Формулы средних квадратических ошибок выборки. Средние ошибки повторной и бесповторной выборки. Средняя и предельная ошибки выборки

Рассмотрим подробно перечисленные выше способы формирования выборочной совокупности и возникающие при этом ошибки репрезентативности.

Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (например, розыгрыши лотерей) или по таблице случайных чисел.

Собственно-случайный отбор «в чистом виде» в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Ошибка выборочного наблюдения - это разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Для средней количественного признака ошибка выборки определяется

Показатель называется предельной ошибкой выборки.

Выборочная средняя является случайной величиной, которая может принимать различные значения в зависимости от того, какие единицы попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки, которая зависит от:

  • 1) объема выборки: чем больше численность, тем меньше величина средней ошибки;
  • 2) степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается

Практически генеральная дисперсия точно не известна, но в теории вероятности доказано, что

Так как величина при достаточно больших n близка к 1, можно считать, что. Тогда средняя ошибка выборки может быть рассчитана:

Но в случаях малой выборки (при n30) коэффициент необходимо учитывать, и среднюю ошибку малой выборки рассчитывать по формуле

При случайной бесповторной выборке приведенные формулы корректируются на величину. Тогда средняя ошибка бесповторной выборки:

Т.к. всегда меньше, то множитель () всегда меньше 1. Это значит, что средняя ошибка при бесповторном отборе всегда меньше, чем при повторном.

Механическая выборка применяется, когда генеральная совокупность каким-либо способом упорядочена (например, списки избирателей по алфавиту, телефонные номера, номера домов, квартир). Отбор единиц осуществляется через определенный интервал, который равен обратному значению процента выборки. Так при 2% выборке отбирается каждая 50 единица =1/0,02 , при 5% каждая 1/0,05=20 единица генеральной совокупности.

Начало отсчета выбирается разными способами: случайным образом, из середины интервала, со сменой начала отсчета. Главное при этом - избежать систематической ошибки. Например, при 5% выборке, если первой единицей выбрана 13-я, то следующие 33, 53, 73 и т.д.

По точности механический отбор близок к собственно-случайной выборке. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайного отбора.

При типическом отборе обследуемая совокупность предварительно разбивается на однородные, однотипные группы. Например, при обследовании предприятий это могут быть отрасли, подотрасли, при изучении населения - районы, социальные или возрастные группы. Затем осуществляется независимый выбор из каждой группы механическим или собственно-случайным способом.

Типическая выборка дает более точные результаты по сравнению с другими способами. Типизация генеральной совокупности обеспечивает представительство в выборке каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Следовательно, при нахождении ошибки типической выборки согласно правилу сложения дисперсий () необходимо учесть лишь среднюю из групповых дисперсий. Тогда средняя ошибка выборки:

при повторном отборе

при бесповторном отборе

где - средняя из внутригрупповых дисперсий в выборке.

Серийный (или гнездовой) отбор применяется в случае, когда генеральная совокупность разбита на серии или группы до начала выборочного обследования. Этими сериями могут быть упаковки готовой продукции, студенческие группы, бригады. Серии для обследования выбираются механическим или собственно-случайным способом, а внутри серии производится сплошное обследование единиц. Поэтому средняя ошибка выборки зависит только от межгрупповой (межсерийной) дисперсии, которая вычисляется по формуле:

где r - число отобранных серий;

Средняя і-той серии.

Средняя ошибка серийной выборки рассчитывается:

при повторном отборе

при бесповторном отборе

где R - общее число серий.

Комбинированный отбор представляет собой сочетание рассмотренных способов отбора.

Средняя ошибка выборки при любом способе отбора зависит главным образом от абсолютной численности выборки и в меньшей степени - от процента выборки. Предположим, что проводится 225 наблюдений в первом случае из генеральной совокупности в 4500 единиц и во втором - в 225000 единиц. Дисперсии в обоих случаях равны 25. Тогда в первом случае при 5 %-ном отборе ошибка выборки составит:

Во втором случае при 0,1 %-ном отборе она будет равна:

Таким образом, при уменьшении процента выборки в 50 раз, ошибка выборки увеличилась незначительно, так как численность выборки не изменилась.

Предположим, что численность выборки увеличили до 625 наблюдений. В этом случае ошибка выборки равна:

Увеличение выборки в 2,8 раза при одной и той же численности генеральной совокупности снижает размеры ошибки выборки более чем в 1,6 раза.

При выборочном наблюдении должна быть обеспечена слу-чайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного рас-членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо-ба, например, с помощью таблицы случайных чисел. Случай-ный отбор -- это отбор не беспорядочный. Принцип случай-ности предполагает, что на включение или исключение объ-екта из выборки не может повлиять какой-либо фактор, кро-ме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущен-ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной со-вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ-ём выборки п составляет 50 ед., а при 10%-ной выборке -- 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате -- выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет-ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко-личественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой сово-купности только наличием изучаемого признака).

Выборочная доля (w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:

Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными =95), то выборочная доля

w =95/100=0,95 .

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки ? или, иначе говоря, ошибка репрезента-тивности представляет собой разность соответствующих выбо-рочных и генеральных характеристик:

*

*

Ошибка выборки свойственна только выборочным наблюде-ниям. Чем больше значение этой ошибки, тем в большей степе-ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв-ляются случайными величинами, которые могут принимать раз-личные значения в зависимости от того, какие единицы сово-купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож-ных ошибок -- среднюю ошибку выборки.

От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определя-ется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьи-рования изучаемого признака. Степень варьирования, как из-вестно, характеризуется дисперсией? 2 или w(1-w) -- для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы-борки, и наоборот. При нулевой дисперсии (признак не варь-ирует) средняя ошибка выборки равна нулю, т. е. любая еди-ница генеральной совокупности будет совершенно точно ха-рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе-ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х,p) неизвестны, и следовательно, не представляется возмож-ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

Ш При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

* для средней количественного признака

* для доли (альтернативного признака)

Поскольку практически дисперсия признака в генеральной совокупности? 2 точно неизвестна, на практике пользуются значением дисперсии S 2 , рассчитанным для выборочной сово-купности на основании закона больших чисел, согласно кото-рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене-ральной совокупности.

