Химические соединения кальция. Кальций и его характеристики

Хотя кальций очень широко распространен на земном шаре, в свободном состоянии в природе он не встречается.

Прежде чем мы узнаем, каким образом можно получить чистый кальций, давайте познакомимся с природными соединениями кальция.

Кальций – металл. В периодической системе Менделеева кальций (Calcium), Ca имеет атомный номер 20 и расположен во II группе. Это химически активный элемент, он легко взаимодействует с кислородом. Имеет серебристо-белый цвет.

Природные соединения кальция


Соединения кальция мы встречаем практически повсюду.

Углекислый кальций, или карбонат кальция это самое распространенное соединение кальция. Его химическая формула -СаCO 3. Мрамор, мел, известняк, ракушечник – все эти вещества содержат карбонат кальция с небольшим количеством примесей. Совсем нет примесей в кальците, формула которого также СаCO 3 .

Сернокислый кальций также называют сульфатом кальция. Химическая формула сернокислого кальция СаSO 4. Известный нам минерал гипс – это кристаллогидрат СаSO 4 · 2Н 2 О.

Фосфорнокислый кальций, иликальциевая соль ортофосфорной кислоты. Это материал, из которого построены кости людей и животных. Называется этот минерал трикальцийфосфат Са 3 (РO 4) 2.

Хлористый кальций CaCl 2, или хлорид кальция,встречается в природе в виде кристаллогидрата СаСl 2 · 6Н 2 O. При нагревании это соединение теряет молекулы воды.

Фтористый кальций CaF 2, или фторид кальция,в природе можно найти в минерале флюорите. А чистый кристаллический дифторид кальция называется плавиковый шпат.

Но не всегда природные соединения кальция обладают теми свойствами, которые нужны людям. Поэтому человек научилсяискусственно превращать такие соединения в другие вещества. Некоторые из этих искусственных соединений знакомы нам даже в большей степени, чем природные. Пример – гашеная Са(OH) 2 и негашеная известь СаО, которые применяются человеком очень давно. Многие строительные материалы, такие как цемент, карбид кальция, хлорная известь также содержат искусственные соединения кальция.

Что такое электролиз


Наверное, почти каждый из нас слышал о явлении, называемом электролизом. Мы попробуем дать простейшее описание этого процесса.

Если пропустить электрический токчерез водные растворы солей, то в результате химических превращений образуются новые химические вещества. Процессы, происходящие в растворе при пропускании через него электрического тока, и называются электролизом. Все эти процессы изучает наука, которая называется электрохимия. Конечно же, процесс электролиза может проходить только в среде, которая проводит ток. Водные растворы кислот, оснований и солей и являются такой средой. Их называют электролитами.

В электролит погружаются электроды. Отрицательно заряженный электрод называется катодом. Положительно заряженный электрод называется анодом. При прохождении электрического тока через электролит и происходит электролиз. В результате электролиза на электродах оседают составные части растворённых веществ. На катоде – положительно заряженные, на аноде – отрицательные. Но на самих электродах могут происходить вторичные реакции, в результате которых образуется вторичное вещество.

Мы видим, что с помощью электролиза химические продукты образуются без применения химических реактивов.

Как получают кальций

В промышленности кальций можно получить с помощью электролиза расплавленного хлорида кальция CaCl 2 .

CaCl 2 = Ca + Cl 2

В этом процессе ванна, сделанная их графита, является анодом. Ванна помещается в электрическую печь. Железный стержень, перемещающийся по ширине ванны, а также имеющий возможность подниматься и опускаться, является катодом. Электролитом является расплавленный хлористый кальций, который заливают в ванну. В электролит опускается катод. Так начинается процесс электролиза. Под катодом образуется расплавленный кальций. Когда катод поднимается, в месте касания с катодом кальций застывает. Так постепенно в процессе поднятия катода и происходит наращивание кальция в виде штанги. Затем кальциевую штангу отбивают от катода.

Впервые чистый кальций с помощью электролиза был получен в 1808 г.

Кальций также получают из оксидов с помощью алюминотермического восстановления.

4CaO + 2Al -> CaAl 2 O 4 + Ca

При этом кальций получается в виде пара. Затем этот пар конденсируется.

