Основным параметром уравнения шредингера является волновая. Уравнение шредингера. Квантовые числа

№1 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….

Стационарное уравнение Шредингера в общем случае имеет вид

, где потенциальная энергия микрочастицы. Для одномерного случая . Кроме того, внутри потенциального ящика , а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Общий вид стационарного уравнения Шредингера имеет вид:

Потенциальная энергия частицы,

Оператор Лапласа. Для одновременного случая

Выражение для потенциальной энергии гармонического осциллятора,т.е частицы совершающей одномерное движение под действием квазиупругой силы имеет вид U= .

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Для атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид:

С помощью волновой функции,являющейся решением уравнения Шредингера,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

Средние значения физических величин,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства



Траекторию частицы

Местонахождение частицы

Величина имеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна

Уравнение Шредингера (конкретные ситуации)

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…

Число узлов , т.е. число точек, в которых волновая функция на отрезке обращается в нуль, связано с номером энергетического уровня соотношением . Тогда , и по условию это отношение равно 1,5. Решая полученное уравнение относительно , получаем, что

Ядерные реакции.

№1 В ядерной реакции буквой обозначена частица …

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой обозначен нейтрон.

ü Нейтрон

Позитрон

Электрон

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени.Постоянная радиоактивного распада в равна …(ответ округлите до целых)

Число радиоактивных ядер изменяется со временем по закону -начальное число ядер, -постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln .Следовательно, =0,07

Законы сохранения в ядерных реакциях .

Реакция не может идти из-за нарушения закона сохранения …

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического , барионного и лептонного ). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда в замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . лептонный заряд а для антилептонов: . лептонный заряд . Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция не может идти из-за нарушения закона сохранения лептонного заряда , т.к.

ü Лептонного заряда

Барионного заряда

Спинового момента импульса

Электрического заряда

Реакция не может идти из-за нарушения закона сохранения…

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция не может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1)

Варианты ответа: ,лептонного заряда,спинового момента импульса,электрического заряда. Q=0, антипротона (

Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.

Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: где постоянная называется массой частицы (см. I, § 4). В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса - одновременно измеримых сохраняющихся (для свободной частицы) величин.

Но для того чтобы соотношение имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:

Подставив сюда (15,2), получим гамильтониан свободно движущейся частицы в виде

где - оператор Лапласа.

Гамильтониан системы невзаимодействующих частиц равен сумме гамильтонианов каждой из них:

где индекс а нумерует частицы; - оператор Лапласа, в котором дифференцирование производится по координатам частицы.

В классической (нерелятивистской) механике взаимодействие частиц описывается аддитивным членом в функции Гамильтона - потенциальной энергией взаимодействия являющейся функцией координат частиц.

Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие частиц в квантовой механике:

первый член можно рассматривать как оператор кинетической энергии, а второй - как оператор потенциальной энергии. В частности, гамильтониан для одной частицы, находящейся во внешнем поле,

где U(х, у, z) - потенциальная энергия частицы во внешнем поле.

Подстановка выражений (17,2)-(17,5) в общее уравнение (8,1) дает волновые уравнения для соответствующих систем. Выпишем здесь волновое уравнение для частицы во внешнем поле

Уравнение же (10,2), определяющее стационарные состояния, принимает вид

Уравнения (17,6), (17,7) были установлены Шредингером в 1926 г. и называются уравнениями Шредингера.

Для свободной частицы уравнение (17,7) имеет вид

Это уравнение имеет конечные во всем пространстве решения при любом положительном значении энергии Е. Для состояний с определенными направлениями движения этими решениями являются собственные функции оператора импульса, причем . Полные (зависящие от времени) волновые функции таких стационарных состояний имеют вид

(17,9)

Каждая такая функция - плоская волна - описывает состояние, в котором частица обладает определенными энергией Е и импульсом . Частота этой волны равна а ее волновой вектор соответствующую длину волны называют де-бройлевской длиной волны частицы.