Таким образом, расчетные формулы средней ошиб-ки выборки при случайном повторном отборе будут следующие:

* для средней количественного признака

* для доли (альтернативного признака)

Однако дисперсия выборочной совокупности не равна диспер-сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли-женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Так как п/ (n -1) при достаточно больших п -- величина, близкая к единице, то можно принять, что, а следова-тельно, в практических расчетах средних ошибок выборки мож-но использовать формулы (форм. 5) и (форм. 6). И только в случаях ма-лой выборки (когда объем выборки не превышает 30) необхо-димо учитывать коэффициент п /(n -1) и исчислять среднюю ошибку малой выборки по формуле:

Ш X При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подко-ренное выражение умножить на 1-(n/N), поскольку в процес-се бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной вы-борки расчетные формулы средней ошибки выборки примут такой вид:

* для средней количественного признака

* для доли (альтернативного признака)

. (форм. 10)

Так как п всегда меньше N , то дополнительный множи-тель 1-(n/N ) всегда будет меньше единицы. Отсюда следу-ет, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к еди-нице (например, при 5%-ной выборке он равен 0,95; при 2%-ной -- 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (форм. 5) и (форм. 6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгра-нично, или когда п очень мало по сравнению с N , и по су-ществу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по ней-тральному признаку на равные интервалы (группы), произво-дится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематиче-ской ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокуп-ности предварительно располагают (обычно в списке) в опре-деленном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо по-казателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через оп-ределенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1: 0,02), при 5%-ной выборке -- каждая 20-я едини-ца (1: 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. По-этому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной вы-борки (форм. 9), (форм. 10).

Для отбора единиц из неоднородной совокупности применя-ется, так называемая типическая выборка , которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении слож-ных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдель-ных отраслях экономики, производительности труда рабочих пред-приятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выбороч-ную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представи-тельство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки в ка-честве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

* для средней количественного признака

(повторный отбор); (форм. 11)

(бесповоротный отбор); (форм. 12)

* для доли (альтернативного признака)

(повторный отбор); (форм.13)

(бесповторный отбор), (форм. 14)

где - средняя из внутригрупповых дисперсий по вы-борочной совокупности;

Средняя из внутригрупповых дисперсий доли (альтернативного признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генераль-ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде-нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не-сколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе-ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Ш Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

(повторный отбор); (форм.15)

(бесповторный отбор), (форм. 16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле-дующим образом:

где - средняя i - й серии; - общая средняя по всей выбо-рочной совокупности.

Ш Средняя ошибка выборки для доли (альтернативного при-знака) при серийном отборе:

(повторный отбор); (форм. 17)

(бесповторный отбор). (форм. 18)

Межгрупповую (межсерийную) дисперсию доли серийной вы-борки определяют по формуле:

, (форм. 19)

где - доля признака в i -й серии; - общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмот-ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Между показателями выборочной совокупности и искомыми показателями (параметрами) генеральной совокупности, как правило, существуют некоторые разногласия, которые называют ошибками выборки. Общая ошибка выборочной характеристики состоит из ошибок двух родов: ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации свойственны любому статистическому наблюдению и появление их может быть вызвано невнимательностью регистратора, неточностью подсчетов, несовершенством измерительных приборов и т.д.

Ошибки репрезентативности присущи только выборочному наблюдению и обусловлены самой его природой поскольку как бы тщательно и правильно не проводился отбор единиц средние и относительные показатели выборочной совокупности всегда будут в какой-то степени отличаться от соответствующих показателей генеральной совокупности.

Различают систематические и случайные ошибки репрезентативности. Систематические ошибки репрезентативности - это неточности, которые возникают вследствие несоблюдения условий отбора единиц в выборочную совокупность, не предоставление равной возможности каждой единице генеральной совокупности попасть в выборку. Случайные ошибки репрезентативности - это погрешности, которые возникают вследствие того, что выборочная совокупность точно не воспроизводит характеристики генеральной совокупности (среднее, долю, дисперсию и др.) в силу несплошного характера обследования.

При соблюдении принципа случайного отбора размер ошибки выборки прежде всего зависит от численности выборки. Чем больше численность выборки при прочих равных условиях, тем меньше величина ошибки выборки. При большой численности выборки отчетливее проявляется действие закона больших чисел, согласно которому: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии выборочные характеристики (средняя доля) будут сколь угодно мало отличаться от соответствующих генеральных характеристик.

Размеры ошибки выборки также непосредственно связаны со степенью варьирования изучаемого признака, а степень варьирования, как отмечалось выше, в статистике характеризуется размером дисперсии (рассеяния): чем меньше дисперсия, тем меньше ошибка выборки, тем более надежные статистические выводы. Поэтому на практике дисперсию отождествляют с ошибкой выборки.

Поскольку параметр генеральной совокупности есть искомая величина и он неизвестен, нужно ориентироваться не на конкретную ошибку, а среднюю из всех возможных выборок.

Если из генеральной совокупности отобрать несколько выборочных совокупностей, то каждая из полученных выборок даст разное значение конкретной ошибки.

Средняя квадратическая величина исчисленная из всех возможных значений конкретных ошибок (;) составит:

где *и - выборочные средние; х - генеральная средняя;)] - численность выборок по величине є1 = ~си - х.

Среднее квадратическое отклонение выборочных средних от генеральной средней называют средней ошибкой выборки.

Зависимость величины ошибки выборки от ее численности и от степени варьирования признака находит выражение в формуле средней ошибки выборки /и.