Кальций имеет высокую химическую активность. Именно поэтому он широко используется в промышленности для восстановления тугоплавких металлов из оксидов, а также в производстве стали и чугуна.

История кальция

Кальций был открыт в 1808 году Хэмфри Дэви, который путём электролиза гашеной извести и оксида ртути получил амальгаму кальция, в результате процесса выгонки ртути из которой и остался металл, получивший название кальций. На латыни известь звучит как calx , именно это название и было выбрано английским химиком для открытого вещества.

Кальций является элементом главной подгруппы II группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 20 и атомную массу 40,08. Принятое обозначение - Ca (от латинского - Calcium).

Физические и химические свойства

Кальций является химически активным мягким щелочным металлом серебристо-белого цвета. Из-за взаимодействия с кислородом и углекислым газом поверхность металла тускнеет, поэтому кальций нуждается в особом режиме хранения - в обязательном порядке плотно закрытая ёмкость, в которой металл заливают слоем жидкого парафина или керосина.

Кальций - наиболее известный из необходимых человеку микроэлементов, суточная потребность в нём составляет от 700 до 1500 мг для здорового взрослого человека, но она увеличивается во время беременности и лактации, это нужно учитывать и получать кальций в виде препаратов.

Нахождение в природе

Кальций имеет очень высокую химическую активность, поэтому в свободном (чистом) виде не встречается в природе. Тем не менее, является пятым по распространённости в земной коре, в виде соединений имеется в осадочных (известняк, мел) и горных породах (гранит), много кальция содержит полевой шпат анорит.

В живых организмах распространён достаточно широко, его наличие обнаружено в растениях, организмах животных и человека, где он присутствует, в основном, в составе зубов и костной ткани.

Усвояемость кальция

Препятствием для нормального усвоения кальция из пищевых продуктов является употребление в пищу углеводов в виде сладостей и щелочей, которые нейтрализуют соляную кислоту желудка, необходимую для растворения кальция. Процесс усвоения кальция достаточно сложен, поэтому иногда недостаточно получать его только с пищей, необходим дополнительный приём микроэлемента.

Взаимодействие с другими

Для улучшения всасывания кальция в кишечнике необходим , который имеет свойство облегчать процесс усвоения кальция. При приёме кальция (в виде добавок) в процессе еды происходит блокировка всасывания , но приём препаратов кальция отдельно от пищи никак не влияет на этот процесс.

Почти весь кальций организма (от 1 до 1,5 кг) находится в костях и зубах. Кальций участвует в процессах возбудимости нервной ткани, сократимости мышц, процессах свертываемости крови, входит в состав ядра и мембран клеток, клеточных и тканевых жидкостей, обладает антиаллергическим и противовоспалительным действием, предотвращает ацидоз, активирует ряд ферментов и гормонов. Кальций также участвует в регуляции проницаемости клеточных мембран, оказывает действие, противоположное .

Признаки нехватки кальция

Признаками нехватки кальция в организме являются такие, на первый взгляд, не связанные между собой симптомы:

  • нервозность, ухудшение настроения;
  • учащённое сердцебиение;
  • судороги, онемение конечностей;
  • замедление роста и детей;
  • повышенное артериальное давление;
  • расслоение и ломкость ногтей;
  • боль в суставах, понижение «болевого порога»;
  • обильные менструации.

Причины нехватки кальция

Причинами нехватки кальция могут служить несбалансированные диеты (особенно голодания), низкое содержание кальция в пище, курение и увлечение кофе и кофеинсодержащими напитками, дисбактериоз, болезни почек, щитовидной железы, беременность, периоды лактации и менопаузы.

Избыток кальция, который может возникнуть при чрезмерном употреблении молочных продуктов или неконтролируемом приёме препаратов, характеризуется сильной жаждой, тошнотой, рвотой, потерей аппетита, слабостью и усиленным мочеотделением.

Применение кальция в жизни

Кальций нашёл применение в металлотермическом получении урана, в виде природных соединений используется как сырьё для производства гипса и цемент, как средство дезинфекции (всем известная хлорка ).

Кальций (Calcium), Ca, химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, из которых наиболее распространен 40 Ca (96, 97%).

Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь).

