Перекрест гомологичных хромосом

  • ПЕРЕКРЁСТ
    в генетике, то же, что кроссинговер …
  • ПЕРЕКРЕСТ в Полной акцентуированной парадигме по Зализняку:
    пе"рекрест, пе"рекресты, пе"рекреста, пе"рекрестов, пе"рекресту, пе"рекрестам, пе"рекреста, пе"рекрестов, пе"рекрестом, пе"рекрестами, пе"рекресте, …
  • ПЕРЕКРЕСТ в словаре Синонимов русского языка:
    хиазм, …
  • ПЕРЕКРЕСТ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    I м. устар. То же, что: перекрещенец. II м. 1) Действие по знач. глаг.: перекрещивать (1), перекрестить, перекрещиваться, перекреститься. 2) …
  • ПЕРЕКРЁСТ
    перекрёст, -а (в …
  • ПЕРЕКРЕСТ в Словаре русского языка Лопатина:
  • ПЕРЕКРЁСТ
    перекрёст, -а (в …
  • ПЕРЕКРЕСТ в Полном орфографическом словаре русского языка:
    перекрест, -а (к перекрестить(ся) - окрестить(ся) …
  • ПЕРЕКРЁСТ в Орфографическом словаре:
    перекрёст, -а (в …
  • ПЕРЕКРЕСТ в Орфографическом словаре:
    перекр`ест, -а (к перекрест`ить(ся) - окрестить (ся) …
  • ПЕРЕКРЕСТ в Толковом словаре русского языка Ушакова:
    перекреста, м. (разг. устар.). То же, что …
  • ПЕРЕКРЕСТ в Толковом словаре Ефремовой:
    I перекрест м. устар. То же, что: перекрещенец. II перекрест м. 1) Действие по знач. глаг.: перекрещивать (1), перекрестить, перекрещиваться, …
  • ПЕРЕКРЕСТ в Новом словаре русского языка Ефремовой:
    I п`ерекрест м. устар. то же, что перекрещенец II перекр`ест м. 1. действие по гл. перекрещивать 1., перекрестить, перекрещиваться, перекреститься …
  • ПЕРЕКРЕСТ в Большом современном толковом словаре русского языка:
    I п`ерекрест м. устар. то же, что перекрещенец II перекр`ест м. 1. действие по гл. перекрещивать 1., перекрестить, перекрещиваться …
  • ФОРЕЛЯ ПЕРЕКРЕСТ в Медицинских терминах:
    (a. forel, 1848-1931, швейц. невролог и психиатр) см. Перекрест покрышки среднего мозга вентральный …
  • ПЕРЕКРЕСТ ЧУВСТВИТЕЛЬНЫЙ в Медицинских терминах:
    см. Перекрест петель …
  • ПЕРЕКРЕСТ ФОРЕЛЯ в Медицинских терминах:
    см. Перекрест покрышки среднего мозга вентральный …
  • ПЕРЕКРЕСТ ПОКРЫШКИ СРЕДНЕГО МОЗГА ДОРСАЛЬНЫЙ в Медицинских терминах:
    (d. tegmenti dorsalis; син. мейнерта перекрест) П. в покрышке среднего мозга волокон покрышечно-спинномозгового пути, выходящих преимущественно из верхних холмиков крыши …
  • ПЕРЕКРЕСТ ПОКРЫШКИ СРЕДНЕГО МОЗГА ВЕНТРАЛЬНЫЙ в Медицинских терминах:
    (d. tegmenti ventralis; син. фореля перекрест) П. в покрышке среднего мозга волокон красноядерно-спинномозгового …
  • ПЕРЕКРЕСТ МЕЙНЕРТА в Медицинских терминах:
    см. Перекрест покрышки среднего мозга дорсальный …
  • ПЕРЕКРЕСТ ЗРИТЕЛЬНЫХ НЕРВОВ в Медицинских терминах:
    см. Зрительный перекрест …
  • ПЕРЕКРЕСТ ЗРИТЕЛЬНЫЙ в Медицинских терминах:
    см. Зрительный перекрест …
  • ПЕРЕКРЕСТ ДВИГАТЕЛЬНЫЙ в Медицинских терминах:
    см. Перекрест пирамид …
  • ПЕРЕКРЕСТ ВЕРХНИХ МОЗЖЕЧКОВЫХ НОЖЕК в Медицинских терминах:
    (d. pedunculorum cerebellarium superiorum, pna; d. brachii conjunctivi, bna; d. crurum cerebellocerebralium, jna; син. вернекинга перекрест) П. волокон мозжечково-покрышечного пути, …
  • ПЕРЕКРЕСТ ВЕРНЕКИНГА в Медицинских терминах:
    см. Перекрест верхних …
  • МЕЙНЕРТА ПЕРЕКРЕСТ в Медицинских терминах:
    (th. meynert) см. Перекрест покрышки среднего мозга дорсальный …
  • ЗРИТЕЛЬНЫЙ ПЕРЕКРЕСТ в Медицинских терминах:
    (chiasma opticum, pna, bna; chiasma fasciculorumopticorum, jna; син.: перекрест зрительных нервов, хиазма) место соединения зрительных нервов, в котором перекрещиваются волокна, …
  • ЦИТОЛОГИЧЕСКИЕ КАРТЫ ХРОМОСОМ в Большой советской энциклопедии, БСЭ:
    карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. …
  • СПИРАЛИЗАЦИЯ ХРОМОСОМ в Большой советской энциклопедии, БСЭ:
    хромосом, процесс укорочения и уплотнения хромосом при делении клеток; способствует нормальному расхождению хромосом к полюсам клетки. С. х. обусловлена уменьшением …
