изменяются. Кроме того, существуют сезонные (периодические) изменения объема трафика и его территориального распределения. Конфигурация сети БС должна адаптироваться к происходящим изменениям, поэтому ее планирование – это непрерывный процесс. В нем можно выделить несколько этапов: планирования радиопокрытия; планирование емкости; частотное планирование; анализ работы и оптимизация сети.

Такое поэтапное деление в значительной степени условно, так как все этапы тесно взаимосвязаны между собой. Последовательность этапов планирования сети БС показана на рисунке 4.1.

Рисунок 4.1. Этапы планирования сети БС

На этапе планирования радиопокрытия определяется минимально необходимое число БС (сот), их оптимальное расположение на местности и радиотехнические параметры для обеспечения радиопокрытия заданной территории с требуемым уровнем мощности радиосигнала, принимаемым мобильным терминалом.

Модели распространения радиоволн

Условия распространения радиоволн включают 5 моделей:

  • статическая модель (STATIC);
  • для сельской местности (Rax);
  • для холмистой местности (НТх);
  • для типичной городской застройки (Tux);
  • для плотной городской застройки (Bux).

В моделях с динамическими (Rax, HTx, Tux, Вuх) оговорены два варианта изменения пара­метров, которые соответствуют условиям движения автомобиля в городе со скоростью 50 км/ч и в сельской местности - 200 км/ч. Например, изменение радиосигнала на входе приемника авто­мобильной радиостанции, движущийся со скоростью 200 км/ч в условиях холмистой местности, описывается моделью НТ200.

Дополнительно предусмотрена модель для тестирования эквалайзера (Eqx).

Статическая модель характеризуется отсутствием амплитудных и фазовых искажений сигнала.

Модель распространения сигнала в сельской местности описывает флуктуации сигнала рас­пределением Райса и имитирует постоянный доплеровский сдвиг частоты.

Условия распространения сигнала над холмистой местностью предполагают отсутствие пря­мой радиовидимости между приемником и передатчиком, а также наличие достаточно удаленных переотражающих объектов. Такие условия описываются двулучевой моделью со средним соотношением уровня лучей минус 8,6 дБ и средней задержкой сигнала во втором луче на четверть символа. Флуктуации сигнала на входе приемника описываются законом Релея.

Модели распространения сигнала в городских условиях предполагают отсутствие прямой ра­диовидимости между приемником и передатчиком, и наличие большого количества переотра­жающих объектов. Данный случай также описывается двулучевой моделью, но с другими амплитудными и временными соотношениями. Например, задержка между лучами составляет при­близительно 1/10 символа, то есть сигнал на входе приемника практически не испытывает меж­символьных искажений.

Модель для тестирования эквалайзера применяется только для тестирования аппаратуры класса Е. В данной модели флуктуации сигнала на входе приемника имитируются релеевскими замираниями по четырем лучам с задержкой сигнала в лучах до двух символов.

Источник: Донбас-2020: перспективи розвитку очима молодих вчених: Матеріали VI науково-практичної конференції, м. Донецьк, 24-26 квітня 2012 р. — Донецьк, ДонНТУ, 2012. — C. 565-568.


Для ефективного радіочастотного планування у мережах стільникового зв’язку необхідно використовувати найбільш точні методи та моделі розрахунку згасання радіохвиль, що в умовах міста ускладнюється специфікою рельєфу. У статті наводиться стислий опис найбільш поширених моделей, їх переваги та недоліки.

Сложность проблемы заключается в том, что системы сотовой связи (ССС) эксплуатируются в основном в городах, которые для радиоволн представляют протяженную неоднородную структуру. В свободном пространстве затухание радиоволн описывается следующей зависимостью:

где — потери распространения, дБ;

r — расстояние от передатчика, км;

f — частота радиосигнала, МГц.

В городских условиях имеют место такие эффекты как экранирование и дифракция, отражения от объектов, преломление в зависимости от плотности среды прохождения, рассеивание на препятствиях.

В настоящее время выделяют три группы моделей (методов) расчета зоны покрытия радиосети:

Статистические модели

Детерминированные модели

Квазидетерминированные модели

Статистические модели базируются на результатах экспериментальных исследований напряженности поля, поэтому часто называются экспериментальными моделями. Точность расчета зависит от тщательного подбора эмпирических коэффициентов, основанного на анализе карт местности. Достоинство - сравнительно небольшое время расчета.

К статистическим относят модели Окамура,Окамура-Хата, COST-Хата, Ли и др.

Исторически первой такой моделью была модель Окамура , полученная в итоге многолетних измерений поля в Токио. На основании построенных графиков зависимости медианных потерь L от расстояния между передающей и приемной антеннами было предложено аппроксимирующее соотношение следующего вида:

— потери при распространении в свободном пространстве;

— отношение медианной величины потерь в городе с квазигладкой поверхностью земли к потерям в свободном пространстве для эффективных высот антенн соответственно базовой станции (БС) h БС = 200 м и абонентской станции (АС) h АС = 3 м;

И — соответственно корректирующие коэффициенты, используемые если эффективные высоты антенн отличаются от указанных;

r — длина трассы.

