Что обозначает сиреневый цвет в интерьере. Сиреневый цвет. С чем сочетать лиловый цвет

Простому потребителю совсем необязательно знать, какова природа сигналов. Но порой необходимо знать разницу между аналоговым и цифровым форматами, чтобы с открытыми глазами подходить к выбору того или иного варианта, ведь сегодня на слуху, что время аналоговых технологий прошло, на смену им приходят цифровые. Следует понять разницу, чтобы знать от чего уходим и чего ожидать.

Сигнал аналоговый - это сигнал непрерывный, имеющий бесконечное число близких по значению данных в пределах максмальных, все параметры которого описываются временной зависимой переменной.

Сигнал цифровой - это раздельный сигнал, описываемый раздельной функцией времени, соответственно в каждый момент времени, величина амплитуды сигнала имеет строго определенное значение.

Практика показала, что при аналоговых сигналах возможны помехи, устраняемые при цифровом сигнале. Кроме того, цифровой может восстановить изначальные данные. При непрерывном аналоговом сигнале проходит много информации, зачастую излишней. Вместо одного аналогового можно передать несколько цифровых.

На сегодняшний день потребителя интересует вопрос телевидения, так как именно в этом контексте чаще и произносится фраза "переход на цифровой сигнал". В этом случае аналоговый можно считать пережитком прошлого, но ведь именно его принимает существующая техника, а для приема цифрового необходима специальная. Конечно, в связи с появлением и расширением использования "цифры", теряют былую популярность.

Преимущества и недостатки видов сигналов

Немаловажную роль в оценке параметров того или иного сигнала имеет безопасность. Различного характера влияния, посторонние вторжения делают аналоговый сигнал беззащитным. При цифровом подобное исключается, так как он кодируется из радиоимпульсов. Для больших расстояний передача цифровых сигналов усложнена, приходится использовать схемы модуляции-демодуляции.

Поводя итог, можно сказать, что отличия аналогового и цифрового сигнала состоят:

  • В непрерывности аналогового и дискретности цифрового;
  • В большей вероятности помех при передаче аналогового;
  • В избыточности аналогового сигнала;
  • В способности цифрового фильтровать помехи и восстанавливать исходую информацию;
  • В передаче цифрового сигнала в закодированной форме. Один аналоговый сигнал замещается несколькими цифровыми.

Любой сигнал, будь-то аналоговый или цифровой, представляет собой электромагнитные колебания, распространяющиеся с определенной частотой. В зависимости от того, какой сигнал распространяется устройство, принимающее данный сигнал определяет, какое изображение выводить на экран, соответственно, со звуковым сопровождением.

К примеру, телевизионная вышка или радиостанция может передавать и аналоговый и цифровой сигналы. Звук передается в аналоговой форме, и уже через приемное устройство преобразуется в электромагнитные колебания. Как уже говорилось, колебания распространяются с определенной частотой. Чем выше частота звука, тем выше колебания, в результате, получаем на выходе более громкое звучание голоса.

Общими словами, аналоговый сигнал распространяется непрерывно, а цифровой сигнал - дискретно (прерывисто), т.е. амплитуда колебаний принимает определенные значения в единицу времени.

Если продолжить пример звукового аналогового сигнала, то получим процесс, при котором электромагнитные волны распространяются с помощью передатчика (антенны). Т.к. распространение аналогового сигнала происходит постоянно, то колебания суммируются, и на выходе возникает несущая частота, которая является основной, т.е. на неё происходит настройка приемника.

В самом приемнике происходит отделение данной частоты от других колебаний, которые преобразуются в звук.

Недостатками передачи информации с помощью аналогового сигнала очевидны:

  • Возникает большое количество помех;
  • Передается больше лишней информации;
  • Безопасность передачи сигнала

Если в радиовещании передача информации с помощью аналогового сигнала происходит менее заметно, то в телевидении, вопрос перехода на цифровую передачу крайне важен.

Основными преимуществами цифрового сигнала перед аналоговым являются:

  • Более высокий уровень защиты. Безопасность передачи цифрового сигнала основана на том, что «цифра» передается в зашифрованном виде;
  • Легкость приема сигнала. Цифровой сигнал можно принимать, находясь на любом расстоянии от местожительства;
  • Цифровое вещание способно обеспечить огромное количество каналов. Именно эта возможность обеспечивает поклонников цифрового телевидения большим количеством телеканалов для просмотра фильмов и передач;
  • Качество передачи находится на несколько порядков выше, чем при аналоговом вещании. Цифровой сигнал обеспечивает фильтрацию принимаемых данных, а также имеется возможность восстанавливать исходную информацию.

Соответственно, для преобразования аналогового сигнала в цифровой, и наоборот используются специальные устройства.

  • Устройство, которое преобразует аналоговый сигнал в цифровой сигнал, называется аналого-цифровым преобразователем (АЦП);
  • Устройство, преобразующее цифровой сигнал в аналоговый называется цифро-аналоговым преобразователем (ЦАП).

Соответственно, АЦП установлен в передатчике, а ЦАП установлен в приемнике и преобразет дискретный сигнал в аналоговый, соответствующий голосу.

Почему цифровой сигнал является более защищенным?

Передача цифрового сигнала осуществляется в зашифрованном виде и цифро-аналоговое устройство должно иметь код для расшифровки. АЦП может передавать и цифровой адрес приемника. Если даже сигнал будет перехвачен, то полностью расшифровать его будет невозможно из-за отсутствия части кода. Данный свойство цифровой передачи широко используется в мобильной связи.

Таким образом, основное различие между аналоговым и цифровым сигналом заключается в различной структуре передаваемого сигнала. Аналоговые сигналы - непрерывный поток колебаний с изменяющимися амплитудой и частотой.

