Кислород входит в состав гематита. Железные руды — виды, месторождения. Доменный процесс. Получение кислорода в лаборатории

Кислород

Этот видео урок расскажет про неорганическую химию за 9 класс. Посмотрев данное видео Вы сможете изучить и узнать характеристику халькогенов и кислород.

Данный видео урок представляет общие познания строения элементов группы VIA, позволяет Вам изучить и закрепить познания о получение свойств кислорода, первого представителя данной группы.

Общая характеристика халькогенов.Кислород

Ученику просматривая данный видео урок будет понятно рассказано все основные соединения, содержащие в этой группе элементов и узнают круговорот кислорода в природе.

Какие преследуют цели в данном видео уроке. Вы сможете изучить и понять особенности строения атомов халькогенов, а также свойства и применения кислорода.

  • сформировать представления об особенностях строение элементов VIA группы;
  • развитие умений записывать уравнения реакций, отражающих химические свойства кислорода;
  • изучить способы получения кислорода, его аллотропные модификации;

Халькогены – это элементы VIA группы. Родоначальником этой группы является кислород. Кроме кислорода в эту группу входят S, Se, Te, Po. Название халькогены означает «рождающие руды». Вам уже известны руды, содержащие серу, это – пирит, или железный колчедан – FeS 2 , киноварь – HgS, цинковая обманка – ZnS. Кислород входит в состав таких руд, как корунд – Al 2 O 3 , магнитный железняк, или магнетит – Fe 3 O 4 , красный железняк, или гематит – Fe 2 O 3 , бурый железняк, или лимонит – 2Fe 2 O 3 · 3H 2 O, а также в состав других руд.

На внешнем энергетическом уровне у халькогенов 6 электронов. До завершения внешнего энергетического уровня атомам не хватает 2 электрона, поэтому они присоединяют электроны и проявляют в своих соединениях степень окисления -2. Кислород в соединении с фтором – OF 2 проявляет степень окисления +2. Атомы серы, селена и теллура в своих соединениях с более электроотрицательными элементами проявляют положительные степени окисления +2, +4 и +6.

Кислород – самый распространенный элемент на Земле. Он входит в состав воды, которая покрывает поверхность земного шара, образуя его водную оболочку – гидросферу. Кислород входит в состав атмосферы, где на его долю приходится 21%. Кроме этого, он ещё входит в состав многих органических соединений.

Приятного просмотра и удачи Вам в изучение данного видео урока. Вступайте в наши социальные группы В Контакте и Facebook, Google+ , Подписывайтесь на наш канал на YouTube и почтовую рассылку.

Вы также можете скачать презентации для классного часа. Презентация к 23 февраля способствует формированию у школьников общего представления об истории, армии.

Общая характеристика халькогенов. Кислород

Цель: изучить особенности строения атомов халькогенов, свойства и применение кислорода.

Задачи:

    сформировать представления об особенностях строение элементов VIA группы;

    развитие умений записывать уравнения реакций, отражающих химические свойства кислорода;

    изучить способы получения кислорода, его аллотропные модификации.

    Организационный момент.

2. Изучение нового материала.

Халькогены – это элементы VIA группы. Родоначальником этой группы является кислород. Кроме кислорода в эту группу входят S, Se, Te, Po. Название халькогены означает «рождающие руды». Вам уже известны руды, содержащие серу, это – пирит, или железный колчедан – FeS 2 , киноварь – HgS, цинковая обманка – ZnS. Кислород входит в состав таких руд, как корунд – Al 2 O 3 , магнитный железняк, или магнетит – Fe 3 O 4 , красный железняк, или гематит – Fe 2 O 3 , бурый железняк, или лимонит – 2Fe 2 O 3 · 3H 2 O, а также в состав других руд.

На внешнем энергетическом уровне у халькогенов 6 электронов. До завершения внешнего энергетического уровня атомам не хватает 2 электрона, поэтому они присоединяют электроны и проявляют в своих соединениях степень окисления -2. Кислород в соединении с фтором – OF 2 проявляет степень окисления +2. Атомы серы, селена и теллура в своих соединениях с более электроотрицательными элементами проявляют положительные степени окисления +2, +4 и +6.

Кислород – самый распространенный элемент на Земле. Он входит в состав воды, которая покрывает поверхность земного шара, образуя его водную оболочку – гидросферу. Кислород входит в состав атмосферы, где на его долю приходится 21%. Кроме этого, он ещё входит в состав многих органических соединений.

Существует несколько способов получения кислорода. В промышленности кислород получают из жидкого воздуха.

Еще в 1774 г. Дж. Пристли, используя стеклянную двояковыпуклую линзу, направил сконцентрированный ею пучок солнечных лучей на оксид ртути (II) и получил кислород.