Энергетический спектр свободно движущейся частицы оказывается, таким образом, непрерывным, простираясь от нуля до Каждое из этих собственных значений (за исключением только значения вырождено, причем вырождение - бесконечной кратности. Действительно, каждому отличному от нуля значению Е соответствует бесконечное множество собственных функций (17,9), отличающихся направлениями вектора при одинаковой его абсолютной величине.

Проследим, каким образом происходит в уравнении Шредингера предельный переход к классической механике, рассматривая для простоты всего одну частицу во внешнем поле. Подставив в уравнение Шредингера (17,6) предельное выражение (6,1) волновой функции получим, произведя дифференцирования,

В этом уравнении имеются чисто вещественные и чисто мнимые члены (напомним, что S и а вещественны); приравнивая те и другие в отдельности нулю, получим два уравнения:

Пренебрегая в первом из этих уравнений членом, содержащим получим

(17,10)

т. е., как и следовало, классическое уравнение Гамильтона - Якоби для действия S частицы. Мы видим, кстати, что при классическая механика справедлива с точностью до величин первого (а не нулевого) порядка по включительно.

Второе из полученных уравнений после умножения на 2а может быть переписано в виде

Это уравнение имеет наглядный физический смысл: есть плотность вероятности нахождения частицы в том или ином месте пространства есть классическая скорость v частицы. Поэтому уравнение (17,11) есть не что иное, как уравнение непрерывности, показывающее, что плотность вероятности «перемещается» по законам классической механики с классической скоростью v в каждой точке.

Задача

Найти закон преобразования волновой функции при преобразовании Галилея.

Решение. Произведем преобразование над волновой функцией свободного движения частицы (плоской волной). Поскольку всякая функция может быть разложена по плоским волнам, то тем самым будет найден закон преобразования и для произвольной волновой функции.

Плоские волны в системах отсчета К и К" (К" движется относительно К со скоростью V):

причем а импульсы и энергии частицы в обеих системах связаны друг с другом формулами

(см. I, § 8), Подставив эти выражения в получим

В таком виде эта формула уже не содержит величин, характеризующих свободное движение частицы, и устанавливает искомый общий закон преобразования волновой функции произвольного состояния частицы. Для системы частиц в показателе экспоненты в (1) должна стоять сумма по частицам.

Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z, t), так как именно она, или, точнее, величина || 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х +d х, у и y+dy, z и z+dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h =h/(2 ), m - масса частицы -

оператор Лапласа (=д 2 / д x 2 2 / д y 2

+д 2 /д z 2), i - мнимая единица, U (х, у, z, t)

Потенциальная функция частицы в силовом поле, в котором она движется,

(х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д /д x, д /д y, д /д z, д /д t должны быть непрерывны;

3) функция || 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

(x,t)=Acos(t-kx), или в комплексной записи

(х, t) =Aе i ( t-kx) .

Следовательно, плоская волна де Бройля имеет вид

=Ae -(i/h)(Et-px) (217.2)

(учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только| | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсом р(Е=р 2 /(2 m )) и подставляя выраже-

ния (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р для данного случая р 2 /(2 m )=Е -U, придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (х, у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем е - i  t =е -i(E/h0t , так что

(х, у, z , t) =(х, у, z) e -i(E/h)t ,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель e -i(E/h)t и соответствующих преобразований придем к уравнению, определяющему функцию :

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны - они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики - и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) - в такой передаче энергии участвуют частицы - или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа - корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений - волновыми уравнениями. Все без исключения волны - волны океана, сейсмические волны горных пород, радиоволны из далеких галактик - описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу - в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):


где - расстояние, - постоянная Планка , а , и - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера - Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий - то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч - это частица, звук - это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле - и эксперименты это вскоре показали - в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, - яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Комментарии: 0

    Макс Планк - один из основоположников квантовой механики - пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах.

