План-конспект занятия на тему: Что мы знаем о космосе и о космических ракетах

Что такое космическая ракета? Как она устроена? Как летит? Почему в космосе путешествуют именно на ракетах?

Казалось бы, все это давно и хорошо нам известно. Но давайте на всякий случай проверим себя. Повторим азбуку.

Наша планета Земля покрыта слоем воздуха - атмосферой. У поверхности Земли воздух довольно плотный, густой. Выше - редеет. На высоте в сотни километров он незаметно «сходит на нет», переходит в безвоздушное космическое пространство.

По сравнению с воздухом, в котором мы живем, там пустота. Но, говоря строго научно, все же пустота не полная. Все это пространство пронизано лучами Солнца и звезд, летящими от них осколочками атомов. В нем плавают космические пылинки. Можно встретить метеорит. В окрестностях многих небесных тел ощущаются следы их атмосфер. Поэтому безвоздушное космическое пространство мы не можем называть пустотой. Мы будем называть его просто космосом.

И на Земле, и в космосе действует один и тот же закон всемирного тяготения. По этому закону все предметы притягивают друг друга. Притяжение огромного земного шара очень ощутимо.

Чтобы оторваться от Земли и полететь в космос, нужно прежде всего как-то преодолеть ее притяжение.

Самолет его преодолевает лишь частично. Взлетая, он опирается крыльями на воздух. И не может подняться туда, где воздух сильно разрежен. Тем более в космос, где воздуха нет вообще.

Нельзя залезть по дереву выше самого дерева.

Что же делать? Как «вскарабкаться» в космос? На что опереться там, где ничего нет?

Представим себя великанами огромного роста. Мы стоим на поверхности Земли, и атмосфера нам по пояс. В руках у нас мяч. Выпускаем его из рук - он летит вниз, к Земле. Падает у наших ног.

Теперь бросаем мяч параллельно поверхности Земли. Повинуясь нам, мяч должен лететь над атмосферой, вперед, куда мы его бросили. Но Земля не перестала его тянуть к себе. И, повинуясь ей, он, как и в первый раз, должен лететь вниз. Мяч вынужден повиноваться обоим. И потому летит где-то посередине между двумя направлениями, между «вперед» и «вниз». Путь мяча, его траектория, получается в виде изгибающейся к Земле кривой линии. Мяч идет на снижение, погружается в атмосферу и падает на Землю. Но уже не у наших ног, а где-то поодаль.

Бросим мяч сильнее. Он полетит быстрее. Под действием притяжения Земли он снова начнет заворачивать к ней. Но теперь - более полого.

Бросим мяч еще сильнее. Он полетел так быстро, заворачивать стал так полого, что уже «не успевает» упасть на Землю. Поверхность ее «круглится» под ним, как бы уходит из-под него. Траектория мяча хоть и изгибается в сторону Земли, но недостаточно круто. И получается, что, непрерывно падая к Земле, мяч тем не менее летит вокруг земного шара. Его траектория замкнулась в кольцо, стала орбитой. И мяч теперь будет летать по ней все время. Не переставая падать к Земле. Но и не приближаясь к ней, не ударяясь о нее.

Чтобы так вот вывести мяч на круговую орбиту, нужно бросить его со скоростью 8 километров в секунду! Эту скорость называют круговой, или первой космической.

Любопытно, что скорость эта в полете будет сохраняться сама собой. Полет замедляется, когда что-нибудь мешает лететь. А мячу ничто не мешает. Он летит выше атмосферы, в космосе!

Как можно лететь «по инерции», не останавливаясь? Это трудно понять, потому что мы никогда не жили в космосе. Привыкли к тому, что нас всегда окружает воздух. Мы знаем - комочек ваты, как сильно ни бросай его, не полетит далеко, увязнет в воздухе, остановится, упадет на Землю. В космосе же все предметы летят, не встречая сопротивления. Со скоростью 8 километров в секунду могут рядом лететь и развернутые листы газеты, и чугунные гири, крохотные картонные игрушечные ракеты и самые настоящие стальные космические корабли. Все будут лететь рядом, не отставая и не обгоняя друг друга. Будут одинаково кружиться вокруг Земли.

Но вернемся к мячу. Бросим его еще сильнее. Например, со скоростью 10 километров в секунду. Что с ним станет?


Орбиты ракет при различных начальных скоростях.



При такой скорости траектория еще более распрямится. Мяч начнет удаляться от Земли. Потом снизит скорость, плавно повернет назад к Земле. И, приближаясь к ней, разгонится как раз до той скорости, с какой мы его отправляли в полет, до десяти километров в секунду. С этой скоростью он промчится мимо нас и унесется дальше. Все повторится сначала. Снова подъем с замедлением, поворот, падение с разгоном. Мяч этот тоже никогда не упадет на Землю. Он тоже вышел на орбиту. Но уже не круговую, а эллиптическую.

Мяч, брошенный со скоростью 11.1 километра в секунду, «дотянет» до самой Луны и только там повернет обратно. А при скорости 11.2 километра в секунду уже вообще не вернется к Земле, уйдет бродить по Солнечной системе. Скорость 11,2 километра в секунду называется второй космической.

Итак, удержаться в космосе можно только с помощью большой скорости.

Как же разогнаться хотя бы до первой космической скорости, до восьми километров в секунду?

Скорость автомобиля на хорошем шоссе не превышает 40 метров в секунду. Скорость самолета ТУ-104 не более 250 метров в секунду. А нам нужно двигаться со скоростью 8000 метров в секунду! Лететь в тридцать с лишним раз быстрее самолета! Мчаться с такой скоростью в воздухе вообще невозможно. Воздух «не пускает». Он становится на нашем пути непробиваемой стеной.

Вот почему мы тогда, представляя себя великанами, «высунулись по пояс» из атмосферы в космос. Воздух нам мешал.

Но чудес не бывает. Великанов нет. А «высунуться» все же надо. Как быть? Построить башню высотой в сотни километров - смешно и думать. Надо найти способ медленно, «не спеша», пройти сквозь густой воздух в космос. И только там, где уже ничто не мешает, «по хорошей дороге» разогнаться до нужной скорости.

Одним словом, чтобы удержаться в космосе, надо разогнаться. А чтобы разогнаться, надо сперва добраться до космоса и удержаться там.

