Высокотемпературная сверхпроводимость - промышленная реальность. Применения высокотемпературных сверхпроводников в энергетике

Высокотемпературная сверхпроводимость

Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.

Государственная научно-техническая программа предусматривает широкий комплекс работ, включающих в себя фундаментальные и прикладные исследования, направленные на решение проблемы технической реализации высокотемпературной сверхпроводимости.

В соответствии со структурой программы главными направлениями работ являются:

1. ИССЛЕДОВАНИЕ ПРИРОДЫ И СВОЙСТВ ВТСП.

Основными задачами этого направления являются фундаментальные исследования по выяснению механизма высокотемпературной сверхпроводимости, разработка теории ВТСП, прогнозирование поиска новых соединений с высокими критическими параметрами и определение их физико-химических свойств.

2. ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА СВОЙСТВА ВТСП МАТЕРИАЛОВ.

По данному направлению будут проводиться исследования влияния высоких давлений, механических и тепловых воздействий, ионизирующих излучений, электромагнитных полей и других внешних факторов на свойства ВТСП материалов и выработка рекомендаций по вопросам создания ВТСП материалов с оптимальными технологическими и техническими характеристиками.

3. НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ВТСП МАТЕРИАЛОВ.

Главными задачами исследований по данному направлению являются разработка теоретических основ получения высокотемпературных сверхпроводящих материалов с заданными свойствами, синтез новых материалов с необходимыми для технической реализации параметрами, разработка технологий получения высокотемпературных сверхпроводников заданных технических форм. Ключевыми вопросами этого направления и всей программы в целом является создание технологичных и стабильных тонкопленочных структур, приемлемых для реализации в слаботочной технике, и особенно сильноточных токонесущих элементов в виде проводов, лент, кабелей и др. для использования в сильноточной технике.

4. СЛАБОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

В рамках программы предполагается разработка и освоение серийного производства трех классов электронных сверхпроводниковых приборов:

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении (неразрушающий контроль материалов, конструкций), военной технике (обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Одной из перспективных областей применения ВТСП будет космическая техника - бортовые и "забортовые" измерительная аппаратура и вычислительные системы (возможна работа без специальных устройств охлаждения, так как "теневая" температура у спутников - 90 К). При этом при переходе на ВТСП удельная масса охлаждающей системы снизится в 50 раз, объем уменьшится в 1000 раз, надежность возрастет в 10 раз.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

5. СИЛЬНОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Применение ВТСП в сильноточной технике будет иметь наиболее радикальные экономические последствия для народного хозяйства.

Это направление включает в себя создание электроэнергетических устройств и систем, вырабатывающих, передающих и преобразующих электроэнергию в промышленных масштабах. Основой этого направления является способность сверхпроводников нести без потерь высокие плотности (10х9-10х10 А/м2) транспортного тока в сильных магнитных полях при температурах ниже критической. Это свойство сверхпроводников позволяет создавать электроэнергетическое оборудование различного назначения с улучшенными массогабаритными характеристиками, более высоким КПД и значительно (в десятки раз) сниженными эксплуатационными расходами.

Так, при передаче по кабельным линиям электропередач мощностей свыше 20 млн. кВт на расстояние свыше 2000 км ожидается снижение электрических потерь на 10%, что соответствует сбережению от 7 до 10 млн. т.у.т. в год. При этом приведенные затраты на сверхпроводящую кабельную ЛЭП могут быть не больше, чем на высоковольтную ЛЭП традиционного исполнения. Синхронные сверхпроводящие генераторы для ТЭС, АЭС и ГЭС будут иметь на 0,5-0,8% более высокий КПД и на 30%

меньшие весогабаритные показатели. Предполагается создание сверхпроводниковых индуктивных накопителей энергии, которые по сравнению с гидроаккумулирующими станциями, единственным типом накопителей энергии, нашедшим промышленное применение в энергетике, будут обладать существенно более высоким КПД (до 97-98% вместо 70%). В рамках программы предполагается создание широкой гаммы электротехнических и электроэнергетических устройств, при этом масштабы суммарной экономии электроэнергии за счет массового применения ВТСП будут столь велики, что позволят радикальным образом пересмотреть сложившуюся экстенсивную стратегию развития топливно-энергетического комплекса.

Согласно структуре программы, предусматривается разработка и выпуск сверхпроводящих устройств и систем, создание которых экономически и технически целесообразно на основе традиционных гелиевых сверхпроводников. Это сверхпроводящие сепараторы, ЯМР-томографы, магнитные системы для удержания плазмы в ТОКОМАКах и ускорителях заряженных частиц и др. Создание таких систем кроме реального экономического эффекта от их внедрения заложит необходимую техническую и технологическую основу для быстрого перехода на ВТСП по мере создания технологичных ВТСП проводников.

6. КРИОСТАТИРОВАНИЕ.

Поскольку несмотря на значительное повышение критических температур новых сверхпроводящих материалов их абсолютное значение остается на уровне криогенных температур, одним из важнейших направлений исследований и разработок является создание высокоэкономичных, надежных автоматизированных ожижительных и рефрижераторных азотных установок, систем криостатирования для конкретных сверхпроводящих изделий, а также поиск принципиально новых методов получения холода в диапазоне рабочих температур ВТСП.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1. Введение

2. Явление сверхпроводимости

3. Высокотемпературные сверхпроводники

3.1 Определение

3.2 Структура

3.2.1 Основные семейства ВТСП

3.3 Температурная зависимость сопротивления R(T)

3.4 Свойства и эффекты которыми обладают высокотемпературные сверхпроводники

3.4.1 Эффект Мейснера

3.4.2 Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова

3.4.3 Эффект Джозефсона

3.4.4 Влияние кристаллической решетки

3.4.5 Изотопический эффект

4. Методы получения высокотемпературных сверхпроводников

5. Перспективы высокотемпературных сверхпроводников

6. Заключение

7. Список литературы

Введение

Карл Мюллер и Георг Беднорц в 1986 г открыли первое соединение из класса высокотемпературных сверхпроводящих купратов La2-xBaxCuO4, за это открытие в 1987 г. им была присуждена Нобелевская премия. Это открытие дало сильный рывок исследованиям в данной области и уже через семь лет рывок в 1000 с 300 К до 1300 К (1650 К под давлением). На данный момент рекордным значеним критической температуры Tc =135 K (под давлением Tc=165 K, -109 °C) обладает вещество HgBa2Ca2Cu3O8+x, открытое в 1993 г. С. Н. Путилиным и Е. В. Антиповым. Но ученым так и не удалось открыть новые сверхпроводники с температурой сверхпроводимости выше 1650 К.