  • ГЕНЕТИЧЕСКИЕ КАРТЫ ХРОМОСОМ в Большой советской энциклопедии, БСЭ:
    карты хромосом, схемы относительного расположения сцепленных между собой наследственных факторов - генов. Г. к. х. отображают реально существующий …
  • ХРОМОСОМЫ в Энциклопедии Биология:
    , находящиеся в клеточном ядре продолговатые тельца, заключающие в себе гены. Хромосомы - основные носители генетического материала, обеспечивающие его передачу …
  • ПОЛИПЛОИДИЯ в Энциклопедии Биология:
    , увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации. Половые клетки большинства организмов …
  • МЕЙОЗ в Энциклопедии Биология:
    (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора …
  • БОЛЕЗНИ ХРОМОСОМНЫЕ в Медицинском словаре:
  • БОЛЕЗНИ ХРОМОСОМНЫЕ в Медицинском большом словаре:
    Хромосомные болезни - большая группа заболеваний (более 300 синдромов), вызванных аномалиями в количестве или структуре хромосом. Патологические изменения при хромосомных …
  • ЯДРО (БИОЛ.) в Большой советской энциклопедии, БСЭ:
    клеточное, обязательная, наряду с цитоплазмой, составная часть клетки у простейших, многоклеточных животных и растений, содержащая хромосомы и продукты их деятельности. …
  • ЦИТОГЕНЕТИКА в Большой советской энциклопедии, БСЭ:
    (от цито... и генетика) , наука, изучающая закономерности наследственности во взаимосвязи со строением и функциями различных внутриклеточных структур. Основной …
  • ХРОМОСОМНЫЕ БОЛЕЗНИ в Большой советской энциклопедии, БСЭ:
    болезни, наследственные заболевания, обусловленные изменением числа или структуры хромосом. Частота Х. б. среди новорождённых детей около 1%. Многие изменения …
  • ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ в Большой советской энциклопедии, БСЭ:
    теория наследственности, теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, …
  • ПОЛИПЛОИДИЯ в Большой советской энциклопедии, БСЭ:
    (от греч. polyploos - многопутный, здесь - многократный и eidos - вид), кратное увеличение числа хромосом в клетках растений или …
  • ПОЛ (БИОЛ.) в Большой советской энциклопедии, БСЭ:
    организмов, совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится в конечном итоге к оплодотворению. При …
  • НАСЛЕДСТВЕННОСТЬ (БИОЛ.) в Большой советской энциклопедии, БСЭ:
    присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного …
  • МУТАЦИИ в Большой советской энциклопедии, БСЭ:
    (от лат. mutatio - изменение, перемена), внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственных структур живой материи, …
  • МИТОЗ в Большой советской энциклопедии, БСЭ:
    (от греч. mitos - нить), кариокинез, непрямое деление клетки, наиболее распространённый способ воспроизведения (репродукции) клеток, обеспечивающий тождественное распределение генетического …
  • МЕНДЕЛИЗМ в Большой советской энциклопедии, БСЭ:
    учение о закономерностях наследственности, положившее начало генетике. Возникновение М. связывают с обнаружением и подтверждением в 1900 забытой работы Г. …
  • МЕЙОЗ в Большой советской энциклопедии, БСЭ:
    (от греч. meiosis - уменьшение), редукционное деление, деления созревания, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом …
  • КЛЕТКА в Большой советской энциклопедии, БСЭ:
    элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют …
  • КАРИОСИСТЕМАТИКА в Большой советской энциклопедии, БСЭ:
    (от карио... и систематика) , кариотаксономия, раздел систематики, изучающий структуры клеточного ядра у разных групп организмов (таксонов) с …
  • ГЕНОМ в Большой советской энциклопедии, БСЭ:
    [нем. Genom, англ. genom (e)], гаплоидный хромосомный набор; совокупность генов, локализованных в одиночном наборе хромосом данного организма. Термин предложен …

1. В каких случаях происходит мейоз?