Одновременно с Пристли кислород получил К. Шееле путём нагревания селитры.

Название кислороду – oxygenium, т.е. «рождающий кислоты», или «кислород», этому элементу дал Лавуазье.

Кислород можно получить и при разложении воды в специальном устройстве – электролизёре. Таким образом, можно получить сразу два газа: кислород и водород.

В лаборатории для получения кислорода используют пероксид водорода (Н 2 О 2). Эта реакция идёт в присутствии катализатора – оксида марганца IV.

Для получения кислорода в лаборатории ещё используют реакцию разложения перманганата калия – KMnO 4 – «марганцовки».

Вы уже знаете, что кислород существует в виде двух аллотропных модификаций –O 2 и О 3 . Аллотропия кислорода и озона обусловлена различным числом кислорода в молекулах веществ.

Вещество

Агрегатное состояние при обычных условиях

Цвет

Запах

Температура плавления, 0 С

Температура кипения, 0 С

Кислород

О 2

Газ

Бесцветный, в жидком состоянии – голубой

Без запаха

218,2

182,8

Озон

О 3

Газ

Бесцветный, в жидком состоянии – синий

Резкий, характерный запах

251

112

Кислород взаимодействует почти со всеми простыми веществами, кроме галогенов, благородных газов, золота и платины.

Кислород энергично реагирует с металлами. Например, в реакции с литием, образуется оксид лития, в реакции с медью – оксид меди (II).

4Li + O 2 = 2Li 2 O

2Cu + O 2 = 2CuO

Кислород реагирует с неметаллами. Так в реакции с cерой образуется оксид серы (IV), в реакции с фосфором – оксид фосфора (V).

S + O 2 = SO 2

4P + 5O 2 = 2P 2 O 5

Почти все реакции с кислородом экзотермические (то есть сопровождаются выделением теплоты). Исключение составляет реакция азота с кислородом, которая является эндотермической.

N 2 + O 2 ↔ 2NO – Q

Кислород окисляет не только простые, но и сложные вещества. Например, в реакции горения метана образуется вода и углекислый газ, в результате горения сероводорода образуется сернистый газ и вода.

CH 4 + 2O 2 = CO 2 + 2H 2 O

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O

Эта окислительная способность кислорода лежит в основе горения всех видов топлива. Кислород в этих реакциях выступает в роли окислителя.

Кислород участвует в процессах дыхания, медленного окисления различных веществ при обычной температуре. Например, медленное окисление пищи в нашем организме является источником энергии, за счёт которой живет организм. Так гемоглобин, соединенный с кислородом, оксигемоглобин доставляет во все ткани и клетки организма кислород, который окисляет белки, жиры и углеводы, образуя при этом углекислый газ и воду и освобождая при этом энергию, необходимую для деятельности организма.

Велика роль кислорода в процессах дыхания человека и животных. У растений в процессе фотосинтеза из углекислого газа и воды образуется глюкоза и кислород. За счет этого процесса сохраняется содержание свободного кислорода.

В природе постоянно осуществляется круговорот кислорода.

Проведём эксперимент: нальём два стаканчика перекиси водорода. В первый стаканчик добавим оксида марганца (IV), у нас наблюдается бурное выделение кислорода. Оксид марганца (IV) в данном случае катализатор, он ускоряет процесс разложения перекиси водорода. Если поднести к стаканчику тлеющую лучинку, то она вспыхнет из-за скопившегося кислорода.

В другой стаканчик добавим натёртую морковь, здесь тоже происходит бурное выделение кислорода, и если поднести тлеющую лучинку, то она вспыхнет. В данном случае фермент каталаза, который содержится в моркови, тоже способствует разложению перекиси водорода.

Кислород применяется в металлургической и химической промышленности для ускорения производственных процессов. Чистый кислород применяют при газовой сварке и резке металлов. Его используют и для жизнеобеспечения на подводных и космических кораблях, при работе водолазов и пожарных.

В медицине кислород применяют в случаях временного затруднения дыхания и различных заболеваниях. Кислород применяют в космической технике, как окислитель ракетного топлива, в производстве взрывчатых смесей.

Кислорол хранят в стальных баллонах, окрашенных в голубой цвет, под высоким давлением, а в лаборатории – в специальных приборах – газометрах.

Таким образом, халькогены – это элементы VIA группы. На внешнем энергетическом уровне у них 6 электронов. Они входят в состав многих руд. Кислород первый представитель группы. В реакциях он проявляет окислительные свойства. Кислород получают реакцией разложения перекиси водорода, марганцовки, воды, а в промышленности – из воздуха. Кислород участвует в круговороте веществ и применяется в химической и металлургической промышленности.

3. Закрепление.