Цифровой сигнал - дискретные (прерывистые) колебания, значения которых зависят от передающей среды.

Иногда у потребителей возникает вопрос, как передается сигнал в телевидении.

В телевидении перед передачей сигнала в цифровом виде, аналоговый сигнал подлежит оцифровке. После этого, необходимо выбрать, в какой среде будет происходить передача: медный кабель, эфир, оптоволоконный кабель.

Например, многие пользователи уверены, что кабельное телевидение - это только цифровая передача данных. Это не так. Кабельное телевидение - это и аналоговый и цифровой вид передачи сигнала.

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы.»

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1(t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к (m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

Сиреневый и фиолетовый цвета очень схожи между собой. Большинство людей не видят в них особых различий и оперируют обоими определениями для описания того или иного оттенка. Однако любителям живописи и дизайна данный подход кажется несколько неправильным и даже возмутительным. Попытаемся провести разграничения между фиолетовым и сиреневым цветами.

– «холодный» тон спектра, получаемый при смешении красного и синего цветов. Имеет обозначение #8B00FF.

Сиреневый – разновидность фиолетового цвета, отличающаяся более светлым оттенком. Имеет обозначение #C8A2C8.

Сравнение

Название многих известных нам оттенков непосредственно связано с источником их происхождения: наименованиями фруктов, ягод, цветов, камней и т.д. Взять хотя бы, к примеру, розовый, персиковый, вишневый, салатовый, рубиновый и другие цвета. Порою легче провести аналогии с понятными и привычными вещами, нежели описывать словами все отличительные особенности оттенков. Так, согласно этому принципу, название «фиолетовый» происходит от цветка фиалки. Данный оттенок является одним из семи основных цветов радужного спектра и получается при смешении красного и синего в одинаковых пропорциях. Считается, что фиолетовый цвет оказывает угнетающее воздействие на нервную систему.

Сиреневый – разновидность фиолетового цвета, его более светлый оттенок. Он отличается мягкой и нежной палитрой, название же его происходит от известного растения сирени. Для получения сиреневого оттенка необходимо также смешать красный и синий цвета, однако процент красного должен быть больше. Светло-сиреневый цвет оказывает на человека умиротворяющее действие.

Слева — сиреневый. Справа — фиолетовый

К слову сказать, фиолетовый цвет считался раньше символом королей. В Китае и Индии он означает траур и печаль. Оказывая сильное воздействие на духовное состояние человека, фиолетовый цвет помогает освободиться от потаенных страхов и учит черпать созидательную силу из сознания. Излучает скромность, радость и достоинство. Будет органично смотреться в интерьере при условии сочетания с теплыми оттенками или же в разбавленном (сиреневом) виде.

Выводы сайт

  1. Фиолетовый – один из основных цветов спектра, тогда как сиреневый является лишь его оттенком.
  2. Фиолетовый отличается большей яркостью и насыщенностью.
  3. Фиолетовый цвет получается при смешении красного и синего в одинаковых пропорциях, для получения сиреневого нужно добавить больше красного.
  4. Фиолетовый цвет оказывает угнетающее действие на нервную систему, сиреневый же, напротив, умиротворяющее.
  5. Сиреневый цвет органично смотрится в интерьере. Для декора помещений фиолетовый цвет подойдет лишь в сочетании с более теплыми оттенками.

Светло лиловый, фиолетовый, сиреневатый, светло сиреневый, розовато сиреневый, лиловый, бледно сиреневый, лиловатый Словарь русских синонимов. сиреневый см. лиловый Словарь синонимов русского языка. Практический справочник. М.: Русский язык … Словарь синонимов

СИРЕНЕВЫЙ, ая, ое. 1. см. сирень. 2. Светло лиловый, цвета сирени. | сущ. сиреневость, и, жен. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

См. янтарный В. В. Виноградов. История слов, 2010 … История слов

Прил. 1. соотн. с сущ. сирень, связанный с ним 2. Свойственный сирени, характерный для нее. 3. Принадлежащий сирени. 4. Изготовленный из сирени. 5. Имеющий цвет сирени; светло лиловый. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Сиреневый, сиреневая, сиреневое, сиреневые, сиреневого, сиреневой, сиреневого, сиреневых, сиреневому, сиреневой, сиреневому, сиреневым, сиреневый, сиреневую, сиреневое, сиреневые, сиреневого, сиреневую, сиреневое, сиреневых, сиреневым, сиреневой … Формы слов

сиреневый - сир еневый … Русский орфографический словарь

сиреневый - … Орфографический словарь русского языка

Ая, ое. 1. к Сирень. С. куст. Душистые с ые кисти. С. запах. С ая вода (туалетная вода с запахом сирени). С. экстракт, с ое масло (приготовленные из сирени). 2. Бледно лиловый, цвета сирени. Накинула на плечи с. шарф. Лёгкое с ое платье. С. туман … Энциклопедический словарь

сиреневый - ая, ое. см. тж. сиренево, сиреневость 1) к сирень Сире/невый куст. Душистые с ые кисти. Сире/невый запах … Словарь многих выражений

сиреневый - сирен/ев/ый … Морфемно-орфографический словарь

Книги

  • , . `Сиреневый туман` - своеобразная хрестоматия популярной песни. Валерий Гаврилин писал: `Песня первой принимает на себя удары времени`. Песни, собранные здесь, прошлипроверку временем и по…
  • Сиреневый туман. Любимые песни и романсы для голоса и гитары. Хрестоматия , . "Сиреневый туман" - своеобразная хрестоматия популярной песни. Валерий Гаврилин писал: "Песня первой принимает на себя удары времени" . Песни, собранные здесь, прошлипроверку временем и по…