Ответ. Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении. Данный тип деления клетки получил название – мейоз. Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое. Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза. В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

2. Какой набор хромосом называется диплоидным?

Ответ. Диплоидный набор хромосом - (другие названия - двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека диплоидный набор хромосом содержит 44 аутосомы и 2 половые хромосомы.

Вопросы после §30

1. В чем отличие мейоза от митоза?

Ответ. Основные отличия:

1. мейоз уменьшает вдвое число хромосом в дочерних клетках, митоз поддерживает число хромосом на стабильном уровне, как и в материнской клетке

2. в мейозе следуют 2 подряд деления, причем перед вторым-нет интерфазы

3. в профазе 1 мейоза есть конъюгация и возможен кроссинговер

4. в анафазе 1 мейоза к полюсам расходятся целые хромосомы. при митозе-хроматиды

5. в метафазе 1 мейоза вдоль экватора клетки выстраиваются биваленты хромосом, в митозе все хромосомы выстраиваются в одну линию

6. в результате мейоза образуется 4 дочерних клетки, в митозе-2 клетки.

2. Каково биологическое значение мейоза?

Ответ. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов. Таким образом, мейоз:

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

3. В какую фазу мейоза происходит кроссинговер?

Ответ. Профаза I мейоза наиболее продолжительна. В этой фазе помимо типичных для профазы митоза процессом спирализации ДНК и образования веретена деления про исходят два очень важных в биологическом отношении процесса: конъюгация (спаривание) и кроссинговер (перекрест) гомологичных хромосом.

При кроссинговере происходит обмен идентичными участками гомологичных хромосом. Подумайте, какое значение может иметь это явление.

Ответ. Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т. е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что:

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций);

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые сочетания, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

В каждой хромосоме находится несколько тысяч генов. В связи с этим возникает вопрос о том, как будут наследоваться признаки, гены которых находятся в одной хромосоме. В 1906 г. В. Бэтсон и Р. Пен- нет проводили опыты по скрещиванию двух различных рас душисто­го горошка, которые различались по двум парам признаков (по форме пыльцы и по окраске цветка).

Ученые ожидали получить в Р 2 расщеп­ление признаков в отношении 9:3:3:1, однако этого не случилось: признаки не дали независимого наследования, они оставались в ис­ходной комбинации, которая была у родительских форм. Это явление сначала было названо «притяжением», а позднее в работах американ­ского генетика Томаса Гента Моргана и его сотрудников получило название «сцепления генов». Благодаря работам Т. Моргана и было достигнуто понимание этого явления. Морган установил, что матери­альной основой сцепления является хромосома. Все гены, находящие­ся в одной хромосоме, связаны между собой («сцеплены») и образуют «группы сцепления». Сцепленные гены располагаются в линейном порядке и наследуются вместе. Число групп сцепления равно числу пар хромосом, то есть гаплоидному набору хромосом (у гомогамет- ных особей).

Закон сцепления (закон Моргана) может быть сформулирован так: гены, находящиеся в одной хромосоме, образуют группу сцепле­ния и наследуются вместе по схеме моногибридного скрещивания. Число групп сцепления равно гаплоидному набору хромосом.

Разобрать это явление можно на следующем примере: если два гена полностью сцеплены, то дигибрид будет давать только два сорта гамет - АВ и аЪ в отношении 1:1. Если же гены наследуются незави­симо (не сцепленно), то дигетерозигота дает 4 сорта гамет: АВ, АЪ, аВ, аЪ в равном соотношении. Проверить этот факт можно путем ана­лизирующего скрещивания (то есть скрещивания с гомозиготной ре­цессивной формой): расщепление в анализирующем скрещивании по­кажет исследователю, сцеплены гены или же наследуются независимо.

В случае если дигибрид образует только два сорта гамет (то есть гены сцеплены), в результате анализирующего скрещивания будет получено лишь две группы особей в отношении 1:1. Половина потомства будет иметь доминантные признаки, а вторая половина - рецессивные, то есть перекомбинации признаков наблюдаться не бу­дет. При независимом наследовании анализирующее скрещивание даст 4 группы особей в равном соотношении с перекомбинацией ис­ходных признаков.