1. С какими веществами вы познакомились сегодня на уроке?

2. Какие физические свойства характерны для кислорода?

3. Как получают кислород в промышленности?

4. Как получают кислород в лаборатории?

5. Что такое катализаторы, для чего их применяют?

6. Как осуществляется круговорот кислорода в природе?

7. Где применяют кислород?

4. Рефлексия.

«Плюс-минус»: таблица состоит из трёх граф, в графу «П» - «плюс» записывается всё, что понравилось на уроке, в графу «М» - «минус», что не понравилось.

5. Домашнее задание.

Гематит представляет собой наиболее распространенный вариант железной руды. За характерный внешний вид эту породу также называют красным железняком (а в прошлом веке широко применялось наименование «железный блеск»). Формула красного железняка постоянная – оксид железа (III), т.е. Fe 2 O 3 .

Химическая формула гематита показывает, что эта руда богата железом, поэтому в основном металл получают именно из красного железняка. По внешнему виду порода имеет серые, темные, металлические, стальные оттенки, нередко с вкраплениями бурого. Поэтому и слово «гематит» с древнегреческого переводится как «кроваво-красный».

Формула и морфологические признаки гематита

Приведенная выше химическая формула гематита отражает содержание основного вещества. На самом деле присутствуют и примеси – оксид титана, оксид алюминия. Также в состав железняка входит до 8% воды (в химически связанном состоянии).

Устойчивая химическая формула гематита связана с тем, что основной компонент руды (Fe 2 O 3) представляет собой продукт превращения окисленного железа. Металл соединен с кислородом, поэтому он и не подвергается дальнейшей коррозии.

К важнейшим морфологическим признакам красного железняка относят:

  • форма кристалла пластинчатая или таблитчатая;
  • преобладают очертания в виде ромбических многогранников – ромбоэдров;
  • нередко кристаллы срастаются по плоскостям и образуют подобие лепестков, насевших друг на друга («железная роза»).

Красные пески Марса преимущественно состоят из маггемита – минерала того же химического состава, что и гематит. Интересно, что маггемит переходит в красный железняк уже при небольшом нагревании (+200 о С). Однако он имеет отличия в строении – повторяет кристаллическую структуру магнетита , ближайшего «родственника» красного железняка.

Свойства гематита (видео)

Разновидности

В зависимости от внешнего вида и особенностей структуры выделяют несколько разновидностей гематита:

  1. Железная слюда – минерал состоит из чешуек, имеющих отчетливый металлический блеск.
  2. Спекулярит также хорошо блестит на свету, по цвету ближе к серебристым и серым оттенкам.
  3. Красная стеклянная голова, которую также называют кровавиком, представляет собой камни бурого, кровавого оттенков.
  4. Железная роза действительно напоминает этот цветок благодаря своей необычной структуре.
  5. Красный железняк окрашен только в бурые тона. Кристалл достаточно тяжелый из-за высокой плотности.


Физические свойства

Физические свойства красного железняка:

  • цвета – преимущественно темные, металлических оттенков, серые, стальные, серебристые, красные, бурые, кирпичные;
  • блеск – металлический или приглушенный (матовый);
  • твердость по шкале Мооса – порядка 5,5-6,5;
  • плотность – порядка 5,0-5,3 г/см 3 ;
  • сингония – тригональная.

Гематит обладает слабыми магнетическими свойствами, так как основной компонент – минеральное вещество Fe 2 O 3 не намагничивается. Таким образом, минерал реагирует только на наиболее сильные магниты.

Мы вам предлагаем .

Диагностические признаки

Под этим термином понимают набор внешних признаков, а также физических свойств (плотность, способность реагировать на действие магнита), по которым один минерал можно отличить от другого. В случае с красным железняком к таким признакам относят следующие:

  1. По внешнему виду похож на черный кремень, вулканическое стекло (обсидиан), гагат. Однако отличается от них более высокой плотностью. Даже небольшой кусок гематита обладает ощутимым весом.
  2. Порода твердая, но в то же время довольно хрупкая. Если провести кусочком кровавого железняка по фарфору, останется красный след.
  3. Цвет черты – красный. Под этим названием имеется в виду тот цвет, который оставит минерал, если провести его острым краем по керамической пластине (бисквиту). Определение цвета подобным способом необходимо потому, что в обычном состоянии оттенки минерала часто зависит от его примесей. То есть цвет черты дает представление об истинном окрасе камня (или породы).
  4. От схожего по внешнему виду магнетита красный железняк можно отличить действием магнита. Магнетит будет притягиваться очень хорошо, гематит – слабо (или вообще не отреагирует).