Чтобы удержаться - разогнаться! Чтобы разогнаться - удержаться!

Выход из этого заколдованного круга подсказал людям в свое время наш замечательный русский ученый Константин Эдуардович Циолковский. Для выхода в космос и разгона в нем годится только ракета. О ней и пойдет дальше наш разговор.

Ракета не имеет ни крыльев, ни пропеллеров. Она может в полете ни на что не опираться. Для разгона ей не нужно ни от чего отталкиваться. Она может двигаться и в воздухе, и в космосе. В воздухе медленнее, в космосе быстрее. Она движется реактивным способом. Что это значит? Приведем старый, но очень хороший пример.

Берег тихого озера. В двух метрах от берега стоит лодка. Носом направлена в озеро. На корме лодки стоит паренек, хочет прыгнуть на берег. Присел, поднатужился, со всей силы прыгнул… и благополучно «приземлился» на берегу. А лодка… тронулась с места и тихо поплыла от берега.

Что получилось? Когда паренек прыгал, ноги его сработали как пружина, которая была сжата, а потом распрямилась. Эта «пружина» одним концом толкнула человека на берег. Другим - лодку в озеро. Лодка и человек оттолкнулись друг ох друга. Лодка поплыла, как говорят, благодаря отдаче, или реакции. Это и есть реактивный способ движения.


Схема многоступенчатой ракеты.

Отдача нам хорошо известна. Вспомните, например, как стреляет пушка. При выстреле снаряд вылетает из ствола вперед, а сама пушка при этом резко откатывается назад. Почему? Да все потому же. Порох внутри ствола пушки, сгорая, превращается в раскаленные газы. Стремясь вырваться, они давят изнутри на все стенки, готовы разорвать ствол пушки на куски. Они выталкивают артиллерийский снаряд и, расширяясь, работают тоже как пружина - «бросают в разные стороны» пушку и снаряд. Только снаряд полегче, и его удается отбросить на много километров. Пушка же потяжелее, и ее удается лишь немного откатить назад.

Возьмем теперь обычную маленькую пороховую ракету, которая уже сотни лет используется для фейерверков. Это картонная трубка, закрытая с одной стороны. Внутри - порох. Если его поджечь, он горит, превращаясь в раскаленные газы. Вырываясь через открытый конец трубки, они себя отбрасывают назад, а ракету вперед. И толкают ее так сильно, что она летит к небу.

Пороховые ракеты существуют давно. Но для больших, космических ракет порох, оказывается, не всегда удобен. Прежде всего - порох вовсе не самое сильное взрывчатое вещество. Спирт или керосин, например, если их мелко разбрызгать и смешать с капельками жидкого кислорода, взрываются посильнее пороха. Такие жидкости имеют общее название - горючее. А жидкий кислород или заменяющие его жидкости, содержащие много кислорода, называются окислителем. Горючее и окислитель вместе образуют ракетное топливо.

Современный жидкостный ракетный двигатель, или, сокращенно, ЖРД - это очень прочная, стальная, напоминающая бутылку камера сгорания. Ее горловина с раструбом - сопло. В камеру по трубкам в большом количестве непрерывно впрыскиваются горючее и окислитель. Происходит бурное горение. Бушует пламя. Раскаленные газы с невероятной силой и громким ревом вырываются через сопло наружу. Вырываясь, отталкивают камеру в обратную сторону. Камера закреплена на ракете, и получается, что газы толкают ракету. Струя газов направлена назад, и поэтому ракета летит вперед.

Современная большая ракета выглядит так. Внизу, в ее хвосте, стоят двигатели, один или несколько. Выше почти все свободное место занимают баки с топливом. Наверху, в головке ракеты, помещают то, ради чего она летит. То, что она должна «доставить по адресу». В космических ракетах это может быть какой-нибудь спутник, который надо вывести на орбиту, или космический корабль с космонавтами.

Саму ракету называют ракетой-носителем. А спутник или корабль - полезной нагрузкой.

Итак, мы как будто нашли выход из заколдованного круга. Имеем ракету с жидкостным ракетным двигателем. Двигаясь реактивным способом, она может «тихим ходом» пройти сквозь плотную атмосферу, выйти в космос и там разогнаться до нужной скорости.

Первая же трудность, с которой столкнулись ракетостроители, - это нехватка топлива. Ракетные двигатели нарочно делают очень «прожорливыми», чтобы они быстрее сжигали топливо, изготовляли и выбрасывали назад как можно больше газов. Но… ракета не успеет набрать и половины необходимой скорости, как топливо в баках кончится. И это несмотря на то, что мы заполнили топливом буквально всю внутренность ракеты. Сделать ракету крупнее, чтобы поместилось больше топлива? Не поможет. На разгон крупной, более тяжелой ракеты уйдет больше топлива, и никакой выгоды не получится.

Из этого неприятного положения выход тоже подсказал Циолковский. Он посоветовал делать ракеты многоступенчатыми.

Берем несколько ракет разного размера. Их называют ступенями - первая, вторая, третья. Ставим одну на другую. Внизу самую большую. На нее - поменьше. Сверху - самую маленькую, с полезной нагрузкой в головке. Это трехступенчатая ракета. Но может быть ступеней и больше.

При взлете разгон начинает первая, самая мощная ступень. Израсходовав свое топливо, она отделяется и падает обратно на Землю. Ракета избавляется от лишней тяжести. Начинает работать вторая ступень, продолжая разгон. На ней двигатели стоят поменьше, более легкие, и топливо они расходуют экономнее. Отработав, вторая ступень тоже отделяется, передавая эстафету третьей. Той уже совсем легко. Она и заканчивает разгон.

Все космические ракеты - многоступенчатые.

Следующий вопрос - как лучше всего ракете выходить в космос? Может быть, подобно самолету, разбежаться по бетонной дорожке, оторваться от Земли и, постепенно набирая высоту, подняться в безвоздушное пространство?

Это невыгодно. Слишком долго придется лететь в воздухе. Путь через плотные слои атмосферы надо по возможности сократить. Поэтому, как вы, наверное, заметили, все космические ракеты, куда бы они потом ни летели, взлетают всегда прямо вверх. И только в разреженном воздухе постепенно заворачивают в нужную сторону. Такой взлет в смысле расхода топлива самый экономный.