Квадрат средней ошибки (дисперсия выборочных средних) прямо пропорционален дисперсии Сто и обратно пропорционален численности выборки п:

где - дисперсия признака в генеральной совокупности.

Отсюда среднюю ошибку в общем виде определяют по формуле:

Итак, определив по выборке среднее квадратичное отклонение, можно установить значение средней ошибки выборки, величина которой, как следует из формулы, тем больше, чем больше вариация случайной величины и тем меньше, чем больше численность выборки.

Поэтому по мере роста объема выборки размер средней ошибки уменьшается. Если, например, нужно уменьшить среднюю ошибку выборки в два раза, то численность выборки следует увеличить в четыре раза, если надо уменьшить ошибку выборки в три раза, то объем выборки следует увеличить в девять раз и т. д.

В практических расчетах применяются две формулы средней ошибки выборки для средней и для доли.

При выборочном изучении средних показателей формула средней ошибки такая:

При изучении относительных показателей (частных признаков) формула средней ошибки имеет вид:

где г - доля признака в генеральной совокупности.

Применение приведенных формул средней ошибки предполагает, что известны генеральная дисперсия и генеральная доля. Однако в действительности эти показатели неизвестны и вычислить их невозможно из-за отсутствия данных относительно генеральной совокупности. Поэтому возникает потребность замены генеральной дисперсии и генеральной доли другими, близкими к ним, величинами.

В математической статистике доказано, что такими величинами могут быть выборочная дисперсия(ст) и выборочная доля (со).

С учетом сказанного формулы средней ошибки могут быть записаны так:

Эти формулы дают возможность определить среднюю ошибку при повторной выборке. Применения простой случайной повторной выборки в практике является ограниченным. Прежде всего практически нецелесообразно, а иногда невозможно повторное обследование тех же единиц. Применение бесповторного отбора вместо повторного диктуется также требованием повышения степени точности и надежности выборки. Поэтому на практике чаще используют способ бесповторного случайного отбора. По этому способу отбора единица совокупности, отобранная в выборку, в дальнейшем отборе не участвует. Единицы отбирают из генеральной совокупности, уменьшенной на количество ранее отобранных единиц. Поэтому в связи с изменением численности генеральной совокупности после каждого отбора и вероятности отбора для единиц, что остались, в формулы средней ошибки выборки вводится поправочный множитель

где N - численность генеральной совокупности; п - численность выборки. При достаточно большом значении N можно единицей в знаменателе пренебречь. Тогда

Следовательно, формулы средней ошибки выборки для бесповторного отбора для средней и для доли соответственно имеют вид:

Поскольку п всегда меньше М, то дополнительный множитель всегда меньше единицы. Следовательно, абсолютное значение ошибки выборки при бесповторном отборе всегда будет меньше, чем при повторном.

Если численность выборки достаточно велика, то величина 1 ^ близка к единице, а потому ею можно пренебречь. Тогда среднюю ошибку случайного бесповторного отбора определяют по формуле собственно-случайной повторной выборки.

Рассчитаем для нашего примера среднюю ошибку для урожайности и доли участков с урожайностью 25 ц/га и более.

Средняя ошибка выборки

а) средней урожайности ячменя

Средняя урожайность ячменя в генеральной совокупности х -Г^ = 25,1 ± 0,12 ц/га, то есть находится в пределах от 24,98 до 25,22 ц/га.

Доля участков с урожайностью 25 ц/га и более в генеральной совокупности р

Т-^Г = 0,80 ± 0,07, т.е. находится в пределах от 73 до 87%.

Средняя ошибка выборки показывает возможные отклонения характеристик выборочной совокупности от характеристик генеральной совокупности. Вместе с тем при проведении выборочного наблюдения перед исследователями часто стоит задача расчета не только средней ошибки, но и определение предельной возможной ошибки выборки. Зная среднюю ошибку, можно определить границы, за которые не выйдет величина ошибки выборки. Однако утверждать, что эти отклонения не превысят заданной величины, можно не с абсолютной достоверностью, а лишь с определенной степенью вероятности. Уровень вероятности, что принимается при определении возможных пределов, в которых содержатся значения параметров генеральной совокупности, называется доверительным уровнем вероятности.

Доверительная вероятность - это довольно высокая и, такая, что практически считается осуществленной в каждом конкретном случае, вероятность, что гарантирует получение надежных статистических выводов. Обозначим ее через Г а вероятность превысить этот уровень - а. Итак, а =1 - Р Вероятность а называют уровнем значимости (существенности), который характеризует относительное число ошибочных выводов в общем числе выводов и определяется как разница между единицей и доверительной вероятностью, что принимается.

Уровень доверительной вероятности устанавливает исследователь исходя из степени ответственности и характера задач, которые решаются. В статистических исследованиях в экономике чаще всего принимается уровень доверительной вероятности Г = 0,95; Р = 0,99 (соответственно уровень значимости а = 0,05; а = 0,01) реже Г = 0,999. Например, доверительная вероятность Г = 0,99 означает, что ошибка оценки в 99 случаях из 100 не превысит установленной величины и только в одном случае из 100 может достичь вычисленного значения, или превысить его.

Ошибка выборки, исчисленная с заданной степенью надежной вероятности, называется предельной ошибкой выборки Ер.

Рассмотрим, как устанавливается величина возможной предельной ошибки выборки. Величина ер связана с нормированным отклонением и, которое определяется как отношение предельной ошибки выборки ер к средней ошибки и:

Для удобства расчетов отклонения случайной величины от ее среднего значения обычно выражают в единицах среднего квадратического отклонения. Выражение

называют нормированным отклонением. в В статистической литературе и называют коэффициентом доверия, или коэффициентом кратности средней ошибки выборки.

Так, нормированное отклонение выборочной средней можно определить по формуле:

и _є_р_

Из выражения 1 можно найти возможную предельную ошибку выборки

ер = и/л.