Явление сверхпроводимости

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто нидерландским физиком Х.Камерлинг-Оннесом в 1911 году, а удовлетворительное объяснение, отмеченное именами американских физиков Л.Купера, Дж.Бардина,Дж.Шриффера, советского математика и физика Н.Н.Боголюбова, получило практическое использование этого явления в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений - настолько трудна была проблема.

Сверхпроводимость обнаружена более чем у 20 металлов и большого количества соединений и сплавов (Тк 23К), а также у керамик (Тк > 77,4К - высокотемпературные сверхпроводники.)Синтезом всё новых и новых материалов уже удалось поднять сверхпроводимость до 160 К(почти -100 °C.В составе всех этих высокотемпературных сверхпроводников ВТСП обязательно присутствуют ионы меди СuO(роль их в возникновении сверхпроводимости пока не ясна), которые служат как бы микроскопическими магнитами. Сверхпроводимость материалов с Тк 23К объясняется наличием в веществе пар электронов, обладающих энергией Ферми, с противоположными спинами и импульсами (пары Купера), которые образуются благодаря взаимодействию электронов с колебаниями ионов решетки - фононами. Все пары находятся, с точки зрения квантовой механики, в одном состоянии (они не подчиняются статистике Ферми т.к. имеют целочисленный спин) и согласованы между собой по всем физическим параметрам, то есть образуют единый сверхпроводящий конденсат.

Сверхпроводимость керамик, возможно, объясняется взаимодействием электронов с каким-либо другими квазичастицами. У сверхпроводимости три врага: высокие температуры, мощные магнитные поля и большие токи. Если их величины превысят предельные значения, называемые критическими, сверхпроводимость исчезает, сверхпроводник становится обычным проводником. По взаимодействию с магнитным полем сверхпроводники делятся на две основные группы: сверхпроводники I и II рода.

Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера). Напряженность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк. У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии.Нк1 - нижнее критическое поле, Нк2 - верхнее критическое поле. Н < Нк1 - индукция в сверхпроводнике второго рода равна нулю, Н > Нк2 - сверхпроводимость нарушается. Через идеальные сверхпроводники второго рода можно пропускать ток силой: Ik (критический ток). Объясняется это тем, что поле, создаваемая током индукция, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

Высокотемпературные сверхпроводники

3.1 Определение

Высокотемпературные сверхпроводники — семейство материалов (сверхпроводящих керамик) с общей структурной особенностью, которую можно охарактеризовать относительно хорошо выделенными медно-кислородными плоскостями. Их также называют сверхпроводниками на основе купратов. Температура сверхпроводящего перехода, которая может быть достигнута в некоторых составах в этом семействе, является самой высокой среди всех известных сверхпроводников. Нормальное (и сверхпроводящее) состояния обнаруживают много общих особенностей для купратов с различными составами; многие из этих свойств не могут быть объяснены в рамках теории БКШ. Хотя единой и последовательной теории сверхпроводимости в купратах в настоящее время не существует; однако, данная проблема привела к появлению многих важных экспериментальных и теоретических результатов, и интерес к этой области сосредоточен не только на достижении сверхпроводимости при комнатной температуре. За экспериментальное открытие первого высокотемпературного сверхпроводника в 1987 была немедленно присуждена Нобелевская премия.

Первооткрывателями ВТСП были выработаны четыре критерия для определения существования сверхпроводимости: (1) наличие нулевого удельного сопротивления, (2) выраженный эффект Мейсснера, (3) высокая воспроизводимость результатов и (4) высокая устойчивость эффекта.

3.2 Структура

Все основные ВТСП-системы имеют слоистую структуру. На рис. 1 приведена для примера структура элементарной ячейки ВТСП-соединения YBa2Cu3O7. Обращает на себя внимание очень большая величина параметра решетки в направлении оси «с». Для YBa2Cu3O7 с=11.7Å.

Наблюдается значительная анизотропия многих свойств таких соединений. Как правило соединения с большими n - металлы (хотя и плохие) в плоскости «ab», и обнаруживают полупроводниковое поведение в третьем направлении, вдоль оси «с». Но при этом они являются сверхпроводниками.

3.3 Температурная зависимость сопротивления R(T)

Во многих купратных ВТСП R(T) зависит практически линейно от температуры. Пример для YBa2Cu3O7 приведен на рис. 4. Это сопротивление изменено в плоскости “ab”. Удивительно, что в чистых образцах экстраполяция этой зависимости в область низких температур ведет себя так, как будто остаточное сопротивление совершенно отсутствует. В ряде других ВТСП, с меньшими Тc, где удается подавить сверхпроводимость магнитным полем, зависимость R(T) линейна вплоть до очень низких температур. Такая линейная зависимость наблюдается в очень широкой области температур: от ~10-3 до 600К (при более высоких температурах уже начинает меняться концентрация кислорода). Это совершенно необычное поведение для металла. Для объяснения привлекались раздичные модели (нефононный механизм рассеяния носителей, изменение концентрации электронов с Т и др.). Однако эта проблема еще не разрешена до конца.

На рис. 5 показана температурная зависимость сопротивления для ВТСП-соединения YBa2Cu3O7 вдоль оси «с». Ход полупроводниковый, а наблюдаемая величина сопротивления приблизительно в 1000 раз больше.

3.4 Свойства и эффекты которыми обладают высокотемпературные сверхпроводники

3.4.1 Эффект Мейснера.

Эффекта Мейнера заключается в том что сверхпроводник, охлажденный ниже критической температуры в постоянном магнитном поле, самопроизвольно выталкивает это поле из своего объема, переходя в состояние, при котором магнитная индукция В=0, т.е. состояние идеального диамагнетизма.