Многоступенчатые ракеты выводят полезный груз на орбиту. Но какой ценой? Посудите сами. Чтобы вывести на околоземную орбиту одну тонну, нужно сжечь несколько десятков тонн топлива! Для груза в 10 тонн - сотни тонн. Американская ракета «Сатурн-5», выводящая на околоземную орбиту 130 тонн, сама весит 3000 тонн!

И едва ли не самое огорчительное - мы еще не умеем возвращать на Землю ракеты-носители. Сделав свое дело, разогнав полезную нагрузку, они отделяются и… падают. Разбиваются о Землю или тонут в океане. Второй раз мы их не можем использовать.

Представьте себе, что пассажирский самолет строился бы только для одного рейса. Невероятно! А вот ракеты, которые стоят дороже самолетов, строят только для одного полета. Поэтому вывод на орбиту каждого спутника или космического корабля обходится очень дорого.

Но мы отвлеклись.

Далеко не всегда наша задача - только вывести полезную нагрузку на круговую околоземную орбиту. Гораздо чаще ставится более сложное задание. Например, доставить полезную нагрузку на Луну. А иногда и вернуть ее оттуда обратно. В этом случае после выхода на круговую орбиту ракета должна совершить еще много разных «маневров». И все они требуют расхода топлива.

Вот и поговорим теперь об этих маневрах.

Самолет летит носом вперед, потому что ему нужно острым носом разрезать воздух. А ракете, после того как она вышла в безвоздушное пространство, разрезать нечего. На ее пути ничего нет. И потому ракета в космосе после выключения двигателя может лететь в любом положении - и кормой вперед, и кувыркаясь. Если во время такого полета снова ненадолго включить двигатель, он толкнет ракету. И тут все зависит от того, куда нацелен нос ракеты. Если вперед - двигатель подтолкнет ракету, и она полетит быстрее. Если назад - двигатель попридержит, притормозит ее, и она полетит медленнее. Если ракета глядела носом вбок - двигатель толкнет ее в сторону, и она, не меняя скорости, изменит направление своего полета.

Один и тот же двигатель может делать с ракетой все что угодно. Разгонять, тормозить, поворачивать. Все зависит от того, как мы перед включением двигателя нацелим, или ориентируем ракету.

На ракете, где-нибудь в хвосте, стоят маленькие реактивные двигатели ориентации. Они направлены соплами в разные стороны. Включая и выключая их, можно подталкивать хвост ракеты вверх-вниз, вправо-влево и таким образом поворачивать ракету. Ориентировать ее носом в любую сторону.

Представим себе, что нам нужно слетать на Луну и вернуться. Какие для этого потребуются маневры?

Прежде всего мы выходим на круговую орбиту около Земли. Здесь можно передохнуть, выключив двигатель. Не расходуя ни грамма драгоценного топлива, ракета будет «молча» ходить вокруг Земли, пока мы не решим лететь дальше.

Чтобы добраться до Луны, надо с круговой орбиты перейти на сильно вытянутую эллиптическую.

Ориентируем ракету носом вперед и включаем двигатель. Он начинает нас разгонять. Как только скорость немного превысит 11 километров в секунду, выключаем двигатель. Ракета пошла по новой орбите.

Надо сказать, что «попасть в цель» в космосе очень трудно. Если бы Земля и Луна стояли неподвижно, а летать в космосе можно было бы по прямым линиям, дело было бы простое. Нацелился - и лети, держа цель все время «по курсу», как это делают капитаны морских кораблей и летчики. Там и скорость не имеет значения. Раньше или позже прибудешь на место, какая разница. Все равно цель, «порт назначения», никуда не денется.

В космосе все не так. Попасть с Земли в Луну - это примерно то же самое, что, быстро вращаясь на карусели, попасть мячиком в летящую птицу. Посудите сами. Земля, с которой мы взлетаем, вращается. Луна - наш «порт назначения» - тоже не стоит на месте, летит вокруг Земли, пролетая километр за каждую секунду. Кроме того, ракета наша летит не по прямой линии, а по эллиптической орбите, постепенно замедляя свое движение. Ее скорость лишь в начале была одиннадцать с лишним километров в секунду, а потом из-за притяжения Земли стала уменьшаться. И лететь надо долго, несколько суток. И при этом вокруг нет никаких ориентиров. Нет никакой дороги. Нет и не может быть никакой карты, потому что на карту нечего было бы наносить - ничего кругом нет. Одна чернота. Только далеко-далеко звезды. Они и над нами, и под нами, со всех сторон. И мы должны так рассчитать направление своего полета и его скорость, чтобы в конце пути прийти в намеченное место пространства одновременно с Луной. Ошибемся в скорости - опоздаем на «свидание», Луна ждать нас не будет.

Чтобы, несмотря на все эти трудности, дойти до цели, на Земле и на ракете стоят сложнейшие приборы. На Земле работают электронно-вычислительные машины, трудятся сотни наблюдателей, вычислителей, ученых и инженеров.

И, несмотря на все это, мы все же в пути раз-другой проверяем, правильно ли мы летим. Если немного отклонились, проводим, как говорят, коррекцию траектории. Для этого ориентируем ракету носом в нужную сторону, включаем на несколько секунд двигатель. Он чуть толкнет ракету, подправит ее полет. И дальше она уже летит как надо.

К Луне подходить тоже непросто. Во-первых, надо лететь так, как будто мы намерены «промазать» мимо Луны. Во-вторых, лететь «кормой вперед». Как только ракета поравнялась с Луной, включаем ненадолго двигатель. Он притормаживает нас. Под действием притяжения Луны мы заворачиваем в ее сторону и начинаем ходить вокруг нее по круговой орбите. Здесь можно снова немного передохнуть. Затем приступаем к посадке. Снова ориентируем ракету «кормой вперед» и еще раз ненадолго включаем двигатель. Скорость уменьшается, и мы начинаем падать на Луну. Недалеко от поверхности Луны снова включаем двигатель. Он начинает сдерживать наше падение. Надо так рассчитать, чтобы двигатель полностью погасил скорость и остановил нас перед самой посадкой. Тогда мы мягко, без удара опустимся на Луну.