Подставив вместо г. в ее значение, приведем формулы предельных ошибок выборки для средней и для доли при бесповторном случайном отборе:

Следовательно, предельная ошибка выборки зависит от величины средней ошибки и нормированного отклонения и равна ± кратному числу средних ошибок выборки.

Средняя и предельная ошибки выборки - именованные величины и выражаются в тех же единицах, что и средняя арифметическая и среднее квадратическое отклонения.

Нормированное отклонение функционально связано с вероятностью. Для нахождения значений и составлены специальные таблицы (доб.2), по которым можно найти значение и при заданном уровне доверительной вероятности и значения вероятности при известном и.

Приведем значения и и соответствующие им вероятности для выборок с численностью п > 30, что чаще всего используется в практических расчетах:

Следовательно, при и = 1 вероятность отклонения выборочных характеристик от генеральных на величину однократной средней ошибки выборки равна 0,6827. Это означает, что в среднем с каждой 1000 выборок 683 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более, чем на величину однократной средней ошибки. При и = 2 вероятность равна 0,9545. в Это означает, что с каждого 1000 выборок 954 дадут обобщенные характеристики, которые будут отличаться от генеральных обобщенных характеристик не более чем на двукратную среднюю ошибку выборки и т.д.

Однако в связи с тем, что, как правило, проводится только одна выборка, то мы говорим, что, например, с вероятностью 0,9545 можно гарантировать, что размеры предельной ошибки не превысят двукратную среднюю ошибку выборки.

Математически доказано, что отношение ошибки выборки к средней ошибки, как правило, не превышает ± 3д при достаточно большой численности п, несмотря на то, что ошибка выборки может приобретать любые значения. Другими словами можно сказать, что при достаточно высокой вероятности суждения (Р = 0,9973) предельная ошибка выборки, как правило, не превышает трех средних ошибок выборки. Поэтому величину Ер = 3д можно принять за предел возможной ошибки выборки.

Определим для нашего примера предельную ошибку выборки для средней урожайности и доли участков с урожайностью 25 ц/га и более. Доверительный уровень вероятности примем равным Р = 0,9545. в По таблице (прил .2) найдем значения и = 2. Средние ошибки выборки для урожайности и доли участков с урожайностью 25 ц/га и больше были найдены ранее и соответственно составляли: Ц~ = ±0,12 ц/га; МР = ± 0,07.

Предельная ошибка средней урожайности ячменя:

Итак, разница между выборочной средней урожайностью и генеральной средней будет не больше 0,24 ц/га. Пределы средней урожайности в генеральной совокупности: х = х ±есть~ = 25,1 + 0,24, то есть от 24,86 до 25,34 ц/га.

Предельная ошибка доли участков с урожайностью 25 ц/га и более:

Следовательно, предельная ошибка в определении доли участков с урожайностью 25 ц/га и больше не превысит 14%, то есть удельный вес участков с указанной урожайностью в генеральной совокупности находится в пределах: г = а> ± ер = 0,80 ± 0,14, то есть от 66 до 94%.

Ошибки систематические и случайные

Модульная единица 2 Ошибки выборки

Поскольку выборка охватывает, как правило, весьма незначительную часть генеральной совокупности, то следует предполагать, что будут иметь место различия между оценкой и характеристикой генеральной совокупности, которую эта оценка отображает. Эти различия получили название ошибок отображения или ошибок репрезентативности. Ошибки репрезентативности подразделяются на два типа: систематические и случайные.

Систематические ошибки - это постоянное завышение или занижение значения оценки по сравнению с характеристикой генеральной совокупности. Причиной появления систематической ошибки является несоблюдение принципа равновероятности попадания каждой единицы генеральной совокупности в выборку, то есть выборка формируется из преимущественно «худших» (или « лучших») представителей генеральной совокупности. Соблюдение принципа равновозможности попадания каждой единицы в выборку позволяет полностью исключить этот тип ошибок.

Случайные ошибки – это меняющиеся от выборки к выборке по знаку и величине различия между оценкой и оцениваемой характеристикой генеральной совокупности. Причина возникновения случайных ошибок- игра случая при формировании выборки, составляющей лишь часть генеральной совокупности. Этот тип ошибок органически присущ выборочному методу. Исключить их полностью нельзя, задача состоит в том, чтобы предсказать их возможную величину и свести их к минимуму. Порядок связанных в связи с этим действий вытекает из рассмотрения трех видов случайных ошибок: конкретной, средней и предельной.

2.2.1 Конкретная ошибка – это ошибка одной проведенной выборки. Если средняя по этой выборке () является оценкой для генеральной средней (0) и, если предположить, что эта генеральная средняя нам известна, то разница = -0 и будет конкретной ошибкой этой выборки. Если из этой генеральной совокупности выборку повторим многократно, то каждый раз получим новую величину конкретной ошибки: …, и так далее. Относительно этих конкретных ошибок можно сказать следующее: некоторые из них будут совпадать между собой по величине и знаку, то есть имеет место распределение ошибок, часть из них будет равна 0, наблюдается совпадение оценки и параметра генеральной совокупности;

2.2.2 Средняя ошибка – это средняя квадратическая из всех возможных по воле случая конкретных ошибок оценки: , где - величина меняющихся конкретных ошибок; частота (вероятность) встречаемости той или иной конкретной ошибки. Средняя ошибка выборки показывает насколько в среднем можно ошибиться, если на основе оценки делается суждение о параметре генеральной совокупности. Приведенная формула раскрывает содержание средней ошибки, но она не может быть использована для практических расчетов, хотя бы потому, что предполагает знание параметра генеральной совокупности, что само по себе исключает необходимость выборки.