3.4.2 Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова.

Сверхпроводимость, как оказалось, проявляется в тех случаях, когда электроны в металле группируются в пары, взаимодействующие через кристаллическую решетку. Эта пара тесно связана между собой, так что разорвать ее и разобщить электроны через мощные связи невозможно это позволяют электронам двигаться без всякого сопротивления сквозь решетку кристалла.

3.4.3 Эффект Джозефсона.

Если туннельный контакт двух сверхпроводников включить во внешнюю цепь с источником тока и устанавливается такой, чтобы удовлетворить соотношению I= I0sin, где  - разность фаз, по обе стороны заряда в некоторой его точке, а I0 - максимальный туннельный ток, пропорциональный площади туннельного перехода и прозрачность барьера. Но обратим внимание на то, что в это выражение для тока никак не входит напряжение на контакте. При нулевой разности через туннельный контакт, образованный двумя сверхпроводниками разделенных слоем диэлектрика, может проникать постоянный ток. Это явление называют стационарным явлением Джозефсона.

3.4.4 Влияние кристаллической решетки

Сверхпроводящий переход почти не влияет на решетку. Но вот кристаллическая решетка на сверхпроводимость влияет, более того определяет сверхпроводимость, причем исключение из этого закона не обнаружено. Существует много видов кристаллической решетки. Часто одно и то же вещество может иметь разную кристаллическую решетку, то есть одни и те же атомы могут быть расположены друг относительно друга по разному. Переход от одного типа решетки к другому происходит при изменении либо температуры, либо давление, либо ещё какого-нибудь параметра. Такой переход, как и возникновение сверхпроводимости и плавление является фазовым.

Влияние кристаллической решетки на сверхпроводимость продемонстрировал открытый в 1950г. изотопичесский - эффект.

При замене одного изотопа на другой вид кристаллической решетки не меняется, «электронная жидкость» вообще не затрагивается меняется только сила атомов. Оказалось, что от массы атомов зависит Тс многих сверхпроводников. Чем меньше сила, тем больше Тс. Более того вид этой зависимости позволили утверждать, что Тс пропорциональна частоте колебаний атомов решетки, а это сыграло существенную роль в понимании механизма сверхпроводимости.

3.4.5 Изотопический эффект.

В 1905г.был открыт ток называемый изотопическим эффектом. Изучая сверхпроводимость у различных изотопов ртути и олова, физики обратили внимание на то обстоятельство что критическая температура Тк перехода в сверхпроводящее состояния и масса изотопа М связана соотношением Тk М1\2 = const.

Изотопы - это атомы одного и того же элемента, в ядрах которых содержаться одинаковое число протонов, но разное число нейтронов. Они имеют одинаковый заряд, но разную массу. Масса изотопа является характеристической решетки кристалла и может влиять на её свойства. От массы зависит, например, частота колебаний в решетки. Она, так же как и критическая температура, обратно пропорциональна массе: М-1\2. Значит, если массу М устремить к бесконечности, то температура перехода Тк будет стремиться к нулю, то есть чем тяжелее атомы, тем медленнее они колеблются и тем труднее (при меньших температурах) получается идеальная проводимость, а чем выше энергия нулевых колебаний, тем легче.

Таким образом, изотопический эффект указывая на то что колебания решетки участвуют в создании сверхпроводимости! Сверхпроводимость, которая является свойством электронной системы металла, оказывается связанной с состоянием кристаллической решетки. Следовательно, возникновение эффекта сверхпроводимости, обусловлено взаимодействием электронов с решеткой кристалла.

4 Методы получения высокотемпературных сверхпроводников

Методы получения образцов высокотемпературных сверхпроводников определяются в первую очередь теми задачами, которые ставят перед собой исследователи и фирмы использующие ВТСП материалы в коммерческих целях. Так для изготовления массивных изделий из ВТСП материалов требуется разработка методов получения больших количеств ВТСП материала в поликристаллическом состоянии. Для целей СВЧ электроники требуется разработка методов получения эпитаксиальных пленок с высокими критическими параметрами. Для фундаментальных исследований природы ВТСП безусловно необходимы методы получения совершенных (а в случае системы YBa2Cu3O7-δ и бездвойниковых) монокристаллов ВТСП.

Большое значение для получения ВТСП-образцов с высокими критическими свойствами имеет изготовление качественных прекурсорных порошков. Среди методов получения таких порошков соединения YBa2Cu3O7-δ (далее YBCO) назовем следующие: стандартная реакция твердых фаз и химическое осаждение, плазменный спрэй, высушивание в жидком азоте, высушивание спрэя и окислительный синтез, метод золь-геля, ацетатный метод и газофазная реакция. Стандартная процедура получения сверхпроводящих керамических порошков включает несколько этапов. Сначала исходные материалы смешиваются в определенном молярном отношении с помощью соответствующего процесса «перемешивания-размола» или жидкофазного смешивания. При этом однородность смеси ограничивается размерами частиц, и наилучшие результаты достигаются для частиц с размерами меньшими 1 мкм. В ультратонких порошках (с размерами частиц гораздо меньшими 1 мкм) часто наблюдается сегрегация частиц, ухудшающая их перемешивание. Данная проблема может быть минимизирована при использовании жидкофазного смешивания, обеспечивающего контроль композиции и химическую однородность. Кроме того, эта технология ликвидирует загрязняющее влияние среды при размоле и перемешивании порошков. В многокомпонентных средах, таких как ВТСП, процесс смешивания играет ключевую роль в получении высокой фазовой чистоты. Высококачественная смесь обеспечивает ускорение реакций. Таким порошкам при кальцинации требуются меньшие температуры и время для достижения желательной фазовой чистоты. Следующим шагом является высушивание или удаление растворителя, что необходимо для сохранения химической однородности, достигнутой в процессе смешивания. Для многокомпонентных (ВТСП) систем удаление растворителя при медленном испарении может привести к очень неоднородному осадку, вследствие различной растворимости компонент. Для минимизации этой проблемы используются различные технологии, включающие, в частности, процессы сублимации, фильтрации и др. После высушивания порошки подвергаются кальцинации в контролируемой атмосфере для достижения конечной структурной и фазовой композиции. Режим реакций для YBCO-системы определяется технологическими параметрами, такими как: температура и время кальцинации, скорость нагревания, атмосфера (парциальное давление кислорода) и исходные фазы. Порошки также могут быть непосредственно синтезированы из раствора с помощью технологии пиролиза или получены электроосаждением с помощью пропускания тока через раствор. При этом даже небольшие флуктуации композиции могут привести к формированию нормальных (несверхпроводящих) фаз, таких как: Y2BaCuO5, CuO и BaCuO2. Использование углеродсодержащих прекурсоров также осложняет формирование фазы YBa2Cu3O7-δ и приводит к понижению сверхпроводящих свойств. В свою очередь, порошок для получения сверхпроводящих пленок состава Bi(Pb)-Sr-Ca-Cu-O (далее BSCCO) может быть изготовлен с помощью твердофазной реакции, соосаждения, пиролиза аэрозоль-спрэя, технологии обжига, высушивания замораживанием, метода жидкого смешивания, микроэмульсии или метода золь-геля. Стандартными подходами для получения сверхпроводящих прекурсорных порошков, используемых при изготовлении BSCCO-лент и проводов, являются, так называемые методы синтеза «одного порошка» и «двух порошков». В первом случае прекурсор получается в результате кальцинации смеси оксидов и карбонатов. Во втором - проводится обжиг смеси двух купратных соединений. Соблюдение этих условий позволяет получить поликристаллические образцы достаточно больших размеров (например, для магнитов бесконтактного электромагнитного подвеса транспортных систем).