Дальнейшие опыты Т. Моргана выявили, что сцепление не всегда бывает абсолютным. В экспериментах с плодовой мушкой дрозофи­лой Морган показал, что полное сцепление наблюдается только в 83% случаев (41,5% потомства имели серое тело и длинные крылья и 41,5% - черное тело и короткие крылья, то есть признаки родитель­ских форм). В 17% случаев наблюдалась перекомбинация признаков: 8,5% потомства имело серое тело и короткие крылья и 8,5% - черное тело и длинные крылья. Причиной нарушения сцепления генов стал кроссинговер - перекрест хромосом, который происходит в профазе I мейоза. Было доказано, что чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста и тем больше образуется гамет с перекомбинацией генов. Таким образом, частота кроссинговера между генами пропорциональна расстоянию между ними. В результате кроссинговера увеличивается комбинативная из­менчивость, которая дает материал для естественного отбора. В этом и состоит биологическое значение кроссинговера.

С учетом процента кроссинговера составляются генетические карты хромосом. На таких картах нанесено относительное расстояние между генами, которое измеряется в морганидах. Одна морганида равна 1% кроссинговера.

Все, что до сих пор говорилось о перекресте хромосом, относится к процессам, происходящим в профазе I.

Перекрест хромосом, осуществляющийся в профазе мейоза, называют мейотическим перекрестом , или мейотическим кроссинговером .

Мейоз состоит из двух делений созревания. Первое из них мы называли также редукционным делением, поскольку в результате него диплоидное число хромосом уменьшается вдвое; причем в анафазе I гомологи каждой пары хромосом проводятся к полюсам независимо от других пар, что обеспечивает случайное комбинирование генов.

Второе деление созревания было названо эквационным, или сравнительным, поскольку в анафазе II расходятся к полюсам сестринские хромосомы. При этом полагали, что они абсолютно идентичны по своему генному составу, так как происходят из сестринских хроматид. В результате второго деления созревания гибрида из одного первичного сперматоцита (или ооцита) возникает всего два сорта гамет в отношении 1: 1 при моногибридном скрещивании и четыре сорта гамет в отношении 1: 1: 1: 1 при дигибридном скрещивании и т. д.

Теперь же, после ознакомления с процессом перекреста хроматид в профазе I мейоза, нельзя первое мейотическое деление во всех случаях считать редукционным, а второе деление - эквационным. Такое разделение применимо лишь к тем организмам, у которых не происходит перекреста. У тех же организмов, у которых осуществляется перекрест хроматид в профазе I мейоза, второе деление созревания не будет эквационным в отношении всего генного состава. Обмен участками между несестринскими хроматидами в мейозе у гетерозигот приводит к неравенству продуктов второго мейотического деления в отношении генов. Одна или обе сестринские хроматиды, претерпевшие обмен участками с несестринскими хроматидами, при втором делении созревания не будут идентичными. Поэтому термин «эквационное деление » следует употреблять лишь в тех случаях, где строго установлено отсутствие перекреста (например, у самцов дрозофилы и самок шелкопряда). Во всех остальных случаях правильнее говорить о втором делении созревания, или втором мейотическом делении.

Первое деление, названное редукционным, также не является чисто редукционным. Оно редукционно лишь по отношению к центромерам и участкам хромосомы от центромеры до первой хиазмы. Для участков, лежащих между двумя хиазмами, первое деление является эквационным. Второе деление для них оказывается редукционным, а для центромеры - эквационным.

Таким образом, при осуществлении перекреста хроматид в профазе мейоза первое и второе деления в генетическом отношении являются каждое и редукционным, и эквационным.

К сказанному следует еще добавить, что при перекресте происходит обмен не отдельными генами, а целыми блоками их. Поэтому неравенство кроссоверных гамет может быть значительно более глубоким, чем мы это принимали, оценивая рекомбинанты только по двум или трем генам.


После того как было доказано явление кроссинговера генетическими методами, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов.

К. Штерну удалось получить у самки и самца дрозофилы половые хромосомы, отличаемые друг от друга цитологически и генетически, различающиеся по морфологии. У самок отличие х-хромосом получено за счет того, что к одной из них был присоединен фрагмент от у-хромосомы, что дало ч-образную х-хромосому с генами cr B + дикого типа. Другая х-хромосома была также составной: один из ее фрагментов, несущий центросому, содержал рецессивный ген cr (carnation) – глаза цвета гвоздики и доминантный ген В (carnation – определяет глаза цвета красной гвоздики, а доминантный к дикому типу ген Вач – полосковидные глаза). Безцентромерный фрагмент х-хромосомы не был потерян в силу того, что он прикрепился к IV хромосоме. Так как прибавка фрагмента от у-хромосомы генетически мало активной, вообщем не изменила хромосомного балланса зиготы, гетерозигота по данным генам самка была вполне жизнеспособна. Для анализирующего скрещивания были взяты самцы с нормальными х- и у-хромосомами при этом половая х-хромосома самца несла гены cr и В + в гемизиготном состоянии. В потомстве были изучены цитологически только самки, среди которых возникли два класса мух с некроссоверными хромосомами crВ и cr + В +

и два других класса мух

crВ + и cr + В

самок могли появиться только при условии произошедшего кроссинговера между генами cr и В.