Опытные минералоги легко отличат гематит от схожих камней. Несмотря на то, что в ювелирном деле минерал подделывают редко (руда достаточно распространена), полезно знать, что гематит обладает большой плотностью, а его ближайшие аналоги весят мало. Поэтому можно просто подержать кусочек в руках – он будет как гирька.

Месторождения и особенности добычи

В природе железняк распространен довольно широко. Например, в России известно такое месторождение, как Курская магнитная аномалия, в котором доказанных запасов руды обнаружено порядка 30 миллиардов тон. А еще известны такие месторождения:

  1. Гренгесберг (Швеция).
  2. Альгарробо (Чили).
  3. Снарум (Норвегия).
  4. Шеперд (Миссури, США).
  5. Азегур (Марокко).
  6. Сан-Кристоф (Саксония, Германия) и другие.

Руду добывают открытым (карьерным) способом . Технология включает в себя такие основные этапы

  1. К месторождению подводят технику, монтируют необходимые установки.
  2. Снимают верхний часть пород (в глубину до 0,5 км).
  3. Затем с помощью взрывных работ эти породы размельчают и перевозят на обрабатывающие предприятия.

Если же руда залегает достаточно глубоко (более 0,6 км), ее добывают шахтным методом. В остальном технология точно такая же – обработку породы, получение сырья из нее осуществляют не в месте добычи, а на специальных обрабатывающих предприятиях.

История исследований и промышленной эксплуатации рудника

Интересно, что в России активная добыча гематита началась еще на рубеже 18-19 веков. В Карелии, на левом берегу реки Колласйоки, местным крестьянами были обнаружены залежи породы. Впоследствии здесь появился Рогозерский гематитовый рудник. Долгое время власти затруднялись сказать, насколько выгодно организовывать здесь полномасштабную добычу.

Окончательное решение о началах работ было принято только в 1896 году. Однако революция помешала планам дальнейшего развития. В итоге к месторождению вернулись уже в 1930-е годы. В это время там пробурили порядка 20 глубоких скважин, но геологи оценили запасы гематита не более 900 тысяч тонн. В итоге месторождение законсервировали. Сегодня рудник остался горнопромышленным памятником Республики Карелия.

Внешние особенности гематита (видео)

Обработка и область применения

Породы красного железняка обрабатывают с помощью разных методов:

  • струями воды под давлением;
  • флотацией – вынос компонентов железа вверх, с помощью пузырьков воздуха;
  • отделение ценных компонентов с помощью мощных электромагнитов;
  • перевод смеси в суспензию и отделение с помощью осаждения (за счет разницы в плотностях).

Благодаря этим методам обогащения руды удается разделить ее на составные компоненты. Выбор конкретного способа зависит от генезиса (происхождения) породы и ее химического состава. Применяют гематит как источник железа – из него выплавляют чугун. Используют его как натуральный краситель, а также в производстве ювелирных украшений.

Гематит – одна из основных разновидностей железных руд. Этот минерал известен уже несколько тысяч лет. Используется он и в наше время.

Название минерала гематит происходит от греческого "эма" - кровь, "эматитес" - кровавый камень (Теофраст, 325 г. до н. э.). Английское название минерала Hematite

Синонимы: Олижист - oligiste - название, применяемое во Франции; ангидроферрит - anhydroferrite (по Честеру, 1896). Мартит - martite (Брайтхаупт, 1828) - псевдоморфоза гематита по магнетиту.
Рутилогематит - rutilohematite и ильменогематит - ilmeno- liematite - гематит с микровключениями рутила , соответственно ильменита .

Натечные образования O 3

Кровавик краснополосчатые кварциты.

Химический состав

Химический теоретический состав: Fe 2 O 3 - 100 (Fe - 69,94). Нередко содержит некоторое количество Ti, частью за счет включений ильменита, частью в твердом растворе; также содержит в твердом растворе некоторое количество Аl и Mn (до 17% Mn в однородных гематитах из Арденн); иногда содержит Ca, Mg, Fe 2+ (до 5% FeO при 10% TiO 2 в "базаномелане"). В скрытокристаллических плотных массах часто обнаруживается SiO 2 и Аl 2 O 3 в виде механических примесей, в волокнистых и землистых разностях - H 2 O (гидрогематит).

В минерале из разных месторождений отмечались примеси Cr, Ni, Со, также V (до 0,03% в Дастакертском месторождении Армянии, до 4-10-3 % из месторождения Монголии), In (в гидрогематите из Сарыбулака, Киргизии, до 0,41%), Sn, Zn и др.

Разновидности

А) По особенностям состава.

