Общие сведения о медицинском озоне. Озонатор воздуха в быту, медицине и на производстве

Введение

Озон (О 3) является трехатомной модификацией кислорода (О 2), который при нормальных условиях представляет из себя газ. Озон - очень сильный окислитель, поэтому его реакции обычно очень быстрые и полные. Основные преимущества применения озона для обработки питьевой воды содержатся в самой его природе: результатом его реакции является только кислород и продукты окисления. Вредные побочные продукты, такие как хлорорганические соединения, при этом не образуются.

Газ голубоватого цвета озон (О 3) имеет характерный запах. Молекула озона нестабильна. Благодаря свойству самораспада озон является сильным окислителем и наиболее эффективным средством для очистки и обеззараживания воды и воздуха. Сильные окислительные свойства позволяют использовать озон в промышленных целях для получения многих органических веществ, для отбеливания бумаги, масел и т.д. Широко используется озон для удаления марганца и железа, улучшения вкуса, устранения цвета и запаха, а также для удаления органических соединений, опасных для окружающей среды. Он убивает микроорганизмы, поэтому озон применяют для очистки воды и воздуха. Установки по очистке воды и озонированию воздуха получили огромное распространение не только в промышленности, но и в быту.

Озон является постоянным компонентом атмосферы земли играет важнейшую роль для поддержания на ней жизни. В приземных слоях земной атмосферы концентрация озона резко возрастает. Общее состояние озона в атмосфере переменное, и колеблется в зависимости от времен года. Атмосферный озон играет ключевую роль для поддержания жизни на земле. Он защищает Землю от губительного воздействия определенной роли солнечной радиации, способствуя тем самым сохранению жизни на планете.

Таким образом, необходимо узнать, какие же действия может оказывать озон на биологические ткани.

Общие свойства озона

Озон - состоящая из трехатомных молекул О 3 аллотропная модификация кислорода. Его молекула диамагнитна и имеет угловую форму. Связь в молекуле является делокализованной, трехцентровой



Строение молекулы озона можно изобразить разными способами. Например, комбинацией двух крайних (или резонансных) структур. Каждая из таких структур не существует в реальности (это как бы "чертеж" молекулы), а настоящая молекула представляет собой нечто среднее между двумя резонансными структурами.

Рис. 1 Строение озона

Обе связи O-O в молекуле озона имеют одинаковую длину 1,272 Ангстрем. Угол между связями составляет 116,78°. Центральный атом кислорода sp ²-гибридизован, имеет одну неподелённую пару электронов. Молекула полярна, дипольный момент 0,5337 D.

Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 ->3О2) и высокую окислительную способность (озон способен на ряд реакций в которые молекулярный кислород не вступает). Окислительное действие озона на органические вещества связанно с образованием радикалов: RH+ О3 RО2 +OH

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток. Применение озона для стерилизации питьевой воды основано на его способности убивать микробы. Озон не безразличен и для высших организмов. Длительное пребывание в атмосфере, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому, озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны – 0,0001 мг/литр. Загрязнение озоном воздушной среды происходит при озонировании воды, вследствие его низкой растворимости.

История открытия

Впервые озон обнаружил в 1785 году голландский физик М. ван Марум по характерному запаху и окислительным свойствам, которые приобретаетвоздух после пропускания через него электрических искр, а также по способности действовать на ртуть при обыкновенной температуре, вследствие чего она теряет свой блеск и начинает прилипать к стеклу. Однако как новое вещество он описан не был, ван Марум считал, что образуется особая «электрическая материя».

Термин озон был предложен немецким химиком X. Ф. Шёнбейном в 1840 году за его пахучесть, вошёл в словари в конце XIX века. Многие источники именно ему отдают приоритет открытия озона в 1839 году. В 1840 году Шёнбейн показал способность озона вытеснять иод из иодида калия:

Факт уменьшения объёма газа при превращении кислорода в озон экспериментально доказали Эндрюс и Тэт при помощи стеклянной трубки с манометром, наполненной чистым кислородом, со впаянными в неё платиновыми проволками для получения электрического разряда.

Физические свойства.

Озон - газ, обладающий синим цветом, который можно заметить, если смотреть через значительный слой, до 1 метра толщиной, озонированного кислорода. В твёрдом состоянии озон чёрного цвета с фиолетовым отблеском. Жидкий озон обладает густым синим цветом; прозрачен в слое, не превышающем 2 мм. толщины; довольно прочен.

Свойства:

§ Молекулярная масса - 48 а.е.м.

§ Плотность газа при нормальных условиях - 2,1445 г/дм³. Относительная плотность газа по кислороду 1,5; по воздуху - 1,62

§ Плотность жидкости при −183 °C - 1,71 г/см³

§ Температура кипения - −111,9 °C. (у жидкого озона - 106 °C.)

§ Температура плавления - −197,2 ± 0,2 °С (приводимая обычно т.пл. −251,4 °C ошибочна, так как при её определении не учитывалась большая способность озона к переохлаждению).