Возвращение с Луны уже идет знакомым порядком. Сперва взлетаем на круговую, окололунную орбиту. Потом увеличиваем скорость и переходим на вытянутую эллиптическую орбиту, по которой идем к Земле. Вот только посадка на Землю происходит не так, как посадка на Луну. Земля окружена атмосферой, и можно для торможения использовать сопротивление воздуха.

Однако отвесно врезаться в атмосферу нельзя. От слишком резкого торможения ракета вспыхнет, сгорит, развалится на куски. Поэтому мы нацеливаем ее так, чтобы она вошла в атмосферу «вкось». В этом случае она погружается в плотные слои атмосферы не так быстро. Скорость наша снижается плавно. На высоте нескольких километров раскрывается парашют - и мы дома. Вот сколько маневров требует полет к Луне.

Для экономии топлива конструкторы и здесь используют многоступенчатость. Например, наши ракеты, которые мягко садились на Луну и потом привозили оттуда образцы лунного грунта, имели пять ступеней. Три - для взлета с Земли и полета к Луне. Четвертую - для посадки на Луну. И пятую - для возвращения на Землю.

Все, что мы говорили до сих пор, была, так сказать, теория. Теперь совершим мысленно экскурсию на космодром. Посмотрим, как это все выглядит на практике.

Строят ракеты на заводах. Всюду, где возможно, используют самые легкие и самые прочные материалы. Для облегчения ракеты стараются все ее механизмы и всю аппаратуру, стоящую на ней, делать как можно более «портативными». Легче получится ракета - больше можно взять с собой топлива, увеличить полезную нагрузку.

На космодром ракету привозят по частям. В большом монтажно-испытательном корпусе ее собирают. Потом особый кран - установщик - в лежачем положении везет ракету, пустую, без топлива, на стартовую площадку. Там он поднимает ее и ставит в вертикальное положение. Со всех сторон ракету обхватывают четыре опоры стартовой системы, чтобы она не упала от порывов ветра. Потом подводят к ней фермы обслуживания с балконами, чтобы техники, готовящие ракету к старту, могли подобраться к любому ее месту. Подводят заправочную мачту со шлангами, через которые в ракету заливают топливо, и кабель-мачту с электрическими кабелями для проверки всех механизмов и приборов ракеты перед полетом.

Космические ракеты огромны. Самая первая наша космическая ракета «Восток» и то имела высоту 38 метров, с десятиэтажный дом. А самая большая американская шестиступенчатая ракета «Сатурн-5», которая доставляла американских космонавтов на Луну, имела высоту больше ста метров. Поперечник ее у основания 10 метров.

Когда все проверено и заливка топлива закончена, фермы обслуживания, заправочную мачту и кабель-мачту отводят.

И вот старт! По сигналу с командного пункта начинает работать автоматика. Она подает в камеры сгорания топливо. Включает зажигание. Топливо воспламеняется. Двигатели начинают быстро набирать мощность, все сильнее давят снизу на ракету. Когда наконец они набирают полную мощность и приподнимают ракету, опоры откидываются, освобождают ракету, и она с оглушительным ревом, как бы на огненном столбе, уходит в небо.

Управление полетом ракеты производится частично автоматически, частично по радио с Земли. А если ракета несет на себе космический корабль с космонавтами, то управлять могут и они сами.

Для связи с ракетой по всему земному шару размещены радиостанции. Ведь ракета ходит вокруг планеты, и может возникнуть необходимость связаться с ней как раз тогда, когда она будет «на той стороне Земли».

Ракетная техника, несмотря на свою молодость, показывает нам чудеса совершенства. Ракеты летали на Луну и возвращались обратно. Летали за сотни миллионов километров на Венеру и Марс, совершая там мягкие посадки. Пилотируемые космические корабли выполняли в космосе сложнейшие маневры. Сотни самых различных спутников выведены в космос ракетами.

На путях, ведущих в космические дали, много трудностей.

Для путешествия человека, скажем, на Марс нам нужна была бы ракета совершенно невероятных, чудовищных размеров. Больше грандиозных океанских кораблей, весом в десятки тысяч тонн! О постройке такой ракеты нечего и думать.

На первое время, при полетах к ближайшим планетам, может помочь стыковка в космосе. Огромные космические корабли «дальнего плавания» можно строить разборными, из отдельных звеньев. С помощью сравнительно небольших ракет выводить эти звенья на одну и ту же «монтажную» орбиту около Земли и там состыковывать. Так можно в космосе собрать корабль, который будет даже крупнее ракет, по частям поднимавших его в космос. Технически это возможно даже сегодня.

Впрочем, стыковка облегчает завоевание космоса ненамного. Гораздо больше даст освоение новых ракетных двигателей. Тоже реактивных, но менее прожорливых, чем теперешние, жидкостные. Посещение планет нашей Солнечной системы резко двинется вперед после освоения двигателей электрических и атомных. Однако наступит время, когда станут необходимы полеты к другим звездам, в другие солнечные системы И тогда снова потребуется новая техника. Возможно, к тому времени ученые и инженеры сумеют построить фотонные ракеты. «Огненной струей» у них будет невероятно мощный луч света. При ничтожном расходе вещества такие ракеты смогут разгоняться до скоростей в сотни тысяч километров в секунду!

Космическая техника никогда не перестанет развиваться. Человек будет ставить перед собой все новые и новые цели. Для их достижения - придумывать все более совершенные ракеты. А создав их - ставить еще более величественные цели!

Многие из вас, ребята, наверняка, посвятят себя завоеванию космоса. Успехов вам на этом интереснейшем пути!

Русское слово «ракета» произошло от немецкого слова «ракет». А это немецкое слово - уменьшительное от итальянского слова «рокка», что значит «веретено». То есть, «ракета» означает «маленькое веретено», «веретёнце». Связано это, конечно, с формой ракеты: она похожа на веретено - длинная, обтекаемая, с острым носом. Но сейчас не так уж много детей видели настоящее веретено, зато все знают, как выглядит ракета. Теперь, наверное, нужно поступать так: «Дети! Знаете, как выглядит веретено? Как маленькая ракета!»