Так как каждый из четырех классов отличался друг от друга не только по признакам глаз, но и по морфологии половых хромосом, то цитологически можно было установить, что кроссинговер, давший два класса мух сопровождался обменом участков х-хромосом. К.Штерн проверил цитологически 374 самки из описанного скрещивания, 369 из них соответствовали ожиданному результату. Подобный же опыт проведен был на кукурузе. В потомстве получили как некроссоверные, так и кроссоверные зерна.

У большинства изученных животных и растений хиазмы и перекрест осуществляются у обоих полов. Но существуют отдельные виды животных, у которых кроссинговер осуществляется только у гомогаметного пола, а у гетерогаметного в норме отсутстует. У самцов дрозофилы и самок шелкопряда – полностью отсутствует синапсис, т.е. парное соединение гомологичных хромосом. У гомогаметных особей этих видов (самок дрозофилы и самцы шелкопряда) перекрест хромосом протекает нормально. У многих видов млекопитающих, птиц, рыб и насекомых гетерогаметность пола не сказывается на процессе кроссинговера.

Накопленные факты, говорят о том, что в механизме перекреста хромосом большую роль играет центромера. Вблизи центромеры перекрест происходит редко, затем у дрозофилы возрастает, а к концу снова уменьшается. Поэтому на генетических картах дрозофилы вблизи центромеры локализуется генов больше, чем у удаленных от нее районах. У кукурузы такого влияния центромеры на кроссинговер не обнаружено.

На частоту перекреста в разных участках хромосомы влияет и распределение гетерохроматиновых и эухроматиновых участков. У гетерохроматинового пола (самцы дрозофилы и самки тутового шелкопряда) перекрест хромосом не обнаруживается. Однако, если эти организмы подвергнуть действию рентгеновских лучей, то в потомстве возникают кроссоверные особи. Частота кроссинговера также зависит от возраста организма. Если изучить перекрест между двумя генами, локализованными по генетической карте на небольшом расстоянии, скажем на растоянии 6 морганид друг от друга, и учитовать процента кроссинговера у самок по десяти дневкам откладки оплодотворенных яиц (за 1-10, 11-20, 21-30 дней), то частота перекреста будет колебаться соответственно: 5,9; 1,8; 3,8%. Первый возраст соответствует максимому, второй – спаду, а третий – подъем процента перекреста. У генетика не вызывает сомнения положение о том, что все механизмы, работающие в клетке организма, наследственно детерменинированы. Кроссинговер тоже контролируется генотипом. Подтверждением этому служит эффективность отбора линий на высокую и низкую частоту перекреста между двумя генами. Отбор линий по данному признаку указывает на роль генотипа в определении кроссинговера. На частоту кроссинговера генотип может влиять разными путями. На молекулярном уровне генотип регулирует точность копирования ДНК. На хромосомном уровне генотип влияет через изменение политении хромосом, степень спирализации, прочность продольных связей в нити ДНК. На частоту перекреста в сильной степени влияют различные хромосомные перестройки, поскольку они нарушают нормальный синапсис хромосом. Имеется и межхромосомное влияние на перекрест. Хромосомные перестройки произошедшие в одной паре хромосом, влияют на частоту перекрестта в негомологичных хромосомах. У кукурузы открыты гены, которые контролируют синапсис, спирализацию и слияние хромосом. Помимо зависимости кроссинговера от генотипа и физиологического состояния, на частоту перекреста оказывают влияние факторы среды: высокая и низкая температуры, ионизирующее излучение, инфракрасные лучи и т.д.

Вопросы для самоконтроля:

1.Что такое кроссинговер.

2.Цитологическое доказательство кроссинговера.

3.Генетическое доказательство кроссинговера.

С.Г. Инге-Вечтомов «Генетика с основами селекции». Москва «Высшая школа». 1989год, 590стр.

Р.Г. Заяц. и др. «Общая и медецинская генетика». Ростов- на- Дону. «Феникс». 2002год. 315стр.