Практические расчеты средней ошибки оценки основываются на той предпосылке, что она (средняя ошибка) по сути является средним квадратическим отклонением всех возможных значений оценки. Эта предпосылка позволяет получить алгоритмы расчета средней ошибки, опирающиеся на данные одной единственной выборки. В частности средняя ошибка выборочной средней может быть установлена на основе следующих рассуждений. Имеется выборка (,… ) состоящая из единиц. По выборке в качестве оценки генеральной средней определена выборочная средняя . Каждое значение(,… ) , стоящее под знаком суммы, следует рассматривать как независимую случайную величину, поскольку при бесконечном повторении выборки первая, вторая и т.д. единицы могут принимать любые значения из присутствующих в генеральной совокупности. Следовательно Поскольку, как известно, дисперсия суммы независимых случайных величин равна сумме дисперсий, то . Отсюда следует, что средняя ошибка для выборочной средней будет равная и находится она в обратной зависимости от численности выборки (через корень квадратный из нее) и в прямой от среднего квадратического отклонения признака в генеральной совокупности. Это логично, поскольку выборочная средняя является состоятельной оценкой для генеральной средней и по мере увеличения численности выборки приближается по своему значению к оцениваемому параметру генеральной совокупности. Прямая зависимость средней ошибки от колеблемости признака обусловлена тем, что чем больше изменчивость признака в генеральной совокупности, тем сложнее на основе выборки построить адекватную модель генеральной совокупности. На практике среднее квадратическое отклонение признака по генеральной совокупности заменяется его оценкой по выборке, и тогда формула для расчета средней ошибки выборочной средней приобретает вид:, при этом учитывая смещенность выборочной дисперсии , выборочное среднее квадратическое отклонение рассчитывается по формуле = . Так как символом n обозначена численность выборки. ,то в знаменателе при расчете среднего квадратического отклонения должна использоваться не численность выборки (n), а так называемое число степеней свободы (n-1). Под числом степеней свободы понимается число единиц в совокупности, которые могут свободно варьировать (изменяться), если по совокупности определена какая-либо характеристика. В нашем случае, поскольку по выборке определена ее средняя, свободно варьировать могут единицы.

В таблице 2.2 приведены формулы для расчета средних ошибок различных выборочных оценок. Как видно из этой таблицы, величина средней ошибки по всем оценкам находится в обратной связи с численностью выборки и в прямой с колеблемостью. Это можно сказать и относительно средней ошибки выборочной доли (частости). Под корнем стоит дисперсия альтернативного признака, установленная по выборке ()

Приведенные в таблице 2.2 формулы относятся к так называемому случайному, повторному отбору единиц в выборку. При других способах отбора, о которых речь пойдет ниже, формулы будут несколько видоизменяться.

Таблица 2.2

Формулы для расчета средних ошибок выборочных оценок

2.2.3 Предельная ошибка выборки Знание оценки и ее средней ошибки в ряде случаев совершенно недостаточно. Например, при использовании гормонов при кормлении животных знать только средний размер неразложившихся их вредных остатков и среднюю ошибку, значит подвергать потребителей продукции серьезной опасности. Здесь настоятельно напрашивается необходимость определения максимальной (предельной ошибки ). При использовании выборочного метода предельная ошибка устанавливается не в виде конкретной величины, а виде равных границ

(интервалов) в ту и другую сторону от значения оценки.

Определение границ предельной ошибки основывается на особенностях распределения конкретных ошибок. Для так называемых больших выборок, численность которых более 30 единиц () , конкретные ошибки распределяются в соответствии с нормальным законом распределения; при малых выборках () конкретные ошибки распределяются в соответствии с законом распределения Госсета

(Стьюдента). Применительно к конкретным ошибкам выборочной средней функция нормального распределения имеет вид: , где - плотность вероятности появления тех или иных значений , при условии, что , где выборочные средние; - генеральная средняя, - средняя ошибка для выборочной средней. Поскольку средняя ошибка () является величиной постоянной, то в соответствии с нормальным законом распределяются конкретные ошибки , выраженные в долях средней ошибки, или так называемых нормированных отклонениях.

Взяв интеграл функции нормального распределения, можно установить вероятность того, что ошибка будет заключена в некотором интервале изменения t и вероятность того, что ошибка выйдет за пределы этого интервала (обратное событие). Например, вероятность того, что ошибка не превысит половину средней ошибки (в ту и другую сторону от генеральной средней) составляет 0,3829, что ошибка будет заключена в пределах одной средней ошибки - 0,6827, 2-х средних ошибок -0,9545 и так далее.

Взаимосвязь между уровнем вероятности и интервалом изменения t (а в конечном счете интервалом изменения ошибки) позволяет подойти к определению интервала (или границ) предельной ошибки, увязав его величину с вероятностью осуществления.. Вероятность осуществления -это вероятность того, что ошибка будет находится в некотором интервале. Вероятность осуществления будет «доверительной» в том случае, если противоположное событие (ошибка будет находится вне интервала) имеет такую вероятность появления, которой можно пренебречь. Поэтому доверительный уровень вероятности устанавливают, как правило, не ниже 0,90 (вероятность противоположного события равна 0,10). Чем больше негативных последствий имеет появление ошибок вне установленного интервала, тем выше должен быть доверительный уровень вероятности (0,95; 0,99 ; 0,999 и так далее).

Выбрав доверительный уровень вероятности по таблице интеграла вероятности нормального распределения, следует найти соответствующее значение t, а затем используя выражение =определить интервал предельной ошибки . Смысл полученной величины в следующем – с принятым доверительным уровнем вероятности предельная ошибка выборочной средней не превысит величину .

Для установления границ предельной ошибки на основе больших выборок для других оценок (дисперсии, среднего квадратического отклонения, доли и так далее) используется выше рассмотренный подход, с учетом того, что для определения средней ошибки для каждой оценки используется свой алгоритм.