Ракеты человек изобрёл очень давно. Их придумали в Китае много сотен лет тому назад. Китайцы использовали их для того, чтобы делать фейерверки. Они долго держали в секрете устройство ракет, им нравилось удивлять чужестранцев. Но некоторые из этих удивлённых чужестранцев оказались людьми очень любознательными. Вскоре во многих странах научились делать фейерверки и праздничным салютом отмечать торжественные дни.

Долгое время ракеты служили только для праздников. Но потом их стали использовать на войне. Появилось ракетное оружие. Это очень грозное оружие. Современные ракеты могут точно поразить цель на расстоянии в тысячи километров.

А в XX веке школьный учитель физики Константин Эдуардович Циолковский (наверное, это самый знаменитый учитель физики!) придумал ракетам новую профессию. Он мечтал о том, как человек станет летать в космос. К сожалению, Циолковский умер до того, как первые корабли отправились в космос, но его всё равно называют отцом космонавтики.

Почему так трудно полететь в космос? Дело в том, что там нет воздуха. Там пустота, она называется вакуум. Поэтому там нельзя использовать ни самолёты, ни вертолёты, ни воздушные шары. Самолёты и вертолёты при взлёте опираются на воздух. Воздушный шар поднимается в небо, потому что он лёгкий и воздух выталкивает его вверх. А вот ракете, чтобы взлететь, воздух не нужен. Какая же сила поднимает ракету?

Эта сила называется реактивной . Реактивный двигатель устроен очень просто. В нём есть специальная камера, в которой сгорает топливо. При сгорании оно превращается в раскалённый газ. А из этой камеры есть только один выход - сопло, его направляют назад, в сторону, противоположную движению. Раскалённому газу тесно в маленькой камере, и он с огромной скоростью вырывается через сопло. Стремясь поскорее выбраться наружу, он со страшной силой отталкивается от ракеты. А поскольку ракету ничто не держит, то она и летит туда, куда её толкает газ: вперёд. Есть ли вокруг воздух, нет ли воздуха - для полёта совсем не важно. То, что её поднимает, создаёт она сама. Только газу нужно энергично отталкивался от ракеты, чтобы силы его толчков хватило на подъём. Ведь современные ракеты-носители могут весить по три тысячи тонн! Это много? Очень много! Грузовик, например, весит всего пять тонн.

Для того чтобы двигаться вперёд, нужно от чего-то отталкиваться. То, от чего ракета будет отталкиваться, она берёт с собой. Именно поэтому на ракетах можно летать в безвоздушном космическом пространстве.

Форма ракеты (как веретёнце) связана только с тем, что ей приходится по дороге в космос пролетать через воздух. Воздух мешает лететь быстро. Его молекулы стукаются о корпус и тормозят полёт. Для того чтобы уменьшить воздушное сопротивление, форму ракеты и делают гладкой и обтекаемой.

Итак, кто из наших читателей хочет стать космонавтом?

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Кто же придумал ракету?

Ракета была известна давно. Очевидно, она появилась много веков назад на Востоке, возможно, в Древнем Китае - родине пороха. Ракеты (см. ниже) использовали во время народных празднеств, устраивали фейерверки, зажигали в небе огненные дожди, фонтаны, колёса.

Древнекитайская ракета:

1 - ствол-направляющая;

2 - пороховой заряд орудия;

3 - пыж;

4 - ракета;

5 - пороховой заряд ракеты.

Ракеты применяли в военном деле. Долгое время ракета была одновременно и оружием, и игрушкой. При Петре I была создана и применялась однофунтовая сигнальная ракета образца 1717 года (см. ниже), остававшаяся на вооружении до конца XIX века. Она поднималась на высоту до \(1\) километра.

Некоторые изобретатели предлагали использовать ракету для воздухоплавания. Научившись подниматься на воздушных шарах, люди были беспомощны в воздухе. Первым, кто предложил использовать ракету как средство передвижения, был российский изобретатель, революционер Николай Иванович Кибальчич, осуждённый на казнь за покушение на царя.

За десять дней до смерти в Петропавловской крепости он завершил работу над своим изобретением и передал адвокату не просьбу о помиловании или жалобу, а «Проект воздухоплавательного прибора» (чертежи и математические расчёты ракеты). Именно ракета, считал он, откроет человеку путь в небо.

Про свой аппарат (см. выше) он написал: «Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов... цилиндр должен подняться наверх».

Какая же сила применима к воздухоплаванию? - ставит вопрос Н.И. Кибальчич и отвечает. - Такой силой, по моему мнению, является медленно горящие взрывчатые вещества... Применить энергию газов, образующихся при воспламенении взрывчатых веществ к какой-либо продолжительной работе возможно только под тем условием, если та громадная энергия, которая образуется при горении взрывчатых веществ, будет образовываться не сразу, а в течение более или менее продолжительного промежутка времени. Если мы возьмём фунт зернистого пороху, вспыхивающего при зажигании мгновенно, спрессуем его под большим давлением в форму цилиндра, то увидим, что горение не сразу охватит цилиндр, а будет распространяться довольно медленно от одного конца к другому и с определённой скоростью... На этом свойстве прессованного пороха основано устройство боевых ракет.

Изобретатель имеет здесь в виду старинные (первой половины XIX века) ракеты, которые перекидывали 50-килограммовые бомбы на \(2-3\) километра при заряде в \(20\) кг. Н.И. Кибальчич вполне ясно и совершенно правильно представлял себе механизм действия ракеты.

Конструкцию космической ракеты с жидкостным реактивным двигателем впервые предложил в \(1903\) году русский учёный Константин Эдуардович Циолковский.

Он разработал теорию движения космических ракет и вывел формулу для расчёта их скорости.

Рассмотрим вопрос об устройстве и запуске так называемых ракет-носителей, т.е. ракет, предназначенных для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.

В любой ракете, независимо от её конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления, который мощной струёй устремляется наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

С какой целью увеличивают скорость выхода струи газа? Дело в том, что от этой скорости зависит скорость ракеты. Это можно показать с помощью закона сохранения импульса.

Поскольку до старта импульс ракеты был равен нулю, то по закону сохранения суммарный импульс движущейся оболочки и выбрасываемого из неё газа тоже должен быть равен нулю. Отсюда следует, что импульс оболочки и направленный противоположно ему импульс струи газа должны быть равны по модулю:

p оболочки = p газа

m оболочки v оболочки = m газа v газа.

v оболочки = m газа v газа m оболочки.