Что касается синтеза ВТСП-пленок (как YBCO, так и других систем), то в общем случае применяются одно- (in situ) и двухстадийные (ex situ) методы. В первом случае, кристаллизация пленок происходит непосредственно в процессе их напыления и при соответствующих условиях осуществляется их эпитаксиальный рост. Во втором случае, пленки сначала напыляются при небольшой температуре, недостаточной для формирования необходимой кристаллической структуры, а затем они обжигаются в атмосфере O2 при температуре, обеспечивающей кристаллизацию необходимой фазы (например, для пленок YBCO это температура 900-9500С). Большинство одноэтапных методов реализуется при температурах значительно более низких, чем те, которые требуются для получения пленок в две стадии. Высокотемпературный обжиг формирует крупные кристаллиты и шероховатую поверхность, определяющие низкую плотность критического тока. Поэтому, изначально, in situ методы обладают преимуществом. По способам получения и доставки на подложку компонентов ВТСП различают физические методы напыления, включающие всевозможные испарения и напыления, а также химические методы осаждения.

Методы вакуумного соиспарения (methods of vacuum co-evaporation) подразумевают одновременное или последовательное (слой за слоем) соосаждение компонентов ВТСП, испаряемых из различных источников с помощью, например, электронно-лучевых пушек или резистивных испарителей. Получаемые по такой технологии пленки уступают по своим сверхпроводящим свойствам образцам, изготавливаемым методами лазерного или магнетронного напыления. Методы вакуумного соиспарения используются при двухстадийном синтезе, когда не имеют принципиального значения структура пленок, напыляемых на первом этапе, и содержание в них кислорода.

Лазерное испарение (laser evaporation) высокоэффективно при напылении ВТСП-пленок. Этот метод прост в реализации, имеет высокую скорость напыления и позволяет работать с небольшими мишенями. Его главным достоинством является одинаково хорошее испарение всех химических элементов, содержащихся в мишени. При испарении мишеней при определенных условиях можно получить пленки такого же состава, как и сами мишени. Важными технологическими параметрами являются: расстояние от мишени до подложки, а также давление кислорода. Их правильный выбор позволяет, с одной стороны, не допустить перегрев растущей пленки энергией плазмы, испаренной лазером, и соответствующее образование слишком крупных зерен, а с другой - установить энергетический режим, необходимый для роста пленки при возможно более низких температурах подложки. Высокая энергия напыляемых компонентов и присутствие в лазерном факеле атомарного и ионизированного кислорода позволяют изготовлять ВТСП-пленки в одну стадию. При этом получаются монокристаллические или высокотекстурированные пленки с с-осной ориентацией (ось с перпендикулярна плоскости подложки). Основными недостатками лазерного испарения являются: (а) малые размеры области, в которой можно напылить стехиометрические по составу пленки; (б) неоднородность их толщины и (в) шероховатость поверхности. Вследствие сильной анизотропии ВТСП хорошие транспортные и экранирующие свойства имеют только пленки с с-осной ориентацией. В то же время, пленки с а-осной ориентацией (ось а располагается в плоскости подложки ab), имеющие большую длину когерентности в направлении, перпендикулярном поверхности, и отличающиеся высокой гладкостью, удобны для изготовления качественных ВТСП джозефсоновских переходов, состоящих из последовательно напыленных слоев «ВТСП - нормальный металл» (или «диэлектрик - ВТСП»). Пленки со смешанной ориентацией нежелательны во всех отношениях.

Магнетронное распыление (magnetron scattering) позволяет в один этап получить пленки YBCO, не уступающие по своим сверхпроводящим свойствам образцам, выращенным методом лазерного испарения. При этом они имеют более однородную толщину и более высокую гладкость поверхности. Как и при лазерном испарении, образование плазмы при магнетронном распылении порождает высокоэнергетичные атомы и ионы, позволяющие одностадийное получение ВТСП-пленок при невысоких температурах. Здесь также важно расстояние «мишень - подложка». При близком расположении мишени от подложки и недостаточном давлении среды, подложка подвергается интенсивной бомбардировке отрицательными ионами кислорода, разрушающими структуру растущей пленки и ее стехиометрию. Для решения этой проблемы используется ряд подходов, включающих защиту подложки от бомбардировки высокэнергетичными ионами и ее расположение на оптимальном расстоянии от газоразрядной плазмы для обеспечения высокой скорости напыления и успешного роста пленки при максимально низких температурах. Полученные in situ тонкие YBCO-пленки, которые были изготовлены методом внеосевого магнетронного распыления и имели оптимальные электрические свойства, уже продемонстрировали температуру сверхпроводящего перехода и плотность критического тока, соответственно: Tc = 92 К и Jc = 7.106 А/см2. Разновидности импульсного лазерного напыления, используемые для получения пленок и проводов YBCO с высокой текстурой, изготавливаемых на различных моно- и поликристаллических подложках с подслоями и без них, позволяют достичь плотности критического тока Jс = 2,4.106 А/см2 при температуре 77 К и нулевом магнитном поле.