Распространение Кальция в природе. По распространенности в земной коре Ca занимает 5-е место (после О, Si, Al и Fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли Ca мало и, вероятно, еще меньше в земном ядре (в железных метеоритах 0,02%). Ca преобладает в нижней части земной коры, накапливаясь в основные породах; большая часть Ca заключена в полевом шпате - анортите Ca; содержание в основных породах 6,72%, в кислых (граниты и другие) 1,58% . В биосфере происходит исключительно резкая дифференциация Ca, связанная главным образом с "карбонатным равновесием": при взаимодействии углекислого газа с карбонатом СаСО 3 образуется растворимый бикарбонат Ca(HCO 3) 2: CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 = Са 2+ + 2HCO 3- . Эта реакция обратима и является основой перераспределения Ca. При высоком содержании CO 2 в водах Ca находится в растворе, а при низком содержании CO 2 в осадок выпадает минерал кальцит CaCO 3 , образуя мощные залежи известняка, мела, мрамора.

Огромную роль в истории Ca играет и биогенная миграция. В живом веществе из элементов-металлов Ca - главный. Известны организмы, которые содержат более 10% Ca (больше углерода), строящие свой скелет из соединений Ca, главным образом из СаСО 3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т. д.). С захоронением скелетов мор. животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора.

Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом Ca - здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т. д. Напротив, в сухом климате СаСО 3 труднорастворим, поэтому ландшафты степей и пустынь богаты Ca. В солончаках и соленых озерах часто накапливается гипс CaSO 4 ·2H 2 O.

Реки приносят в океан много Ca, но он не задерживается в океанической воде (среднее содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме CaCO 3 . Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО 3 , организмы там нередко испытывают дефицит Ca).

Важную роль в миграции Ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают CaCO 3 , с чем связано развитие карста, образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов Ca (например, месторождения фосфоритов Каратау в Казахстане), доломита CaCO 3 ·MgCO 3 , а в лагунах при испарении - гипса.

В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т. д.). Это связывают с высоким содержанием CO 2 в атмосфере докембрия.

Физические свойства Кальция. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca 2+ , 1,04Å. Плотность 1,54 г/см 3 (20 °C). Выше 464 °C устойчива гексагональная β-форма. t пл 851 °C, t кип 1482 °C; температурный коэффициент линейного расширения 22·10 -6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10 -8 ом·м или 4,6·10 -6 ом·см; температурный коэффициент электросопротивления 4,57·10 -3 (20 °C). Модуль упругости 26 Гн/м 2 (2600 кгс/мм 2); предел прочности при растяжении 60 Мн/м 2 (6 кгс/мм 2); предел упругости 4 Мн/м 2 (0,4 кгс/мм 2), предел текучести 38 Мн/м 2 (3,8 кгс/мм 2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м 2 (20-30 кгс/мм 2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Химические свойства Кальция. Конфигурация внешней электронной оболочки атома Ca 4s 2 , в соответствии с чем Ca в соединениях 2-валентен. Химически Ca очень активен. При обычной температуре Ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной оксид CaO. Известны также пероксиды Ca - CaO 2 и CaO 4 . С холодной водой Ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки Ca(OH) 2 . Ca энергично взаимодействует с горячей водой и кислотами, выделяя H 2 (кроме концентрированной HNO 3). С фтором реагирует на холоду, а с хлором и бромом - выше 400 °C, давая соответственно CaF 2 , CaCl 2 и CaBr 2 . Эти галогениды в расплавленном состоянии образуют с Ca так называемых субсоединения - CaF, CaCl, в которых Ca формально одновалентен. При нагревании Ca с серой получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS 2 , CaS 4 и другие). Взаимодействуя с сухим водородом при 300-400 °C, Ca образует гидрид CaH 2 - ионное соединение, в котором водород является анионом. При 500 °C Ca и азот дают нитрид Ca 3 N 2 ; взаимодействие Ca с аммиаком на холоду приводит к комплексному аммиакату Ca 6 . При нагревании без доступа воздуха с графитом, кремнием или фосфором Ca дает соответственно карбид кальция CaC 2 , силициды Ca 2 Si, CaSi, CaSi 2 и фосфид Ca 3 P 2 . Ca образует интерметаллические соединения с Al, Ag, Au, Cu, Li, Mg, Pb, Sn и другие.