Значит, чем с большей скоростью вырывается газ из сопла или чем меньше масса оболочки ракеты, тем больше будет скорость оболочки ракеты.

В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

Наталия Викторовна Васильева
Конспект НОД педагога и детей в старшей группе «Космическая ракета»

Конспект НОД педагога и детей .

Старшая группа

«Космическая ракета »

Цели :

Уточнение и систематизация знания и представления о космических кораблях , космонавтах , космических полетах ;

Объяснение на основе экспериментальной деятельности работы реактивного двигателя космической ракеты ;

Совершенствование умений классифицировать множества по трем свойствам (цвет, размер, форма) ;

Развитие логического мышления, творческого воображения, фантазии, внимания, воображения, умения рассуждать, доказывать свою точку зрения;

Формирование у дошкольников интереса к явлениям, выходящим за пределы их жизненного опыта;

Развитие речевой деятельности детей , активизация и обогащение словаря детей : ракета , сопло, орбитальная станция, скафандр;

Развитие коммуникативных навыков;

Развитие навыков познавательно – исследовательской и продуктивной (конструктивной ) деятельности.

Интегрируемые образовательные области : «Познание» , «Речевое развитие» , «Физическое развитие» , «Художественно-эстетическое развитие» , «Социально – коммуникативное развитие» .

Материалы : Кукла Незнайка; иллюстрации по теме «Космос » , фотографии К. Э. Циолковского, С. П. Королева; воздушные шарики; блоки Дьенеша; счетные палочки, цветные крышки, квадраты Воскобовича, аудиозапись «Космическая музыка » .

Используемые технологии :

Развивающие;

Здоровьесберегающие;

Информационно-коммуникационные;

Составлен воспитателем Васильевой Наталией Викторовной

Ребята, когда я сегодня утром шла в детский сад, встретила странного человечка. Отгадайте, кто это был : В шляпе с круглыми полями И в штанишках до колен Занят разными делами, Лишь учиться ему лень. Кто он, быстро угадай-ка, Как зовут его? (Незнайка) . - Незнайка решил отправиться в космическое путешествие на самолете. Я пригласила его к нам, чтобы мы с вами объяснили, на чем же можно полететь в космос .

Появляется Незнайка (игрушка) . Здоровается с детьми.

С давних времен, у человека, когда он смотрел на небо, возникало много вопросов - о звездах, о планетах, о вселенной и, конечно, он мечтал полететь в космос . На чем можно полететь в космос ? А на самолете можно? Почему нельзя? (ответы детей ) .

А вы знаете, что… первую в мире ракету изобрел русский ученый – Константин Эдуардович Циолковский. Он жил в городе Калуге и работал учителем в школе. Константин Эдуардович очень любил наблюдать в телескоп за звездами, изучал их и мечтал до них долететь. (воспитатель сопровождает рассказ демонстрацией портрета К. Э. Циолковского).

Задумал он сконструировать такой летательный аппарат, который мог бы долететь до планет. Ученый проводил расчеты, делал чертежи и придумал такой летательный аппарат. Он изобрел особенную ракету , которая заправляется жидким топливом. Топливо сгорает и образуются огненные газы. Которые с большой скоростью вырываются из трубы - сопла позади ракеты . Газы летят назад – а ракета – вперед , то есть газы толкают ракету . В космос попасть не так уж и просто. Помните, мы с вами говорили о земном притяжении? Наша земля очень сильная, все притягивает к себе и никуда от себя не отпускает. Циолковский рассчитал, с какой скоростью должна лететь ракета , чтобы преодолеть силу земного притяжения и вырваться в космос . Но, к сожалению, изготовить этот аппарат у него возможности не было. И только через много лет другой русский ученый, С. П. Королев, смог сконструировать и изготовить первый космический спутник , в котором вокруг Земли сначала летали собачки, а потом, в 1961 году полетел человек. (воспитатель показывает портрет С. П. Королева) .

Почему же только ракета может улететь от земли! Ракета – самый быстрый вид транспорта, потому что у ракеты особый двигатель – реактивный. Космическую ракету делают из нескольких частей. Эти части называются ступенями. В каждой ступени свой бак с горючим и свой ракетный двигатель . Перед стартом баки ракеты загружают горючим . По команде зажигания горючее вспыхивает и начинает гореть, превращаясь в раскаленный газ. Струя газа летит в одну сторону, а ракета от его толчков в другую

Если в первой ступени кончилось горючее, долой ее, отбросим лишний груз! Включается двигатель второй ступени. Он разгоняет облегченную ракету еще быстрее . Кончилось горючее во второй ступени? И ее тоже долой!

Проведение опыта с воздушным шариком.

Что у меня в руках? Правильно, воздушный шарик. Он очень похож на ракету , потому что умеет летать, как она, давайте это проверим. Надуваю шарик, отпускаю его, он двигается вперед, пока вытекает воздух и толкает шарик вперед, потом падает (дети повторяют опыт с шариками) . Ребята, почему шарик упал? – правильно, потому что вышел весь воздух. Так и работают реактивные двигатели – есть горючее – ракета летит , закончилось горючее в ступени, она уже не нужна, ее отбрасывают, включается следующая ступень космического корабля . До космоса доберется только третья ступень, маленькая и легкая. Она – то и выведет на орбиту кабину с космонавтами , которая состыковывается с космической станцией (показ космической станции ) .

– У космонавтов есть второй дом – в космосе . Космический дом особенный . Он называется орбитальная станция. Космический дом похож на огромную птицу, которая раскинула крылья и летит над землёй. Но крылья нужны не для полёта – это «домашняя электростанция» . Блестящие пластины собирают солнечные лучи и превращают их в электрический ток, который питает все научные приборы, освещает и отапливает.

Как вы думаете, похожа космическая станция на квартиру ? (ответы детей ) . Правильно, ведь здесь космонавты живут и работают . Есть ли в этой необычной квартире мебель? Похожа она на нашу? А в чем отличие? (ответы детей ) . Вся мебель на космической станции привинчена . Почему? (ответы детей ) .