Сущностью метода химического осаждения из паровой фазы металлоорганических соединений (chemical precipitation from vaporous phase of metal-organic combinations) является транспортировка металлических компонентов в виде паров летучих металлоорганических соединений в реактор, смешение с газообразным окислителем, разложение паров и конденсация оксидной пленки на подложку. Данный метод позволяет получить тонкие ВТСП-пленки, сравнимые по своим характеристикам с образцами, изготовленными физическими методами напыления. К сравнительным преимуществам данного метода перед последними относятся: (а) возможность нанесения однородных пленок на детали не планарной конфигурации и большой площади; (б) более высокие скорости осаждения при сохранении высокого качества; (в) гибкость процесса на этапе отладки технологического режима, благодаря плавному изменению состава паровой фазы. Последнй процесс часто используют для производства ВТСП пленок с высокими критическими параметрами (сравнимыми с монокриcталлами) в случаях сложной конфигурации пленок на изделиях микроэлектронной коммерческой продукции.

5. Перспективы высокотемпературных сверхпроводников.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении (неразрушающий контроль материалов, конструкций), военной технике (обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Одной из перспективных областей применения ВТСП будет космическая техника - бортовые и "забортовые" измерительная аппаратура и вычислительные системы (возможна работа без специальных устройств охлаждения, так как "теневая" температура у спутников - 90 К). При этом при переходе на ВТСП удельная масса охлаждающей системы снизится в 50 раз, объем уменьшится в 1000 раз, надежность возрастет в 10 раз.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

Заключение

Ученые исселедовавшие Высокотемпературные сверхпроводники добились очень многого, они сделали гиганский скачек по температурной шкале сверхпроводимасти, они реализовали многие устройства на основе сверхпроводимости среди которых такие как поезд на магнитной подушке и линии электропередач без сопротивления но все же на данный момент не удалось подойти к комнатной температуре что делает сверхпроводимасть дорогой из за нужды поддержания низких температур, так же высокотемпературные сверхпроводники неполучили массового применения из за хрупкой оксидной структуры, которая способствующет быстрому возникновению и развитию структурных дефектов, приводящих к резкому ухудшению сверхпроводящих свойств. Все это привело уменьшению вливания средств в данную отрасль а сдежовательно и охлаждению внимания со стороны учених.

Список литературы

1. Боголюбов Н. Н., Толмачев В. В., Ширков Д. В. Новый метод в теории сверхпроводимости. М.: Изд-во АН СССР, 1958.

2. В. Л. Гинзбург, Е. А. Андрюшин. Сверхпроводимость. М.: Альфа-М, 2006.

3. J.G.Bednorz, K.A.Muller , Rev. Mod. Phys.,- B, 64,- P.189-(1988).

4. Физические свойства высоко-температурных сверхпроводников. Под. ред. Д.М.Гинзберга. М:. «Мир», 1990, 544 С.

5. C. Renner et al. Phys. Rev. Lett. 80, 3606 (1998); S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

6. Tallon J. L., Loram J.W. Physica C. 349 53 (2001); cond-mat/0005063.

7. Г.П.Швейкин, В.А.Губанов, А.А.Фотиев, Г.В.Базуев, А.А.Евдокимов. Электронная структура и физико-химические свойства высоко- температурных сверхпроводников. М:. «Наука», 1990, 240 С.

Статья: Высокотемпературная

Сверхпроводимость (ВТСП).

Теоретическое обоснование и технология создания

Материалов, обладающих свойством

Высокотемпературной сверхпроводимости

(отсутствие электрического сопротивления

До комнатных температур и выше).

Академик МААНОИ, доктор РАЕН.

Article: High-temperature superconductivity (HTSC).

The doctor of the Russian Academy of Natural Sciences).

Technology of creation of materials property high-temperature

(to room temperatures and above) superconductivity (absence of electric resistance).

1. Предпосылки решения проблемы ВТСП.

Постановка задачи (решение проблемы ВТСП) обусловлена не только уникальными злекроэнергетическими перспективами при ее решении, но и необходимостью опережающей реализации ВТСП, как обязательного условия осуществления КИБЕРНЕТИЧЕСКОЙ РЕПЛИЦИРУЮЩЕЙ СУБСТАНЦИИ НА МНОЖЕСТВЕ УНИФИЦИРОВАННЫХ МОДУЛЕЙ НАНОРАЗМЕРОВ (КС).

Теоретическое обоснование и необходимость создания КС даны в книге автора данной статьи: «Колонизация космоса: проблемы и перспективы». В момент написания книги были сформулированы основные подходы и теоретические принципы реализации ВТСП. Автор умышленно не стал их публиковать, предоставив возможность иным исследователям решить проблему. Это нашло отражение в упомянутой книге (1-е 1997г., Новокузнецк и 2-е 2003г., Тюмень - издания). Мотивацией такого поступка явилось желание автора не брать на себя решение ВСЕХ генеральных научно-технических проблем человечества, и предоставить возможность для творчества другим исследователям и коллективам.

Окончательно «отшлифованы» технологии получения ВТСП к моменту написания автором статьи: «НАЧАЛА ОБЩЕЙ ТЕОРИИ УНИВЕРСУМА» (НОТУ), (2010 – 2011 гг.). При ее публикации была анонсирована и публикация данной (по ВТСП) статьи (см. материалы на персональном сайте автора).

Поскольку, к настоящему времени иные исследователи не решили проблему ВТСП автор данной статьи публикует свое видение ее решения. Далее «давать фору» иным исследователям - не имеет смысла.

Вместе с тем, при публикации данной статьи, автор предпринимает целый комплекс противоплагиатных мер, как-то: опережающая рассылка по множеству инстанций (редакции профильных журналов и пр. СМИ, РОСПАТЕНТ, РАН, администрация Президента России, ФПИ и др.) бумажной почтой, с объявленной датой приоритета по почтовому отправлению; последующая рассылка по профильным адресатам электронной почтой; логические «закладки» в содержании статьи.