Получение Кальция. В промышленности Ca получают двумя способами: 1) нагреванием брикетированной смеси CaO и порошка Al при 1200 °C в вакууме 0,01-0,02 мм рт. ст.; выделяющиеся по реакции: 6CaO + 2 Al = 3CaO·Al 2 O 3 + 3Ca пары Ca конденсируются на холодной поверхности; 2) электролизом расплава CaCl 2 и KCl с жидким медно-кальциевым катодом приготовляют сплав Cu - Ca (65% Ca), из которого Ca отгоняют при температуре 950-1000 °C в вакууме 0,1-0,001 мм рт. ст.

Применение Кальция. В виде чистого металла Ca применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы Pb-Na-Ca, а также сплавы Pb-Ca, служащие для изготовления оболочки электрич. кабелей. Сплав Ca-Si-Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

Кальций в организме. Ca - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишенной Ca. У некоторых организмов содержание Ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определенных соотношениях ионов Ca 2+ , Na + и K + во внеклеточных средах. Растения получают Ca из почвы. По их отношению к Ca растения делят на кальцефилов и кальцефобов. Животные получают Ca с пищей и водой. Ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активации ряда ферментов. Ионы Ca 2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в ее свертывании. В клетках почти весь Ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганических фосфатами и органических кислотами. В плазме крови человека и высших животных только 20-40% Ca может быть связано с белками. У животных, обладающих скелетом, до 97-99% всего Ca используется в качестве строительного материала: у беспозвоночных в основном в виде CaCO 3 (раковины моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Ca перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях.

Содержание Ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желез. Важнейшую роль в этих процессах играет витамин D. Всасывание Ca происходит в переднем отделе тонкого кишечника. Усвоение Ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения Ca, P и жира в пище. Оптимальные соотношения Са / Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище P или щавелевой кислоты всасывание Ca ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са / жир в пище человека 0,04-0,08 г Ca на 1 г жира. Выделение Ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция).

Соединения кальция - известняк, мрамор, гипс (а также известь - продукт известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные. В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis - известь).

Размещение электронов по орбиталям.

+20Са… |3s 3p 3d | 4s

Кальций называется щелочноземельным металлом, его относят к S - элементам. На внешнем электронном уровне у кальция два электрона, поэтому он даёт соединения: CaO, Ca(OH)2, CaCl2, CaSO4, CaCO3 и т.д. Кальций относится к типичным металлам - он имеет большое сродство к кислороду, восстанавливает почти все металлы из их окислов, образует довольно сильное основание Ca(OH)2.

Кристаллические решётки металлов могут быть различных типов, однако для кальция характерна гранецентрированная кубическая решётка.

Размеры, форму и взаимное расположение кристаллов в металлах излучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении даёт микроскопический анализ его шлифа. Из испытуемого металла вырезают образец и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выделяется структура образца, которую рассматривают или фотографируют с помощью металлографического микроскопа.

Кальцый - лёгкий металл (d = 1,55), серебристо-белого цвета. Он более твёрд и плавится при более высокой температуре (851 °С) по сравнению с натрием, который расположен рядом с ним в периодической системе. Это объясняется тем, что на один ион кальция в металле приходится два электрона. Поэтому химическая связь между ионами и электронным газом у него более прочная, чем у натрия. При химических реакциях валентные электроны кальция переходят к атомам других элементов. При этом образуются двухзарядные ионы.

Кальций обладает большой химической активностью по отношению к металлам, особенно к кислороду. На воздухе он окисляется медленнее щелочных металлов, так как окисная плёнка на нём менее проницаема для кислорода. При нагревании кальций сгорает с выделением громадных количеств теплоты:

C водой кальций вступает в реакцию, вытесняя из неё водород и образуя основание:

Са + 2H2O = Ca(OH)2 + H2

Благодаря большой химической активности к кислороду кальций находит некоторое применение для получения редких металлов из их окислов. Окислы металлов нагревают совместно с кальциевой стружкой; в результате реакций получается окись кальция и металл. На этом же свойстве основано применение кальция и его некоторых сплавов для так называемого раскисления металлов. Кальций добавляют в расплавленный металл, и он удаляет следы растворённого кислорода; образующаяся окись кальция всплывает на поверхность металла. Кальций входит в состав некоторых сплавов.