Ребята, давайте поможем Незнайке собраться в космическое путешествие . Проводится игра «Подбери, что необходимо в космосе » .

Можно ли отправляться в космос без специальной одежды? Как она называется? Для чего нужен скафандр? (Чтобы защитить космонавта от вредного воздействия солнечной энергии, чтобы космонавт мог дышать , так как в космосе нет кислорода .) Какой должен быть скафандр? (Тёплый, лёгкий, прочный, удобный, герметичный.)

Как называется головной убор космонавта ? (ответы детей ) . Шлем плотно (герметично) прикручивается к скафандру и имеет особое темное стекло, как вы думаете, для чего? (защищает глаза от яркого солнечного света) .

Еда космонавтов хранится в тюбиках , как зубная паста, хлеб, печенье крошечными кусочками упакованы в пакеты. Почему? (ответы детей ) .

Вы знаете, чем космонавты умываются ? (влажными салфетками, потому что вода превратится в блестящие шарики и улетит).

Давайте представим, что мы находимся в космическом пространстве . (под музыку дети выполняют плавные движения)

На космическом корабле должен быть пульт управления. И мы его сейчас нарисуем. Возьмите, пожалуйста, листок и карандаш.

Ориентировка на листе.

В середине листа мы нарисуем треугольник – это будет кнопка «Старт » .

В нижнем правом углу нарисуем квадрат – это будет кнопка «Стоп»

Найдите верхний левый угол и нарисуйте прямоугольник – это будет кнопка связи с землей.

В нижнем левом углу нарисуем кружок - это кнопка включения света.

В космосе очень ярко светят звезды, и глаза у космонавтов быстро устают . Поэтому космонавты делают специальную гимнастику для глаз. Давайте и мы с вами выполним эти упражнения.

Космическая гимнастика для глаз :

Мы звёздочку увидали,

Глазки вверх подняли.

Вот звёзды полетели,

Глазки вправо посмотрели. Снова звезды полетели- Глазки влево посмотрели.

А теперь звезда внизу.

Глазки закрываем,

Глазки отдыхают.

На космической станции много различного оборудования, ведь космонавты работают , проводят исследования. Все инструменты находятся в определенном порядке на своих местах. Давайте мы представим себя космонавтами и разложим необходимые инструменты. (дети выполняют задания с блоками Дьенеша : в зеленый обруч собрать все круглые, в синий - красные, в желтый - квадратные).

Молодцы, ребята, приглашаю всех на тренировочную базу.

Будем очень мы стараться , (дети делают рывки согнутыми руками перед грудью)

Дружно спортом заниматься :

Бегать быстро, словно ветер, (Бегут на носочках)

Плавать лучше всех на свете. (Делают гребки руками)

Приседать и вновь вставать (Приседают)

И гантели поднимать. (Выпрямляют согнутые руки вверх)

Станем сильными, и завтра

Всех возьмут нас в космонавты ! (Руки на поясе)

Как вы думаете, с чего начинается изготовление ракеты ? (Ответы детей .) Правильно, нужно начертить схему – чертеж космического корабля . Представим себя конструкторами . У вас на столах счетные палочки и цветные крышки - изобразите с их помощью свои ракеты . Анализ схем : из каких геометрических фигур, их количество.

Речевая разминка «Космонавты » .

-Космонавты должны уметь расшифровывать радиосигналы, которые им посылает Центр управления полётом. Незнайка просит нас расшифровать радиосигнал и правильно составить предложения 1) корабль, на, летит, Луна;

2) яркие, на, небо, звезды;

3) мы, Земля, живем, планета, на;

4) девять, вокруг, вращаются, Солнце, планет;

5) родную, на, космонавты , Землю, возвращаются (летят) .

Давайте сделаем из наших волшебных квадратов красивые звездочки для Незнайки (дети делают звезды из квадратов Воскобовича) .

Незнайка, теперь ты знаешь на чем можно отправиться в космос ?

Ребята, чтобы Незнайка все запомнил, давайте повторим, что мы знаем о космосе и космических полетах :

Как называется летательный аппарат, в котором летят в космос ?

Как называется двигатель ракеты ?

Как называются части ракеты ?

За счет чего ракета набирает огромную скорость?

Как называются трубы ракеты , из которых вырываются газы?

Откуда стартует ракета ?

Как называется дом космонавтов ?

Зачем он нужен?

На что похож космический дом ?

Как звали первого в мире космонавта ?

Как называется костюм космонавта ?

Как называется и животное, и созвездие?

Как звали собак, которые первыми вернулись из космоса ?

Какие планеты вы знаете?

Самая большая и горячая звезда во Вселенной?

Самая прекрасная планета во вселенной?

Молодцы ребята. Вам понравилось наше занятие? Какие задания оказались для вас сложными? Какие легкими? Теперь мы знаем, как сделать чертеж ракеты и обязательно построим ракеты из конструктора .

Муниципальное бюджетное образовательное учреждение

дополнительного образования станция юных техников города Ейска муниципального образования Ейский район

Открытое занятие

кружка « Ракетомоделирование»

педагога дополнительного образования

Салькова Владимира Васильевича

Тема: «

Что мы знаем о космосе и о космических ракетах»

г.Ейск

2016г.

ТЕМА: Введение в образовательную программу.

Модель космической ракеты.

ЦЕЛЬ ЗАНЯТИЯ: Формирование у детей интереса и желания заниматься космическим моделированием.

ЗАДАЧИ:

Обучающие: дать общее представление о космическом моделировании,

Познакомить обучающихся с солнечной системой,

Научить сборке модели по схеме.

Развивающие: содействовать развитию познавательного интереса,

Творческих способностей, пространственного воображения,

Координации движений.

Воспитывающие: воспитывать уважение к своим землякам-космонавтам;

Содействовать воспитанию умения принимать решение;

Воспитывать собранность, организованность, аккуратность.

ОБОРУДОВАНИЕ И МАТЕРИАЛЫ:

Компьютер, выставка космических моделей, плакат «Солнечная система», готовые детали ракеты (обтекатель, корпус, стабилизатор), клей, кисточки, подставки под кисточки.

ДИДАКТИЧЕСКОЕ ОСНАЩЕНИЕ:

Технический рисунок изготавливаемой ракеты, набор готовых деталей ракеты.