Только в последнюю очередь размещается текст статьи на персональном сайте автора, в сопровождении объявлений о ее публикации на иных сайтах.

Предприняты и иные, не объявленные (но… - эффективные), противоплагиатные меры. Хищным и бездарным любителям поживиться чужой интеллектуальной собственностью - здесь делать нечего…

Следует добавить, что пути решение проблемы ВТСП связаны и проистекают из постулатов НОТУ. Здесь отражена логика обобщающей теории универсума хоть и не всегда абсолютно (исчерпывающе). Кроме того, показанные пути решения проблемы ВТСП являются неотъемлемой составной частью всего КОМПЛЕКСА идей и разработок автора.

2. Теоретические основы.

Эффект сверхпроводимости был открыт Камерлинг-Оннесом еще в 1911 г. во время опытов по изучению электрического сопротивления у ряда металлов при сверхнизких температурах. Количество сверхпроводящих материалов исчисляется, к настоящему времени, десятками. Самые высокие температуры перехода в сверхпроводящее состояние (Тс) у классических материалов (металлов и сплавов) достигает 23,2 К (у интерметаллида ниобия и германия). Рекордные значения критических температур получены после открытия Г.Беднорца и К.Мюллера нового класса сверхпроводников – купрумосодержащих керамик. Здесь критическая температура достигает

135 К. Сверхпроводник подразделяются: на С/П I-рода и на С/П I I-рода.

В первые магнитное поле практически не проникает (выталкивается – т.е. проявляет свойство идеального диамагнетика). Во вторые, магнитное поле проникает. Общепринятым теоретическим обоснованием существования сверхпроводимости считается теория БКШ (Бардина-Купера-Шриффера). Объяснение эффекта С/П, сводится к возникновению в материале бозонных пар электронов и проявлении фононного механизма. Вместе с тем, открытие сверхпроводящих керамик показало недостаточность БКШ для понимания всех характеристик эффекта сверхпроводимости.

Важнейшей и актуальнейшей научно-технической задачей является теоретическое обоснование и поиск (либо создание) С/П материалов с критической температурой (ТС) порядка 300 градусов К и выше (т.н. высокотемпературной сверхпроводимости - ВТСП). Достижение поставленной цели приведет к революции в электроэнергетике, В частности, упраздняется необходимость криогенного оборудования для получения С/П. Далее, появляется возможность построения сверхдальних линий электропередач функционирующих практически без энергопотерь. Кроме того, появится возможность создания энергооборудования и приборов с невозможными ныне характеристиками.

Такова постановка задачи (проблемы). Постараемся ее решить.

В основе решения данной проблемы должны быть положены не только квантовые представления и теория БКШ, но и представления, выходящие за рамки ставших классическими теорий. Тем более, что С/П в керамиках (как ранее упомянуто) показывает свойства выходящие за рамки описания посредством БКШ. Это общепризнанный факт. Поэтому следует воспользоваться более широким спектром физических определений и закономерностей при решении проблемы ВТСП. Для удобства восприятия построим изложение темы в виде отдельных тезисов и постулатов.

3.Тезисы и постулаты ВТСП.

3.1. В основу представлений о поведении электротока в проводнике под влиянием внешнего потенциала должны учитываться эффекты протекания тока в плазме. Известно, что в плазме ток (совокупный поток электронов) движется вдоль магнитных силовых линий, при этом электроны «вращаются» вокруг упомянутых силовых линий с характерными ЛАРМОРОВСКИМИ орбитами, имеющими ДЕБАЕВСКИЙ радиус (см. физику плазмы). Показанное перемещение характеризуется сверхпроводящими свойствами на локальных участках. Таковое проистекает из фундаментальных свойств электронов (в частности - спина и иных, описанных в НОТУ). В то же время, подобному рассмотрению почему-то (неоправданно) отказано (?!) при моделировании движения тока в твердых материалах. Между тем, этот подход весьма продуктивен при описании локальных перемещений электронов по кристаллическим (и аморфным) структурам на наноразмерном уровне. Именно такое рассмотрение дает ключ: к пониманию энергетических потерь на тепло в проводнике, а также - возникновению сверхпроводимости.

3.2. Спиралеобразное перемещение квантово связанных пар электронов (по БКШ) дает сверхпроводимость I-рода. Спиральное перемещение не связанных квантово пар электронов дает сверхпроводимость II-рода в плазме.

Подобная модель справедлива и для перемещения электронов в твердых сверхпроводящих материалах.

3.3. Высокотемпературная сверхпроводимость свойственна большинству проводников на атомных (наноразмерных) расстояниях, но исчезает при увеличении масштабов, ввиду рассогласования квантово-волновых характеристик электронов и кристаллической структуры проводника.

Отсюда постулируется важнейший для практики вывод. Замкнутые кольцевые наноразмерные структуры проводников, построенные по схеме бензольных колец, являются высокотемпературными сверхпроводниками. Данный практический вывод следует подтвердить экспериментально. Исследователи, подтвердившие его, достойны получения Нобелевской премии. Практическая польза, от этого постулата, заключается, прежде всего, в том, что открывается возможность создания наноаккумуляторов электроэнергии для нужд микроэлектроники. Самое перспективное применение данного эффекта – оснащение таковым аккумулятором модуля КИБЕРНЕТИЧЕСКОЙ РЕПЛИЦИРУЮЩЕЙ СУБСТАНЦИИ НА МНОЖЕСТВЕ УНИФИЦИРОВАННЫХ МОДУЛЕЙ НАНОРАЗМЕРОВ (КС).

3.4. Свойства диполей в ферромагнетиках позволяют отнести их (свойства) к частному проявлению ВТСП на наноуровне. Этот постулат должен надежно подтверждаться экспериментально. Подтверждение засуживает высокого поощрения.

3.5. Самые большие перспективы в физике и технологиях связываются с линейной ВТСП.