Что касается малых выборок () то, как уже говорилось, распределение ошибок оценок соответствует в этом случае распределению t - Стьюдента. Особенность этого распределения состоит в том, что в качестве параметра в нем, наряду с ошибкой, присутствует численность выборки,вернее не численность выборки, а число степеней свободы При увеличении численности выборки распределение t-Стьюдента приближается к нормальному, а при эти распределения практически совпадают. Сопоставляя значения величины t-Стьюдента и t - нормального распределения при одной и той же доверительной вероятности можно сказать, что величина t-Стьюдента всегда больше t - нормального распределения, причем, различия возрастают с уменьшением численности выборки и с повышением доверительного уровня вероятности. Следовательно, при использовании малых выборок имеют место по сравнению с выборками большими, более широкие границы предельной ошибки, причем, эти границы расширяются с уменьшением численности выборки и повышением доверительного уровня вероятности.

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называют ошибкой репрезентативности. Различают систематические и случайные ошибки выборки.

Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.

Систематические ошибки могут быть связаны с нарушением правил отбора или условий реализации выборки.

Так, при обследовании бюджетов домашних хозяйств выборочную совокупность на протяжении более 40 лет строили на основе территориально-отраслевого принципа отбора, что было обусловлено основной целью бюджетного обследования – дать характеристику уровня жизни рабочих, служащих и колхозников. Выборочная совокупность распределялась по регионам и отраслям экономики РСФСР пропорционально общей численности занятых; для создания отраслевой выборки применяли типическую выборку с механическим отбором единиц внутри групп.

Главным критерием отбора была среднемесячная оплата труда. Принцип отбора обеспечивал пропорциональную представительность в выборочной совокупности работающих с различным уровнем заработной платы.

С появлением новых социальных групп (предпринимателей, фермеров, безработных) репрезентативность выборки нарушалась не только в силу различий со структурой генеральной совокупности, но и в связи с систематической ошибкой, которая возникала из-за несовпадения единицы отбора (работник) и единицы наблюдения (домохозяйство). Домохозяйство, имеющее более одного работающего члена семьи, имело и бо́льшую вероятность быть отобранным, чем домохозяйство, в составе которого был один работающий. Семьи, не имеющие занятых в обследуемых отраслях, выпадали из круга отбираемых единиц (домохозяйства пенсионеров, домохозяйства, существующие за счет индивидуальной трудовой деятельности, и т.п.). Оценка точности полученных результатов (границы доверительных интервалов, ошибки выборки) была затруднена, так как при построении выборки не использовались вероятностные модели.

В 1996–1997 гг. был внедрен принципиально новый подход к формированию выборки домашних хозяйств. В качестве основы для ее проведения использовали данные микропереписи населения 1994 г. Генеральную совокупность при отборе составили все типы домашних хозяйств, за исключением коллективных. А выборочную совокупность стали организовывать с учетом представительности состава и типов домашних хозяйств в пределах каждого субъекта РФ.

Измерение ошибок репрезентативности выборочных показателей основано на предположении о случайном характере их распределения при бесконечно большом числе выборок.

Количественную оценку надежности выборочного показателя используют, чтобы составить представление о генеральной характеристике. Это осуществляют либо на основе выборочного показателя с учетом его случайной ошибки, либо на основе выдвижения некоторой гипотезы (о величине средней дисперсии, характере распределения, связи) в отношении свойств генеральной совокупности.

Для проверки гипотезы оценивают согласованность эмпирических данных с гипотетическими.

Величина случайной ошибки репрезентативности зависит:

  • 1) от объема выборки;
  • 2) степени вариации изучаемого признака в генеральной совокупности;
  • 3) принятого способа формирования выборочной совокупности.

Различают среднюю (стандартную) и предельную ошибки выборки.

Средняя ошибка характеризует меру отклонений выборочных показателей от аналогичных показателей генеральной совокупности.

Предельной ошибкой принято считать максимально возможное расхождение выборочной и генеральной характеристик, т.е. максимум ошибки при заданной вероятности ее появления.

По данным выборочной совокупности можно оценить различные показатели (параметры) генеральной совокупности. Наиболее часто используют оценку:

  • – генеральной средней величины изучаемого признака (для многозначного количественного признака);
  • – генеральной доли (для альтернативного признака).

Основным принципом применения выборочного метода является обеспечение равной возможности для всех единиц генеральной совокупности быть отобранными в выборочную совокупность. При таком подходе соблюдается требование случайного, объективного отбора и, следовательно, ошибка выборки определяется прежде всего ее объемом (п ). С увеличением последнего величина средней ошибки уменьшается, характеристики выборочной совокупности приближаются к характеристикам генеральной совокупности.

При одинаковой численности выборочных совокупностей и прочих равных условиях ошибка выборки будет меньше в гой из них, которая отобрана из генеральной совокупности с меньшей вариацией изучаемого признака. Уменьшение вариации признака означает снижение величины дисперсии (– для количественного признака или – для альтернативного признака).

Зависимость величины ошибки выборки от способов формирования выборочной совокупности определяется по формулам средней ошибки выборки (табл. 5.2).

Дополним показатели табл. 5.2 следующими пояснениями.

Выборочная дисперсия несколько меньше генеральной, в математической статистике доказано, что

Таблица 5.2

Формулы расчета средней ошибки выборки мри различных способах отбора

Вид выборки

повторный для

бесповторный для

Собственно

случайная

(простая)

Серийная

(с равновеликими

Типическая (пропорционально объему групп)

Если выборочная совокупность имеет большой объем (т.е. п достаточно велико), то соотношение приближается к единице и выборочная дисперсия практически совпадает с генеральной.

Выборку считают безусловно большой при п > 100 и безусловно малой при п < 30. При оценке результатов малой выборки указанное соотношение выборочной и генеральной дисперсии следует принимать во внимание.

Они могут быть рассчитаны по следующим формулам:

где – средняя i -й серии; – общая средняя по всей выборочной совокупности;

где – доля единиц определенной категории в i -й серии; – доля единиц этой категории во всей выборочной совокупности; r – число отобранных серий.