Титаногематит - titanohematite (Эдуарде, 1938) содержит в твердом растворе до 11,3% TiO 2 . Встречен в Маунт Монджер, Западная Австралия. Черта темно-коричневая до черной. Менее богатый титаном (5% TiO 2 ) наблюдался в Швейцарских Альпах и в песках Фицрой, Новая Зеландия (MgO - 1,5; FeO - 5,8; Fe 2 O 3 - 83,1; TiO 2 - 9,6). При 700-900° смесимость Fe 3 O 3 и FeTiO 3 полная, при комнатной температуре ограниченная; большей частью содержание TiO 2 в гематитах обусловлено распадом твердого раствора.

Алюмогематит - alumohematite (Бенеславский, 1957) - содержит до 14% Аl 2 O 3 в твердом растворе.
Искусственно получен минерал с содержанием до 11-14% Аl 2 O 3 , что указывает на возможность образования Al-содержащих гематитов в богатых глиноземом осадочных породах.

Гидрогематит - hydrohematite (Брайтхаупт, 1847) - тонко-кристаллический гематит, содержащий до 8% воды. Рентгенограмма отвечает рентгенограмме гематита. Под микроскопом часто наблюдаются колломорфные текстуры. Плотность более низкая, чем у собственно гематита: 4,40 - 4,80; отражательная способность ниже, внутренние рефлексы менее густые. Обычно образуется при гипергенных процессах. Отмечался в составе осадочных железных руд алапаевского типа (Свердловская обл.), в составе железных руд Белозерского месторождения (Украины), широко распространен в зоне окисления месторождений степной части Казахстана и др.

Тонкие смеси гидрогематита или гематита с гидрогётитом (лимонитом) известны под названием турьитов.

Б) По строению и форме выделений.

Железный блеск - Eisenglanz (Агрикола, 1546) - яснокристаллические выделения минерала, преимущественно черного цвета с металлическим блеском, нередко в виде кристаллов.


Синононимы: Спекулярит - specularite (Дана, 1892), specular hematite, specular iron, блестящая железная руда - Glanzeisenerz (Брайтхаупт, 1816), блестящий железняк - Glanzeisenstein (Хофман, 1816); зеркальная руда - Spiegelerz (Валериус, 1747).
Некоторые выделения железного блеска известны под специальными названиями. Железная роза - Eisenrose (частично базаномелан - Basa- nomelan, Кобель, 1838) - агрегат пластинчатых кристаллов, которые срослись почти параллельно по базопинакоиду; напоминает махровый цветок; прекрасные образцы происходят из Сен-Готарда в Италии. Железная слюдка - Eisenglimmer (Валериус, 1747) - тонко-чешуйчатые выделения железного блеска. Железная сметана - Eisen- rahm (Вернер, 1789) - рыхлые маркие агрегаты очень мелких чешуек железной слюдки красного цвета, жирные на ощупь. Докембрийские (?) сланцеватые породы Бразилии, содержащие значительное количество железной слюдки, известны под названиями итабирита - itabirite (Эшвеге, 1822) и якутинги - jacutinga; по предложению Дерби (1910), итабиритами называют также гематито-кварцевые сланцы других районов земного шара. Кристаллические индивиды этого минерала в сланцах могут обнаруживать определенную ориентировку.

Красный железняк - Botheisenstein (Вернер, 1817) - тонкокристаллические или скрытокристаллические выделения гематита, обычно красного цвета.
Синононим: Кровавый камень -Blutstein (Агрикола, 1546), bloodstone. Красная стеклянная голова -rother Glaskopf, почковидная (почечная) руда-kidney ore- натечные агрегаты с радиально-лучистым и нередко с концентрически-скорлуповатым сложением. Оолитовый красный железняк - red oolitic hematite - состоит из оолитов. Охристый красный железняк - red ocher hematite, красная охра - ochra rubra (Валериус, 1747), рётель - Rothel (Леонхард, 1821), красная земля - reddle, красный мел - red chalk, красный карандаш (по Шубниковой, 1937), сангин - sanguine - землистые агрегаты, иногда в смеси с глинистыми минералами. Гематогелит - hematogelite (Тучан, 1913), гематитогелит - hematitogelite - красящее вещество красных бокситов. Вапа - минерал с примесью глины.

Мартит - псевдоморфоза (ложная форма) по магнетиту черного цвета. Кристаллы в виде октаэдров.