В свете выдвинутой модели квантово-согласованного перемещения электронов в ВТСП, самой благоприятной линейной структурой (на наноуровне) твердого материала для возникновения ВТСП является спирально-винтовая. Это важнейший постулат! Существуют ли естественные (природные) структуры отвечающие этому требованию? Да! И они давно известны. Это …МОЛЕКУЛЫ РНК-ДНК! Как огромное количество исследователей умудрилось пропустить столь знаменательный факт?! Можно ответственно утверждать, что именно свойствами ВТСП РНК-ДНК объясняются многие труднообъяснимые, по другому, свойства биологической репликации. Для доказательства верности последнего тезиса достаточно подсчитать химическую энергетику процесса репликации. При отсутствии эффекта ВТСП процесс репликации был бы столь энергозатратным, что попросту становился невозможным. Постановку экспериментов, подтверждающих этот постулат, предоставляется исследователям, специализирующимся на данном направлении. Вместе с тем, значимость указанных подтверждающих исследований столь велика – что исследователи заслуживают еще одной Нобелевской премии. Автор данной статьи уверен в предстоящем экспериментальном подтверждении данного постулата. Уверенность проистекает из осмысления многочисленных примеров экстремального знергопроявления биологических объектов, необъяснимого без проявления свойств ВТСП.

3.6. Постулирование модели спирально-винтовой структуры ВТСП биологических материалов, ставит в повестку дня получение таковых небиологических материалов - с оптимальными ВТСП - свойствами. Каковы должны быть физико-химические характеристики таковых материалов?

Прежде всего, такие материалы должны быть линейно-ориентированными, со спирально-винтовой структурой, наноразмерного сечения. Эти материалы - «линии» схожи с пучком вытянутых (не свернутых в клубок, как водится в белках) молекул РНК-ДНК. Можно привести аналогию многожильного кабеля. Свойство ВТСП, в таком материале, будет проявляться только по одной (продольной) координатной оси. Между отдельными ВТСП – линиями должна находиться электроизолирующая среда. Тем самым проявляется еще одна аналогия с многожильным кабелем. Электропроводность (в ВТСП – режиме) каждой линии будет весьма низка. Высокая электропроводность «кабеля» определяется суммой линий наноразмерного сечения, представленных в кабеле.

Требуется эффективная сумма технологий получения материалов с ВТСП – свойствами.

4. Технологии изготовления ВТСП – материалов.

Представляется существенной проблемой - изготовления сверхдлинных линий (на стыках линий возникнет обычное электросопротивление, и эффект ВТСП исчезает) и упорядоченный монтаж в кабеле. Проблема решается объединением обеих технологий в единую технологию. Параллельно происходит изготовление множества линий и монтаж их в один кабель, как это происходит в планарных технологиях.

Вместе с тем, уже применяемые в производстве микроэлектроники, планарные технологии (и эпитаксия, в частности) в известном виде -

не годятся. Здесь явно необходим трехмерный монтаж, причем, 3-е измерение, отвечающее за протяженность линии, – особо важно.

Требуется организующая среда по третьему (продольному) измерению. Ничего лучше электромагнитного поля, в данном применении, не представляется. Полоидальное магнитное поле оптимальной анизотропии представляется тем «каркасом», вдоль которого формируются ВТСП- линии. Кроме упомянутого силового «каркаса» требуются еще и материальные носители основы нитей. Здесь никак не обойтись без ферромагнитных материалов. Предположительно годится для этих целей атомарное железо (Fe). Сам наноспиральный проводник, нанизанный на железную (одноатомного сечения) основу должен изготавливаться из углерода (С).

Для придания согласованного вращательного формирования углеродной нити вокруг железной основы требуется пропускать вдоль формируемой нити оптимальной величины ток. Допускается возможным - подача «стройматериала» кластерами - Fe C.

Еще одним необходимым условием является формирование линий в электроизолирующей среде, которая, после завершения технологического процесса, стабилизируется «застывает» и остается частью кабеля на весь период эксплуатации. Изолирующий слой каждой линии должен быть весьма тонким (наноразмеров), стабильным в процессе изготовления и в процессе эксплуатации. Его стабильность и устойчивость к различным физическим характеристикам окружающей среды (прежде всего – температурным) во многом определяют функциональные возможности ВТСП-кабеля в целом.

Необходимо использовать химические условия технологического обеспечения, лучшим образом защищающие конечный продукт – ВТСП-кабель. Основная концепция и идеи получения ВТСП показаны. Все детализирующие исследования и разработки касаются подбора конструктивных материалов (их перечня, пропорций и концентрации), а также параметрических характеристик технологии (температуры, напряженности магнитного поля, величины электрического тока и т.д.). Hекоторые параметры определяются эмпирически.

Заключение.

Показанная часть технологии изготовления ВТСП-материалов далеко не исчерпывающая. Учитывая современную практику массового плагиата и полного попрания императива интеллектуальной собственности, автор вынужден другую часть технологии опубликовать c задержкой на персональном сайте автора http://futurocosmos.uCoz.ru/

Перед исследователями открываются два пути.

Первый: не ожидая недостающей части самостоятельно приступить к работам на показанном ПУТИ получения ВТСП. Опубликованного материала более чем достаточно - для развертывания работ (и получения позитивного результата) на данном направлении.

Второй: ждать исчерпывающей авторской публикации, но публикация последует только тогда – когда реально развернутся работы по всему комплексу разработок автора, представленных на сайте и опубликованных в книге: «Колонизация космоса: проблемы и перспективы».

Полезно для общества покончить с практикой «выхватывания» наиболее простых к реализации технических решений, сулящих получение скорой меркантильной выгоды.

Первым приоритетом является реализация ВТСП (и прочих авторских изобретений и разработок) в России и получение на этой основе технологического преимущества в конкуренции с иными странами и нациями.

Честь имею!

Академик

и изобретений (МААНОИ),

доктор РАЕН Золотухин Владимир Антонович.

Сегодня увидел и обсуждение под ним. Учитывая, что сегодня же я был на производстве сверхпроводящих кабелей, хотел вставить пару замечаний, но read-only… В итоге решил написать небольшую статью про высокотемпературные сверхпроводники.