Получают кальций электролизом расплавленного хлорида кальция или алюминотермическим методом. Окись кальция, или гашеная известь, представляет собой порошок белого цвета, плавится она при 2570 °С. Получают её прокаливанием известняка:

СаСО3 = СаО + СО2^

Окись кальция - основной окисел, поэтому она вступает в реакцию с кислотами и ангидридами кислот. С водой она даёт основание - гидроокись кальция:

СаО + H2О = Са(ОН)2

Присоединение воды к окиси кальция, называемое гашением извести, протекает с выделением большого количества теплоты. Часть воды при этом превращается в пар. Гидроокись кальция, или гашеная известь, - вещество белого цвета, немного растворимое в воде. Водный раствор гидроокиси кальция называется известковой водой. Такой раствор обладает довольно сильными щелочными свойствами, так как гидроокись кальция хорошо диссоциирует:

Са(ОН)2 = Са + 2ОН

По сравнению с гидратами окислов щелочных металлов гидроокись кальция - более слабое основание. Объясняется это тем, что ион кальция двухзарядный и более сильно притягивает гидроксильные группы.

Гашеная известь и её раствор, называемый известковой водой, вступают в реакции с кислотами и ангидридами кислот, в том числе и с двуокисью углерода. Известковая вода служит в лабораториях для открытия двуокиси углерода, так как образующийся нерастворимый углекислый кальций вызывает помутнение воды:

Са + 2ОН + СО2 = СаСО3v + Н2О

Однако при длительном пропускании двуокиси углерода раствор снова становится прозрачным. Это объясняется тем, что карбонат кальция превращается в растворимую соль - гидрокарбонат кальция:

СаСО3 + СО2 + Н2О = Са(НСО3)2

В промышленности кальций получают двумя способами:

Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:

6СаО + 2Аl = 3CaO · Al2O3 + 3Ca

Пары кальция кондонсируются на холодной поверхности.

Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.

Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.

Кальций принадлежит к числу самых распространённых в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Соли кальция образуют в природе большие скопления в виде карбонатов (мел, мрамор), сульфатов (гипс), фосфатов (фосфоритов). Под действием воды и двуокиси углерода карбонаты переходят в раствор в виде гидрокарбонатов и переносятся подземными и речными водами на большие расстояния. При вымывании солей кальция могут образовываться пещеры. За счёт испарения воды или повышения температуры на новом месте могут образовываться отложения карбоната кальция. Так, например, образуются сталактиты и сталагмиты в пещерах.

Растворимые соли кальция и магния обуславливают общую жёсткость воды. Если они присутствуют в воде в небольших количествах, то вода называется мягкой. При большом содержании этих солей (100 - 200 мг. солей кальция - в 1 л. в пересчёте на ионы) вода считается жёсткой. В такой воде мыло плохо пенится, так как соли кальция и магния образуют с ним нерастворимые соединения. В жёсткой воде плохо развариваются пищевые продукты, и при кипячении она даёт на стенках паровых котлов накипь. Накипь плохо проводит теплоту, вызывает увеличение расхода топлива и ускоряет изнашивание стенок котла. Образование накипи - сложный процесс. При нагревании кислые соли угольной кислоты кальция и магния разлагаются и переходят в нерастворимые карбонаты:

Са + 2НСО3 = Н2О + СО2 + СаСО3v

Растворимость сульфата кальция СаSO4 при нагревании также снижается, поэтому он входит в состав накипи.

Жёсткость вызванная присутствием в воде гидрокарбонатов кальция и магния, называется карбонатной или временной, так как она устраняется при кипячении. Помимо карбонатной жёсткости, различают ещё некарбонатную жёсткость, которая зависит от содержания в воде сульфатов и хлоридов кальция и магния. Эти соли не удаляются при кипячении, и поэтому некарбонатную жёсткость называют также постоянной жёсткостью. Карбонатная и некарбонатная жёсткость в сумме даёт общую жёсткость.