4. Для определения средней ошибки типической выборки в случае отбора единиц пропорционально численности каждой группы в качестве показателя вариации выступает средняя из внутригрупповых дисперсий (– для количественного признака, для альтернативного признака). По правилу сложения дисперсий величина средней из внутригрупповых дисперсий меньше, чем величина общей дисперсии. Значение средней возможной ошибки типической выборки меньше, чем ошибка простой собственно-случайной выборки.

Часто используют комбинированный отбор: индивидуальный отбор единиц сочетают с групповым, типический отбор – с отбором сериями. При любом способе отбора с определенной вероятностью можно утверждать, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превысит некоторую величину, которую называют предельной ошибкой выборки.

Соотношение между пределом ошибки выборки (∆), гарантируемым с некоторой вероятностью F(t), и средней ошибкой выборки имеет вид: или , где t – коэффициент доверия, определяемый в зависимости от уровня вероятности F(t).

Значения функции F(t) и t определяются на основе специально составленных математических таблиц. Приведем некоторые из них, применяемые наиболее часто:

т

Таким образом, предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, величина которой зависит от значения коэффициента доверия t. Так, при t = 1 вероятность F(t ) отклонения выборочных характеристик от генеральных на величину однократной средней ошибки равна 0,683. Следовательно, в среднем из каждой 1000 выборок 683 дадут обобщающие показатели (среднюю, долю), которые будут отличаться от генеральных не более чем на величину однократной средней ошибки. При t = 2 вероятность F(t) равна 0,954, это означает, что из каждой 1000 выборок 954 дадут обобщающие показатели, которые будут отличаться от генеральных не более чем на двукратную среднюю ошибку выборки, и т.д.

Наряду с абсолютной величиной предельной ошибки выборки рассчитывают и относительную ошибку, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

На практике принято задавать величину ∆, как правило, в пределах 10% предполагаемого среднего уровня признака.

Расчет средней и предельной ошибок выборки позволяет определить пределы, в которых будут находиться характеристики генеральной совокупности:

Пределы, в которых с данной степенью вероятности будет заключена неизвестная величина изучаемого показателя в генеральной совокупности, называют доверительным интервалом, а вероятность F(t) доверительной вероятностью. Чем выше значение ∆, тем больше величина доверительного интервала и, следовательно, ниже точность оценки.

Рассмотрим следующий пример. Для определения среднего размера вклада в банке методом повторной случайной выборки было отобрано 200 валютных счетов вкладчиков. В результате установили, что средний размер вклада – 60 тыс. руб., дисперсия составила 32. При этом 40 счетов оказались до востребования. Необходимо с вероятностью 0,954 определить пределы, в которых находятся средний размер вклада на валютных счетах в банке и доля счетов до востребования.

Рассчитаем среднюю ошибку выборочной средней по формуле для повторного отбора

Предельная ошибка выборочной средней с вероятностью 0,954 составит

Следовательно, средний размер вклада на валютных счетах в банке находится в пределах тыс. руб.:

С вероятностью 0,954 можно утверждать, что средний размер вклада на валютных счетах в банке составляет от 59 200 до 60 800 руб.

Определим долю вкладов до востребования в выборочной совокупности:

Средняя ошибка выборочной доли

Предельная ошибка доли с вероятностью 0,954 составит

Таким образом, доля счетов до востребования в генеральной совокупности находится в пределах w :

С вероятностью 0,954 можно утверждать, что доля счетов до востребования в общем числе валютных счетов в банке составляет от 14,4 до 25,6%.

При конкретных исследованиях важно установить оптимальное соотношение между мерой надежности полученных результатов и величиной допустимой ошибки выборки. В связи с этим при организации выборочного наблюдения возникает вопрос, связанный с определением объема выборки, необходимого для получения требуемой точности результатов с заданной вероятностью. Расчет необходимого объема выборки проводится на основе формул предельной ошибки выборки в соответствии с видом и способом отбора (табл. 5.3).

Таблица 5.3

Формулы расчета численности выборки при собственно-случайном способе отбора

Продолжим пример, в котором представлены результаты выборочного обследования лицевых счетов вкладчиков банка.

Требуется установить, сколько необходимо обследовать счетов, чтобы с вероятностью 0,977 ошибка при определении среднего размера вклада не превысила 1,5 тыс. руб. Выразим из формулы предельной ошибки выборки для повторного отбора показатель численности выборки:

При определении необходимого объема выборки по приведенным формулам возникает трудность в нахождении значений σ2 и да, так как эти величины можно получить только после проведения выборочного обследования. В связи с этим вместо фактических значений данных показателей подставляют приближенные, которые могли быть определены на основе каких-либо пробных выборочных наблюдений или из аналитических предыдущих обследований.

В тех случаях, когда статистик знает среднее значение изучаемых признаков (например, из инструкций, законодательных актов и т.п.) или пределы, в которых этот признак варьируется, можно применить следующий расчет по приближенным формулам:

а произведение w(1 – w) заменить значением 0,25 (w = 0,5).

Чтобы получить более точный результат, принимают максимально возможное значение этих показателей. Если распределение признака в генеральной совокупности подчиняется нормальному закону, то размах вариации примерно равен 6σ (крайние значения отстоят в ту и другую сторону от средней на расстоянии 3σ). Отсюда , но если распределение заведомо асимметрично, то .

При любом виде выборки ее объем начинают рассчитывать по формуле повторного отбора

Если в результате расчета доля отбора (n ) превысит 5%, то проводят расчет по формуле бесповторного отбора.

Для типической выборки необходимо общий объем выборочной совокупности разделить между выделенными типами единиц. Расчет числа наблюдений из каждой группы зависит от названных ранее организационных форм типической выборки.

При типическом отборе единиц непропорционально численности групп общее число отбираемых единиц делят на число групп, полученная величина дает численность отбора из каждой типической группы:

где k – число выделенных типических групп.