Наблюдается ориентированное взаимное прорастание гематита и ильменита («вашингтониты») - результат распада твердых растворов: пластинки ильменита располагаются параллельны (0001) или (1011); отмечаются также ориентированные пластинки гематита в ильмените, ориентированные параллельно (0001) ильменита; встречаются параллельные сростки кристаллов гематита и ильменита по (0001). Кристаллики гематита иногда закономерно нарастают плоскостью (0001) на грани октаэдра магнетита или шпинели ; ориентированные срастания его с магнетитом наблюдаются под микроскопом среди продуктов распада твердых растворов: (111) и магнетита параллельно (0001) и .
Рутил образует ориентированные нарастания на гематите: (100) и (101) рутила параллельно (0001) и (1010) гематита. Наблюдалось также ориентированное нарастание кристаллов псевдобрукита на кристаллы гематита: (121) и псевдобрукита параллельно (0001) и гематита; при замещении вольфрамита : (0001) и гематита параллельно(100) и вольфрамита. Описаны закономерные срастания гематита с кварцем: (1010) и кварца параллельно (0001) и гематита.
Отмечались закономерные вростки его в мусковите с расположением включений гематита на (001) слюды по трем направлениям под углом 60° и образованием решетки, что вызывает явление астеризма в слюде. Известны игольчатые включения гематита в корунде с взаимно параллельными осями обоих минералов. Закономерно расположенные чешуйки гематита встречаются в карналлите: (0001) и гематита параллельно(001) и или карналлита ; также параллельно (130) и карналлита; в сильвине : (0001) гематита параллельно(100), (111) или реже параллельно (110) сильвина; в канкрините : (0001) гематита параллельно(1010) или (1120) канкринита; в полевом шпате - (0001) гематита параллельна ряду граней полевого шпата; в кальците (сидерите) с вростками гематита грани (1120) обоих минералов иногда параллельны.

Кристаллографическая характеристика

  • Сингония. Тригональная. L 3 3L 2 3РС
  • Класс. Дитригонально-скаленоэдрический. D 3d - 3m

Кристаллическая структура

Структура аналогична структуре корунда.

Главные формы: Наиболее обычны формы r, c и n, также e и a.


Форма нахождения в природе

Облик кристаллов разнообразный: ромбоэдрический, таблитчатый - преимущественно у кристаллов, образовавшихся из гидротермальных и газовых растворов; наблюдаются изометрически развитые кристаллы (преимущественно в контактово-метасоматических месторождениях); редки призматические кристаллы.
На (0001) -штриховка по трем направлениям, параллельным ребрам (0001) : (1011), треугольные углубления, также треугольные пирамиды нарастания, признаки спирального роста, естественного травления и др.

Двойники

Двойники прорастания и срастания по (0001) с плоскостью срастания (1010) ; очень распространены двойники по (1011) с углом между базопинакоидами, равным 64°48; при этом нередко мелкие кристаллы при нарастании в двойниковом положении на более крупный таблитчатый кристалл располагаются по-разному - под углом в 120° друг к другу. Двойникование может быть обусловлено испытанным кристаллами давлением. Скольжение по Т (0001), t .
Характерны сростки тонкопластинчатых кристаллов (отдельные пластинки нарастают гранями с (0001) почти параллельно друг другу), слагающих так называемые железные розы, которые, возможно, являются результатом спирального роста кристаллов.

Наблюдается ориентированное взаимное прорастание его и ильменита («вашингтониты») - результат распада твердых растворов: пластинки ильменита располагаютсяпараллельны (0001) или (1011); отмечаются также ориентированные пластинки в ильмените, ориентированные параллельно (0001) ильменита; встречаются параллельные сростки кристаллов гематита и ильменита по (0001). Кристаллики гематита иногда закономерно нарастают плоскостью (0001) на грани октаэдра магнетита или шпинели; ориентированные срастания его с магнетитом наблюдаются под микроскопом среди продуктов распада твердых растворов: (111) и магнетита параллельно (0001) и гематита.


Рутил образует ориентированные нарастания на гематите: (100) и (101) рутила параллельно (0001) и (1010) гематита. Наблюдалось также ориентированное нарастание кристаллов псевдобрукита на кристаллы гематита: (121) и псевдобрукита параллельно (0001) и гематита; при замещении вольфрамита: (0001) и гематита параллельно(100) и вольфрамита. Описаны закономерные срастания его с кварцем: (1010) и кварца параллельно (0001) и .
Отмечались закономерные вростки гематита в мусковите с расположением включений гематита на (001) слюды по трем направлениям под углом 60° и образованием решетки, что вызывает явление астеризма в слюде. Известны игольчатые включения гематита в корунде с взаимно параллельными осями обоих минералов. Закономерно расположенные чешуйки гематита встречаются в карналлите: (0001) и гематита параллельно(001) и или карналлита; также параллельно (130) и карналлита; в сильвине: (0001) гематита параллельно(100), (111) или реже папаллельно (110) сильвина; в канкрините: (0001) гематита параллельно(1010) или (1120) канкринита; в полевом шпате - (0001) гематита параллельна ряду граней полевого шпата; в кальците (сидерите) с вростками гематита грани (1120) обоих минералов иногда параллельны.