МЕТОДЫ:

Словесные – фронтальная беседа.

Наглядные – демонстрация образцов, технического рисунка.

Игровые – игра в сборочный цех завода.

Практические – самостоятельная работа с набором готовых деталей ракеты.

Самоконтроль и оценка выполняемой работы.

Репродуктивные – изготовление модели по образцу.

ПЛАН ЗАНЯТИЯ:

  1. Организационная часть. (2 мин.)
  2. Знакомство с новым материалом. (7 мин.)
  3. Закрепление пройденного (8 мин.)
  4. Практическая работа. (10 мин.)
  5. Подведение итогов. (3 мин.)

ХОД ЗАНЯТИЯ:

1.Организационная часть.

Добрый день, ребята. Сегодня мы с вами познакомимся с удивительным миром космической техники. И я предлагаю вам отправиться в космическое путешествие.

2.Знакомство с новым материалом.

Ребята, как называется планета, на которой мы живем?

Да, это наша планета Земля. Она находится на третьей орбите от Солнца и это единственная планета, где есть жизнь.

А теперь давайте познакомимся с другими планетами солнечной системы:

По порядку все планеты
Назовёт любой из нас:
Раз - Меркурий,
Два - Венера,
Три - Земля,
Четыре - Марс.
Пять - Юпитер,
Шесть - Сатурн,
Семь - Уран,
За ним - Нептун.
Он восьмым идёт по счёту.
А за ним уже, потом,
И девятая планета
Под названием Плутон.
Каждая планета имеет свой путь, по которому кружит вокруг Солнца и никуда с него не уходит.

Кто знает, как называется путь, по которому движется планета? (Путь, по которому движется планета, называется орбита.)

Человечество очень давно мечтало полететь к этим планетам, и люди придумали летательный аппарат, с помощью которого они могли туда попасть, Как он называется? (ракета).

Космическая ракета - летательный аппарат для доставки космонавтов и грузов на космическую орбиту или планету.

В 2017 году исполнилось 56 лет со дня первого полета человека в космос. 12 апреля 1961 года советский космонавт Юрий Гагарин отправился в первый космический полет, который продлился 108 минут, но именно этот полет вошел в историю как выдающееся научно-техническое достижение нашего государства, как триумф не только российской космонавтики, но и всего человечества и положил начало освоению человеком открытого космоса.

Кто такой Юрий Гагарин? Что вы можете о нем рассказать?

Родился 9 марта 1943 года в городе Гжатск Смоленской области. Юрий Гагарин -летчик- космонавт, Герой Советского Союза. Участвовал в обучении и тренировке экипажей космонавтов. Погиб во время тренировочного полета на самолете 27 марта 1968 года. Имя Юрия Гагарина носят учебные заведения, улицы и площади многих городов мира. Именем Ю.Гагарина назван кратер на обратной стороне Луны. Его родина-город Гжатск переименован ныне в город Гагарин

Не каждый человек может стать космонавтом. Из 40000 профессий, существующих на Земле, профессия космонавта самая трудная, опасная и ответственная. Настоящий космонавт должен быть сильным, ловким, находчивым, внимательным, много знать, хорошо учиться, тренировать память читать много о космосе.

Готовы ли вы пройти испытания, чтобы узнать можете ли и вы стать космонавтами?

Испытание первое. Викторина

А сейчас мы проверим, что вы знаете о космонавтике (Педагог предлагает детям выбрать ракету и ответить на вопросы):

1.Какой самый быстрый вид транспорта? (ракета)

2.Кто придумал первую ракету? (Сергей Павлович Королев)

3.Кто первым полетел в космос? (Юрий Гагарин)

4.Назовите первую женщину-космонавта. (Валентина Терешкова)

5.Кто из животных совершил первый полет в космос? (собаки Белка и Стрелка)

6.Как называется костюм у космонавта?(скафандр)

7.Как называется место старта космического корабля? (космодром)

8.Почему космонавты не едят ложкой? (им мешает невесомость)

9.Назовите профессию человека, изучающего звезды? (астроном)

10.Какой прибор помогает разглядывать звезды? (телескоп)

11.Как называется городок, в котором живут космонавты? (Звездный городок)

Физминутка

Руки в стороны – в полет

Отправляем звездолет,

Правое крыло вперед,

Левое крыло вперед.

Раз, два, три, четыре –

Полетел наш звездолет.

(и.п. – стойка ноги врозь, руки в стороны, 1 – поворот вправо; 2 – и.п.; 3 – поворот влево; 4 – и.п.)

3.Практическая работа.

Конкурс «Космонавты-умельцы»

Любой космический маршрут открыт для тех, кто любит труд.

Сейчас, ребята, мы на время превратимся в создателей космической техники. Вы будете рабочими. А я буду вашим мастером- наставником.

К нам на завод поступил заказ - изготовить космическую ракету. Конструкторское бюро разработало чертежи. Цеха завода работали над всеми деталями и сборочными узлами.

Педагог показывает чертеж и называет части ракеты:

Корпус –это основная деталь машины, механизма, в которой монтируются другие детали.

Обтекатель необходим для………

Стабилизатор - неподвижная часть хвостового оперения самолета, ракеты, служащая для продольной устойчивости и управляемости полетом.

И вот, наконец, окончательная сборка в нашем сборочном цехе.

Сборка ракеты.

Тренировочные запуски ракет.

А сейчас мы, как юные космонавты, попробуем запустить свою ракету в космос.

4.Закрепление пройденного.

Молодцы, ребята, вы удачно прошли все испытания. Я предлагаю вам вспомнить, как называется и летательный аппарат для доставки космонавтов и грузов на космическую орбиту или планету. А из каких частей состоит ракета?

5. Подведение итогов.

Если вам понравилось заниматься космическим моделированием, возьмите ракету и поднимите ее вверх. Спасибо.

А хотите ли вы научиться изготавливать более сложные модели космической техники, самолетов, вертолетов?

Мы все живем в мире техники. Нас окружают различные машины. Мир машин очень велик. Занятия моделированием позволяют лучше познать его, развивают конструкторские способности и техническое мышление. Занимаясь космическим моделированием, вы можете познакомиться с космическими объектами, с их устройством и назначением.