Для полного устранения жёсткости воду иногда перегоняют. Для устранения карбонатной жёсткости воду кипятят. Общую жёсткость устраняют или добавлением химических веществ, или при помощи так называемых катионитов. При использовании химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты, например добавляют известковое молоко и соду:

Са + 2НСО3 + Са + 2ОН = 2Н2О + 2СаСО3v

Са + SO4 + 2Na + CO3 = 2Na + SO4 + CaCO3v

Устранение жёсткости при помощи катионитов - процесс более совершенный. Катиониты - сложные вещества (природные соединения кремния и алюминия, высокомалекулярные органические соединения), состав которых можно выразить формулой Na2R, где R - сложный кислотный остаток. При фильтровании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg:

Са + Na2R = 2Na + CaR

Следовательно, ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Для восстановления использованного катионита его промывают раствором поваренной соли. При этом происходит обратный процесс: ионы Са в катионите заменяются на ионы Na:

2Na + 2Cl + CaR = Na2R + Ca + 2Cl

Регенерированный катионит можно снова применять для очистки воды.

В виде чистого металла Са применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов и их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примесей азота и в качества поглотителя газов в электровакуумных приборах. Большое применение в технике получили антификционные материалы системы Pb - Na - Ca, а также сплавы Pb - Ca, служащие для изготовления оболочки электрических кабелей. Сплав Ca - Si - Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

Кальций - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са. У некоторых организмов содержание Са достигает 38% : у человека - 1,4 - 2 %. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Са, Na и К во внеклеточных средах. Растения получают Са из почвы. По их отношению к Са растения делят на кальцефилов и кальцефобов. Животные получают Са с пищей и водой. Са необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активизации ряда ферментов. Ионы Са передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свёртывании. В клетках почти весь Са находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20 - 40 % Са может быть связано с белками. У животных, обладающих скелетом, до 97 - 99 % всего Са используется в качестве строительного материала: у беспозвоночных в основном в виде СаСО3 (раковина моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Са перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Содержание Са в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин D. Всасывание Са происходит в переднем отделе тонкого кишечника. Усвоение Са ухудшается при снижении кислотности в кишечнике и зависит от соотношения Са, фосфора и жира в пище. Оптимальные соотношения Са/Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р и щавелевой кислоты всасывание Са ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04 - 0,08 г. Са на 1г. жира. Выделение Са происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Са с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция).

В медицине препаратов Са устраняет нарушения, связанные с недостатком ионов Са в организме (при тетании, спазмофилии, рахите). Препараты Са снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, сонная лихорадка и др.). Препараты Са уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных процессах (пневмания, плеврит и др.) и некоторых кожных заболеваниях. Назначают каккровоостанавливающее средство, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки, как противоядия при отравлении солями магния. Вместе с другими средствами препараты Са применяют для стимулирования родовой деятельности. Хлористый Са вводят через рот и внутривенно. Оссокальцинол (15 % -ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии.

К препаратам Са относятся также гипс (СаSО4), применяемый в хирургии для гипсовых повязок, и мел (СаСО3), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.

Кальций — химический элемент II группы с атомным номером 20 в периодической системе, обозначается символом Ca (лат. Calcium). Кальций - мягкий щелочно-земельный металл серебристо-серого цвета.

20 элемент таблицы МенделееваНазвание элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.
Кальций один из наиболее распространенных на Земле элементов. Соединения кальция находятся практически во всех животных и растительных тканях. На его долю приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Нахождение кальция в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.
На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы
40
20
Ca20 и
48
20
Ca28 являются двумя из пяти существующих в природе ядер с дважды магическим числом.
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада 1,6·1017 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca.
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19-50 лет и детей 4-8 лет включительно дневная потребность (RDA) составляет 1000 мг (содержится примерно в 790 мл молока с жирностью 1 %), а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки (содержится примерно в 1030 мл молока жирностью 1 %). В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12-19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. В «молочных» продуктах на основе молочного жира (сливочном масле, сливках, сметане, мороженом на основе сливок) кальция практически не содержится. Чем больше в молочном продукте молочного жира, тем меньше в нём кальция. Всасывание кальция в кишечнике происходит двумя способами: чрезклеточно (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Теплопроводность