Вростки в кварце , микроклине, кислом плагиоклазе и калинатровом полевом шпате придают этим минералам красивый искристо-золотистый отлив (авантюрин, солнечный камень).
Включения мельчайших пластинок минерала окрашивают некоторые минералы в красный цвет (карналлит, сильвин, гейландит, канкринит и др.).

Агрегаты. Обычно встречается в виде плотных мелкокристаллических, чешуйчатых или листоватых скоплений, а также в землистых массах и натечных агрегатах. В последнем случае он называется красным железняком. Иногда концентрически-слоистые и радиально-лучистые, натечные, почковидные и оолитовые.


Натеки. Минералогический отвес

Физические свойства

Оптические

  • Цвет ясно кристаллических разновидностей стально-серый до черного; иногда наблюдается побежалость. Скрытокристаллический - матово-красный до ярко- красного, вишнево-красный до черного. В нефильтрованных лучах ртутно-кварцевой лампы желтовато-белый (в отличие от голубовато-белого ильменита).
  • Черта вишнево-красная или красновато-коричневая, красная (характерный диагностический признак). .
  • Блеск металлический до полуметаллического
  • Отлив матовый
  • Прозрачность В тонких осколках просвечивает кроваво-красным цветом.

Механические

  • Твердость 5-6. Данные разных авторов по микротвердости колеблются в широких пределах.
  • В кристаллах хрупок, в тонких пластинках упруг.
  • Плотность 5,26.
  • Спайность отсутствует, отдельность по (0001) и (1011) обусловлена двойникованием.
  • Излом полураковистый до неровного.

Химические свойства

В кислом водном растворе при температурах 100-160° гематит растворяется с разложением; концентрация Fe 3+ в растворах при 100° (в мг/л): 0,37 при pH около 2; 0,04 при pH = 4; 0,01 при рН= 6,11; соответственно при 160°: 0,14; 0,04; 0,01; при температурах порядка 350° и рН = 5-7 растворение минерала протекает без разложения. Растворяется в концентрированной НСl. В полированных шлифах ни одним из стандартных реактивов не травится. Для структурного травления применяется концентрированная HF (продолжительность травления 1-2 мин).

Прочие свойства

Проводник электричества. Данные по удельному электрическому сопротивлению природных образцов колеблются в широких пределах; при повышенном напряжении обладает детекторными свойствами.

При комнатной температуре антиферромагнитен, при -15° становится ферромагнитным. Характерна высокая стабильность по отношению к постоянному и переменному магнитным полям, а также к температурному воздействию.

Успешно флотируется анионными собирателями типа олеиновой кислоты или алкилсульфатов (оптимальные условия - нейтральная или слабощелочная среда). Неплавок. В восстановительном пламени становится магнитным.

Температура плавления 1594°. При нагревании до 1370-1400° переходит в магнетит. γ-Fe 2 O 3 , образующийся при нагревании до 950°, при охлаждении превращается в α-Fe 2 O 3 .

Искусственное получение гематита

Гематит получается путем сублимации при взаимодействии хлорида железа и водяного пара; при нагревании расплава буры с окисью железа; из силикатного расплава с большим содержанием железа; при нагревании гидрата окиси железа с водой в запаянной трубке и др. Получен при изучении многих систем: гематит - ильменит, корунд - магнетит и др.

Диагностические признаки

От магнетита и ильменита легко отличается по цвету черты; в отличие от маггемита оптически анизотропен и не магнитен. От киновари плотный гематит отличается отсутствием спайности, оптическим знаком, а также по твердости и по плотности В тонкозернистых агрегатах трудно отличим от лепидокрокита. В полированных шлифах значительно светлее магнетита, ильменита и других сопутствующих рудных минералов.

Спутники. Корунд, диаспор, рутил, андалузит , кварц, мушкетовита . Мушкетовит известен в контактно-метасоматических месторождениях (Урал, Таджикистан и др.) и в гидротермальных месторождениях, для которых характерно отложение сульфидов после гематита (Кутимское месторождение в Пермской обл. и др.); наряду с магнетитом по гематиту может образоваться маггемит. В процессе диагенеза он при наличии восстановителей (органическое вещество) может переходить в сидерит, пирит и лептохлориты (в СНГ- породы Донбасса, Второго Баку и ерунаковской толщи Кузбасса). Помимо магнетита в псевдоморфозах по гематиту наблюдаются: пирит, сидерит, хлориты, гидрогётит (лимонит), в отдельных случаях - халькопирит , рутил, касситерит, манганит и др.

Практическое применение

Минерал многих железных руд. Чистые порошковатые разности применяются как красные краски и для приготовления красных карандашей. Плотный камень («кровавик») употребляется как полировочный материал.