В формуле (2) величина L 0 рассчитывается, а все остальные определяются по графикам, построенным на основании эксперимента. Формула пригодна для частот f = (150÷1500) МГц, диапазона расстояний r = (1÷100) км и эффективной высоты антенны базовой станции h БС = (30÷100) м.

Достоинством модели Окамура является ее простота и универсальность, откуда следует и ее основной недостаток - отсутствие учета резких перепадов высот местности. Тем не менее модель Окамура служит наиболее часто применяемой моделью расчета для ССС.

Ее модификация была развита в модели Хата, называемой также моделью Окамура-Хата .

Суть этой модели заключается в аппроксимации графиков Окамура специально подобранными формулами для различных территориальных зон, которые условно классифицируются на большой город, средний и малый города, пригород, сельскую местность, открытую местность. Формулы расчета потерь для указанных зон с подробными пояснениями приводятся в .

Основной недостаток этой модели — ограничение применения по частоте. Поэтому появление новых ССС, работающих в диапазоне частот около 2 ГГц, дало толчок дальнейшим исследованиям, что привело к расширению модели Окамура-Хата на частотный диапазон от 1,5 до 2 ГГц. Эта модификация, получившая название COST 231-Хата, справедлива для эффективных высот антенн БС и АС соответственно 10÷200м и 1÷10м и расстояний между ними 1÷20км. Расчетные соотношения для этой модели также даны в . Отметим, что эту модель нельзя использовать при расстояниях менее 1 км и при оценке уровня сигнала на улице с высокими строениями.

Другая модель, модель Ли, была разработана на основе измерений, проведенных в США на частоте 900 МГц. Потери при распространении в этой модели определяются из выражения:

где n 0 и k 0 - параметры, зависящие от частоты и типа территории.

Общую суть статистических моделей можно отобразить следующей зависимостью:

которая означает, что потери являются логарифмической функцией расстояния с коэффициентом наклона n и параметром сдвига K, причем каждая модель имеет собственный набор значений параметров n и K и свои условия применения.

Статистические модели дают возможность определить медианные значения потерь и, следовательно, напряженность поля для трасс больше 1 км, однако все они были получены для конкретных территорий, поэтому для улучшения качества прогноза величины поля необходимо выполнить калибровку параметров n и K для предполагаемого района развертывания ССС. Процедура калибровки заключается в проведении предварительных измерений напряженности поля в ряде типичных точек выбранного района и в сопоставлении результатов измерений с данными расчета по выбранной модели.

Сопоставление экспериментальных результатов с данными расчетов ряда статистических моделей показало, что наиболее хорошее совпадение дает модель Окамура-Хата.

Несмотря на широкое применение на практике статистических моделей, их недостатки, о которых было сказано выше, привели к разработке детерминированных моделей . В этих моделях учитываются особенности территории и ее застройки, информация о которых хранится в специальной базе данных - цифровой карте местности. Используемые в настоящее время детерминированные модели учитывают дифракцию на зданиях, вносящую основной вклад в ослабление радиоволн при работе пико и микросотовых систем, в связи с чем они иногда называются дифракционными моделями.

К детерминированным моделям относят следующие: модель Икегами, модель Ксиа-Бертони, модель Уолфиша-Икегами, рекомендации МСЭ-Р P.12138-3. Данные методы являются высокоточными, но требуют значительных временных затрат на расчет. Такие модели, как правило, берутся за основу при создании программного обеспечения по радиочастотному планированию.

Особенности квазидетерминированных методов - это применение многолучевой модели распространения радиоволн. При этом преломление заменяется ослаблением, также существует возможность учета диаграммы направленности антенн. Такие методы являются более точными, чем статистические и расчет занимает меньше времени, чем при детерминированных методах.

В заключение можно сказать, что на сегодняшний день не существует универсальных моделей распространения радиоволн. Все они хороши в своей области применения. Уровень радиосигнала в конкретной точке пространства может быть получен достоверно лишь с помощью натурных измерений. Однако, для приблизительных расчетов зоны покрытия макросот по своей простоте и незначительным временным затратам наиболее оптимален метод Окамура-Хата, а для микро- и пикосот хорошие результаты получаются при использовании детерминированных моделей с обязательным привлечением цифровых карт местности.

Список использованной литературы

  1. Y.Okumura et al. Field strength and its variability in VHF and UHF land-mobile radio service // Review of the Electr. Commun. Lab. —1968. — vol. 6. — р. 825-873.
  2. Милютин Е.Р., Василенко Г.О., Сиверс М.А. и др. Методы расчета поля в системах связи дециметрового диапазона. — СПб.: Триада. — 2003. —159 с.
  3. ITU-R Recommendations. 2001. P. 1546
  4. Hata M. Empirical formula for propagation loss in land mobile radio services // IEEE Trans. Vehicular Technology. — 1980. — V.29.
  5. Попов В.А., Воропаева В.Я., Верховский Я.М. Алгоритм оптимальной кластеризации для сетей сотовой связи. — Наукові праці Донецького національного технічного університету. Серія: Обчислювальна техніка та автоматизація. Випуск 13 (121). — Донецьк —2007. — с. 53-58.