Для начала, на всякий случай, хочется отметить, что сам термин «высокотемпературный сверхпроводник» означает сверхпроводники с критической температурой выше 77 К (-196 °C) - температуры кипения дешёвого жидкого азота. Не редко к ним относят и сверхпроводники с критической температурой около 35 К, т.к. такую температуру имел первый сверхпроводящий купрат La 2-x Ba x CuO 4 (вещество переменного состава, отсюда и x). Т.е. «высокие» температуры тут пока ещё очень низкие.

Основное распространение получило два высокотемпературных сверхпроводника - YBa 2 Cu 3 O 7-x (YBCO, Y123) и Bi 2 Sr 2 Ca 2 Cu 3 O 10+x (BSCCO, Bi-2223). Также применяются схожие с YBCO материалы, в которых иттрий заменён иным редкоземельным элементом, например гадолинием, их общее обозначение - ReBCO.
Выпускаемые YBCO, да и другие ReBCO, имеют критическую температуру на уровне 90-95 К. Выпускаемые BSCCO достигают критической температуры в 108 К.

Кроме высокой критической температуры, ReBCO и BSCCO отличаются большими значениями критического магнитного поля (в жидком гелии - более 100 Тл) и критического тока. Впрочем, с последним всё не так просто…

В сверхпроводнике электроны движутся не независимо, а парами (Куперовскими парами). Если мы хотим, чтобы ток перешёл из одного сверхпроводника в другой, то зазор между ними должен быть меньше характерного размера этой пары. Для металлов и сплавов этот размер составляет десятки, а то и сотни нанометров. А вот в YBCO и BSCCO он составляет лишь пару нанометров и доли нанометра, в зависимости от направления движения. Даже зазоры между отельными зёрнами поликристалла оказываются уже вполне ощутимым препятствием, не говоря уж о зазорах между отдельными кусками сверхпроводника. В результате сверхпроводящая керамика, если не предпринимать специальных ухищрений, способна пропускать через себя лишь относительно небольшой ток.

Проще всего проблему оказалось решить в BSCCO: его зёрна естественным образом имеют ровные края, а самое простое механическое сжатие позволяет эти зёрна упорядочить для получения высокого значения критического тока. Это позволило достаточно быстро и просто создать первое поколение высокотемпературных сверхпроводящих кабелей, а точнее - высокотемпературных сверхпроводящих лент. Они представляют собой серебряную матрицу, в которой есть множество тонких трубочек, заполненных BSCCO. Эту матрицу расплющивают, при этом зёрна сверхпроводника приобретают нужный порядок. Получаем тонкую гибкую ленту, содержащую множество отдельных плоских сверхпроводящих жил.

Увы, BSCCO материал далеко не идеальный: у него критический ток очень быстро падает с ростом внешнего магнитного поля. Критическое магнитное поле у него достаточно велико, но задолго до достижения этого предела, он теряет способность пропускать сколько-нибудь большие токи. Это очень сильно ограничивало применение высокотемпературных сверхпроводящих лент, заменить старые добрые сплавы ниобий-титан и ниобий-олово, работающие в жидком гелии, они не могли.

Совсем другое дело - ReBCO. Но создать в нём правильную ориентацию зёрен весьма тяжело. Лишь относительно недавно научились делать сверхпроводящие ленты на основе этого материала. Такие ленты, называемые вторым поколением, получают напылением сверхпроводящего материала на подложку, имеющую специальную текстуру, задающую направление роста кристаллов. Текстура, как не сложно догадаться, имеет нанометровые размеры, так что это настоящие нанотехнологии. В московской компании «СуперОкс», в которой я собственно и был, для получения такой структуры на металлическую подложку напыляют пять промежуточных слоёв, один из которых одновременно с напылением распыляется потоком быстрых ионов, падающих под определённым углом. В результате кристаллы этого слоя растут только в одном направлении, в котором ионам сложнее всего их распылять. Другие производители, а их в мире четыре, могут использовать иные технологии. Кстати, отечественные ленты используют гадолиний вместо иттрия, он оказался технологичнее.

Сверхпроводящие ленты второго поколения шириной 12 мм и толщиной 0,1 мм в жидком азоте при отсутствии внешнего магнитного поля пропускают ток до 500 А. Во внешнем магнитном поле 1 Тл критический ток всё ещё доходит до 100 А, а при 5 Тл - до 5 А. Если охладить ленту до температуры жидкого водорода (ниобиевые сплавы при такой температуре ещё даже не переходят в сверхпроводящее состояние), то та же лента сможет пропустить 500 А в поле 8 Тл, а «какие-нибудь» 200-300 А - в поле на уровне пары десятков тесла (лягушка летает). Про жидкий гелий и говорить не приходится: есть проекты магнитов на этих лентах с полем на уровне 100 Тл! Правда тут уже в полный рост возникает проблема механической прочности: магнитное поле всегда стремится разорвать электромагнит, но когда это поле достигает десятков тесла, его стремления легко реализуются…

Впрочем, все эти прекрасные технологии не решают проблемы соединения двух кусков сверхпроводника: хоть кристаллы и ориентированны в одном направлении, о полировке внешней поверхности до субнанометрового размера шероховатостей речи не идёт. У корейцев есть технология спекания отдельных лент друг с другом, но она ещё, мягко говоря, далека от совершенства. Обычно ленты соединяют друг с другом обычной пайкой обычным оловянно-свинцовым припоем или иным классическим способом. Разумеется, при этом на контакте появляется конечное сопротивление, так что создать из таких лент сверхпроводящий магнит, не требующий питания на протяжении многих лет, да и просто ЛЭП с в точности нулевыми потерями не получается. Но сопротивление контакта составляет малые доли микроома, так что даже при 500 А токе там выделяются лишь доли милливатта.

Разумеется, в научно-популярной статье читатель ищет по-больше зрелищности… Вот несколько видео моих экспериментов с высокотемпературной сверхпроводящей лентой второго поколения:

Последнее видео записал под впечатлением от комментария на YouTube, в котором автор доказывал, что сверхпроводимости не существует, а левитация магнита - совершенно самостоятельный эффект, предлагал всем желающим убедиться в его правоте, измерив непосредственно сопротивление. Как видим, сверхпроводимость всё-таки существует.