Краснополосчатые яшмовидные гематито-магнегитовые роговики Кривого Рога являются эффективным декоративно-поделочным камнем, карминовые оттенки которого дополняют богатую палитру отечественных камней-самоцветов.

Физические методы исследования

Дифференциальный термический анализ

Старинные методы. Под паяльной трубкой

Кристаллооптические свойства в тонких препаратах (шлифах)

В шлифах в проходящем свете кроваво-красный (в тончайших пластинках), оранжево-красный, серо-желтый. Слабый плеохроизм: по No буровато-красный; по Ne желтовато-красный. Одноосный (-). Свето-преломление высокое, двупреломление очень сильное.

Фото галерея минерала


Железную руду человек начал добывать еще в конце II тысячелетия до нашей эры, уже тогда определив для себя преимущества железа по сравнению с камнем. С тех времен люди стали различать виды железных руд, хотя они еще не имели тех названий, что сегодня.

В природе железо - один из самых распространенных элементов, и в земной коре его содержится по разным данным от четырех до пяти процентов. Это четвертое место по содержанию после кислорода, кремния и алюминия.

Железо представлено не в чистом виде, оно в большем или меньшем количестве содержится в разного вида горных породах. И если по расчетам специалистов добывать железо из такой породы целесообразно и выгодно экономически, ее называют железной рудой.

За последние несколько столетий, на протяжении которых очень активно выплавляется сталь и чугун, железные руды истощаются - ведь металла требуется все больше и больше. Например, если в XVIII веке, на заре промышленной эры руды могли содержать и 65% железа, то сейчас нормальным считается содержание в руде 15 процентов элемента.

Из чего состоит железная руда.

В состав руды входит рудный и рудообразующий минералы, различные примеси и пустая порода. Соотношение этих составляющих отличается от месторождения к месторождению.

Рудный материал содержит главную массу железа, а пустая порода - это минеральные отложения, содержащие железо в очень малых количествах или не содержащие вовсе.

Оксиды, силикаты и карбонаты железа - самые часто встречающиеся рудные минералы железных руд.

Виды железной руды по содержанию железа и по местообразованию.

  • С низким содержанием железа или сепарированную железную руду, ниже 20%
  • Со средним содержанием железа или аглоруду
  • Железосодержащая масса или окатыши - породы с высоким содержанием железа, выше 55%

Железные руды могут быть линейными - то есть залегающие в местах разломов и изгибов земной коры. Именно они наиболее богаты железом и содержат мало фосфора и серы.

Другой вид железных руд - плоскоподобные, которые содержатся на поверхности железосодержащих кварцитов.

Красные, бурые, желтые, черные железняки.

Самым распространенным видом руды является красный железняк, который образуется безводным оксидом железа гематитом, имеющим химическую формулу Fe 2 O 3 . В гематите содержится очень высокий процент железа (до 70 процентов) и мало посторонних примесей, в частности серы и фосфора.

Красные железняки могут находиться в разном физическом состоянии - от плотного до пылевого.

Бурый железняк - это водная окись железа Fe 2 O 3 *nH 2 O. Число n может изменяться в зависимости от основы, составляющей руду. Чаще всего это лимониты. Бурые железняки, в отличие от красных, содержат меньше железа - 25-50 процентов. Их структура рыхлая, пористая, а в руде много других элементов, среди которых - фосфор и марганец. В бурых железняках содержится много адсорбированной влаги, пустая же порода - глинистая. Свое название этот вид руды получил из-за характерного бурого или желтоватого цвета.

Но несмотря на довольно низкое содержание железа, из-за легкой восстановимости перерабатывать такую руду легко. Из них часто выплавляют высокачественный чугун.

Бурый железняк чаще всего нуждается в обогащении.

Магнитными рудами называют те, которые образованы магнетитом, являющимся магнитным оксидом железа Fe 3 O 4. Название подсказывает, что эти руды имеют магнитные свойства, которые утрачиваются при нагревании.

Магнитные железняки реже встречаются, чем красные. Но железа в них может содержаться даже свыше 70 процентов.

По своей структуре он может быть плотным и зернистым, может выглядеть как кристаллы, вкрапленные в породу. Цвет магнетита - черно-синий.

Еще один вид руды, который называется шпатовым железняком. Ее рудосодержащей составляющей является карбонат железа с химическим составом FeCO 3 под названием сидерит. Другое название - глинистый железняк - это если в руде содержится значительное количество глины.

Шпатовые и глинистые железняки встречаются в природе реже других руд и содержат относительно немного железа и много пустой породы. Сидериты могут преобразовываться в бурые железняки под влиянием кислорода, влаги и осадков. Поэтому залежи выглядят так: в верхних слоях это бурый железняк, а в нижних - шпатовый железняк.