    Абсолютно черное тело, полностью поглощающее электромагнитное излучение любой частоты, при нагревании излучает энергию в виде волн, равномерно распределенных по всему спектру частот.

    Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами.

    Один из фактов субатомного мира заключается в том, что его объекты - такие как электроны или фотоны - совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств. Одно дело - это заявить, и совсем другое - связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.

    В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно. Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.

    Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций, а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

    Юлия Зотова

    Вы узнаете: Какие технологии называются квантовыми и почему. В чем преимущество квантовых технологий перед классическими. Что может и что не может квантовый компьютер. Как физики делают квантовый компьютер. Когда он будет создан.

    Французский физик Пьер Симон Лаплас поставил важный вопрос, о том, всё ли в мире предопределено предыдущим состоянием мира, либо же причина может вызвать несколько следствий. Как и предполагается философской традицией сам Лаплас в своей книге «Изложение системы мира» не задавал никаких вопросов, а сказал уже готовый ответ о том, что да, всё в мире предопределено, однако как часто и случается в философии предложенная Лапласом картина мира не убедила всех и тем самым его ответ породил дискуссию вокруг того вопроса, которая продолжается и по сей день. Несмотря на мнение некоторых философов от том, что квантовая механика разрешила данный вопрос в пользу вероятностного подхода, тем не менее, теория Лапласа о полной предопределенности или как её иначе называют теория лапласовского детерминизма обсуждаема и сегодня.

    Гордей Лесовик

    Некоторое время назад мы с группой соавторов начали выводить второй закон термодинамики с точки зрения квантовой механики. Например, в одной из его формулировок, гласящей, что энтропия замкнутой системы не убывает, типично растет, а иногда остается постоянной, если система энергетически изолирована. Используя известные результаты квантовой теории информации, мы вывели некоторые условия, при которых это утверждение справедливо. Неожиданно выяснилось, что эти условия не совпадают с условием энергетической изолированности систем.

    Профессор физики Джим Аль-Халили исследует наиболее точную и одну из самых запутанных научных теорий - квантовую физику. В начале 20-го века учёные проникли в скрытые глубины материи, в субатомные строительные блоки мира вокруг нас. Они обнаружили явления, которые отличаются от всего увиденного ранее. Мир, где всё может находится во многих местах одновременно, где действительность по-настоящему существует, лишь когда мы наблюдаем за ней. Альберт Эйнштейн противился одной только мысли о том, что в основе сущности природы лежит случайность. Квантовая физика подразумевает, что субатомные частицы могут взаимодействовать быстрее скорости света, а это противоречит его теории относительности.

Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

- (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
m - масса частицы;
∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
ψ = ψ (x, y, z, t) - искомая волновая функция;
U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
i - мнимая единица.

Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

  1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
  2. первые производные от нее должны быть непрерывны;
  3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

где ψ = ψ (x, y, z) - волновая функция только координат;
E - параметр уравнения - полная энергия частицы.

Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

ψ (0) = ψ (l) = 0

В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

где k 2 = (2m ∙ E) / ħ 2


Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

ψ (x) = A ∙ sin (kx)


где k = (n ∙ π)/ l

при целочисленных значениях n.

Из выражений (8.8) и (8.10) следует, что

E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

Подставив выражение (8.10) в (8.9) найдем собственные функции

ψ n (x) = A ∙ sin (nπ / l) ∙ x


Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

которое для данного случая запишется в виде:

Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
k - коэффициент упругости осциллятора.

Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

где N n - постоянный нормирующий множитель, зависящий от целого числа n;
α = (m ∙ ω 0) / ħ;
H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


где n = 0, 1, 2, 3... - квантовое число.

Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

а также H n (x) - полином Чебышева-Эрмита степени n.
При том первые два полинома равны:

H 0 (x) = 1;
H 1 (x) = 2x ∙ √ α

Любой последующий полином связан с нми по следующей рекуррентной формуле:

H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.