При отборе единиц пропорционально численности типических групп число наблюдений по каждой группе определяют по формуле

где – объем выборки из i -й группы; – объем i -й группы.

При отборе с учетом вариации признака процент выборки из каждой группы должен быть пропорционален среднему квадратическому отклонению в этой группе (). Расчет численности () производят по формулам

При серийном отборе необходимую численность отбираемых серий определяют так же, как и при собственно-случайном отборе:

Повторный отбор

Бесповторный отбор

При этом дисперсии и ошибки выборки могут быть рассчитаны для средней величины или доли признака.

При использовании выборочного наблюдения характеристика его результатов возможна на основе сопоставления полученных пределов ошибок выборочных показателей с величиной допустимой погрешности.

В связи с этим возникает задача определения вероятности того, что ошибка выборки не превысит допустимой погрешности. Решение этой задачи сводится к расчету на основе формулы предельной ошибки выборки величины t.

Продолжая рассмотрение примера выборочного обследования лицевых счетов клиентов банка, найдем вероятность, с которой можно утверждать, что ошибка при определении среднего размера вклада не превысит 785 руб.:

соответствующая доверительная вероятность составит 0,95.

В настоящее время практика выборочного наблюдения включает статистические наблюдения, осуществляемые:

  • – органами Росстата;
  • – другими министерствами и ведомствами (например, мониторинг предприятий в системе Банка России).

Известное обобщение опыта по организации выборочных обследований малых предприятий, населения и домашних хозяйств представлено в Методологических положениях по статистике. В них дано более широкое понятие выборочного наблюдения, чем это рассмотрено выше (табл. 5.4).

В статистической практике используют все четыре типа выборок, представленных в табл. 5.4. Однако обычно отдают предпочтение описанным выше вероятностным (случайным) выборкам, являющимся наиболее объективными, так как по ним можно оценить точность получаемых результатов по данным самой выборки.

Таблица 5.4

Типы выборок

В выборках квазислучайного типа предполагается наличие вероятностного отбора на том основании, что специалист, рассматривающий выборку, считает его допустимым. Примером использования квазислучайной выборки в статистической практике является "Выборочное обследование малых предприятий по изучению социальных процессов в малом предпринимательстве", проведенное в 1996 г. в некоторых регионах России. Единицы наблюдения (малые предприятия) отбирались экспертно с учетом представительства отраслей экономики из уже сформированной выборки обследования финансово-хозяйственной деятельности малых предприятий (форма "Сведения об основных показателях финансово-хозяйственной деятельности малого предприятия"). При обобщении выборочных данных предполагалось, что выборочная совокупность сформирована методом простого случайного отбора.

Прямое использование суждения эксперта является наиболее общим методом намеренного включения единиц в выборку. Примером такого способа отбора является монографический метод, предполагающий получение информации только от одной единицы наблюдения, являющейся типичной, по мнению организатора обследования – эксперта.

Выборки, сформированные на основе направленного отбора, реализуются с помощью объективной процедуры, но без использования вероятностного механизма. Широко известен метод основного массива, при котором в выборку включают наиболее крупные (существенные) единицы наблюдения, обеспечивающие основной вклад в показатель, например суммарное значение признака, представляющего основную цель обследования.

В статистической практике часто применяют комбинированный метод статистического наблюдения. Сочетание сплошного и выборочного методов наблюдения имеет два аспекта:

  • чередование во времени;
  • одновременное их использование (часть совокупности наблюдают на сплошной основе, а часть – выборочно).

Чередование периодических выборочных со сравнительно редкими сплошными обследованиями или переписями необходимо для уточнения состава исследуемой совокупности. В дальнейшем эту информацию используют как статистическую основу выборочного наблюдения. Примерами могут служить переписи населения и выборочные обследования домашних хозяйств в промежутках времени между их проведениями.

В данном случае требуется решать следующие задачи:

  • – определение состава признаков сплошного наблюдения, обеспечивающих организацию выборки;
  • – обоснование периодов чередования, т.е. когда сплошные данные теряют актуальность и нужны затраты на их обновление.

Одновременное использование в рамках одного обследования сплошного и выборочного наблюдений обусловлено неоднородностью встречающихся в статистической практике совокупностей. В особенности это справедливо для обследований экономической деятельности совокупности предприятий, для которой характерны скошенные распределения изучаемых признаков, когда некоторое число единиц имеет характеристики, сильно отличающиеся от основной массы значений. В этом случае такие единицы наблюдают на сплошной основе, а другую часть совокупности – выборочно.

При данной организации наблюдений основными задачами выступают:

  • – установление их оптимальной пропорции;
  • – разработка способов оценки точности результатов.

Типичным примером, иллюстрирующим данный аспект применения комбинированного метода, является общий принцип проведения обследований совокупности предприятий, в соответствии с которым обследования совокупности крупных и средних предприятий проводят преимущественно сплошным методом, а малых – выборочным.

Дальнейшее развитие методологии выборочного наблюдения осуществляют как в сочетании с организацией сплошного наблюдения, так и через организацию специальных обследований, проведение которых диктуется необходимостью получения дополнительной информации для решения конкретных задач. Так, организация обследований в области условий и уровня жизни населения предусмотрена в двух аспектах:

  • – обязательные компоненты;
  • – дополнительные модули в рамках комплексной системы показателей.

Обязательными компонентами могут стать ежегодные исследования доходов, расходов и потребления (аналог обследования бюджетов домашних хозяйств), включающие также базовые показатели условий жизни населения. Ежегодно по специальному плану обязательные компоненты должны дополняться единовременными обследованиями (модулями) условий жизни населения, направленными на углубленное изучение какой-либо выбранной социальной темы из их общего числа (например, активы домашних хозяйств, здоровье, питание, образование, условия труда, жилищные условия, досуг, социальная мобильность, безопасность и др.) с различной периодичностью, определяемой потребностью в показателях и ресурсными возможностями.