§ Растворимость в воде при 0 °С - 0,394 кг/м³ (0,494 л/кг), она в 10 раз выше по сравнению с кислородом.

§ В газообразном состоянии озон диамагнитен, в жидком - слабопарамагнитен.

§ Запах - резкий, специфический «металлический» (по Менделееву - «запах раков»). При больших концентрациях напоминает запах хлора. Запах ощутим даже при разбавлении 1: 100000.

Xимuчecкие свойства.

Химические свойства озона определяются его большой способностью к окислению.

Молекула О 3 неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно за несколько десятков минут превращается в O 2 с выделением тепла. Повышение температуры и понижение давления увеличивают скорость перехода в двухатомное состояние. При больших концентрациях переход может носить взрывной характер.

Озон - мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины и иридия) до их высших степеней окисления.

Свойства:

1) Окисляет многие неметаллы:

2) Озон повышает степень окисления оксидов:

3) Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:

4) Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

5) Озон реагирует с сульфидами с образованием сульфатов:

6) С помощью озона можно получить Серную кислоту как из элементарной серы, так и из диоксида серы:

7) Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

8) В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

15) Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть отделён фильтрованием:

16)Озон превращает токсичные цианиды в менее опасные цианаты:

17)Озон может полностью разлагать мочевину

Способы получения озона

Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п. В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

Озон – это активная форма кислорода. Молекула озона состоит из трех атомов кислорода. Формула озона – O 3 , молекулярная масса – 48. Озон по своему бактерицидному воздействию в 3-6 раз сильнее ультрафиолетового излучения и в 400-600 раз сильнее хлора. Озон можно получить из двухатомного кислорода через ионизацию и газовый разряд высокого напряжения. В наше время озон используется не только для очистки и дезинфекции воздуха и воды , но и в целях удаления токсинов из продуктов питания . Мировая общественность уже признала озон наиболее экологически чистым, популярным и эффективным бактерицидным веществом.

Запах озона чувствуется после грозового дождя. Также озон составляет один из важнейших слоёв земной атмосферы, поглощая губительное ультрафиолетовое излучение. Вследствие недостатка озона появляются озоновые дыры, что угрожает вымиранием всему живому. Однако это ещё не всё.

Синтетически получаемый озон широко используется в медицине. Он применяется в лечении широкого спектра заболеваний, а также замедляет процессы старения . Сегодня озонотерапия применяется во многих медицинских учреждениях и косметических салонах.

Всем нам в школе на уроке химии объясняли, что первооткрывателем озона был нидерландский физик М. ванн Марум (1785г.). Однако получено данное вещество было лишь в 1839 году немецким физиком К.Ф. Шёнбейном путем электролиза воды. Он же дал веществу название – озон (от древнегреческого - пахнущий). И название действительно соответствует свойствам озона, т.к. его аромат отчетливо чувствуется уже при 7%-м содержании в воздухе.

Озон – это вторая по устойчивости молекула кислорода. В отличие от обычного двухатомного кислорода, молекула озона состоит из трех атомов, и обладает большим расстоянием между атомами (около 128 ангстрем, тогда как расстояние между атомами в двухатомном кислороде – 121 ангстрем).

При нормальных условиях озон – это газообразное вещество голубого цвета. Его масса больше массы воздуха. Один литр газа весит 2,15 грамм. Предельно допустимая концентрация O 3 в воздухе – 0,1 мкг/л. Температура перехода в газообразное состояние при 100 КПа -112 градусов по Цельсию, а температура плавления при тех же условиях - -193 градуса. В первое время практического применения озону не было найдено. Однако в начале 20 века ученые обнаружили антибактериальные свойства, чем сразу заинтересовались медицинские работники.

Смесь озона и кислорода стали применять в терапии туберкулёза , малокровия, воспаления лёгких . В 1-й мировой войне – для дезинфекции нарывов и гнойных ран. В 30-е годы этот газ уже широко применялся в хирургической практике.

С открытием антибиотиков спектр применения озона уменьшился. Поначалу казалось, что антибиотики являются лучшими средствами для лечения инфекционных заболеваний. Спустя некоторое время было выяснено, что антибиотики вызывают ряд побочных явлений, а со временем микроорганизмы становятся толерантны к ним. И тогда в медицину стал возвращаться озон.

Новые исследования свойств озона принесли ряд интересных фактов. Выяснилось, что при прямом контакте данное вещество уничтожает все известные типы микроорганизмов (в т.ч. вирусы). Причем, в отличие от многих антисептиков, наносящих вред тканям, озон не повреждает эпителиальную ткань, т.к. человеческие клетки снабжены системой антиокислительной защиты (в отличие от клеток бактерий и вирусов). Также озон существует во всех агрегатных состояниях. Это делает его использование очень удобным и дает возможность ученым открывать всё новые методы его применения. На сегодняшний день применяется не только смесь озона и кислорода, которой воздействуют на воспаления. Растворы озона вводят в кровь через инъекции. Практикуется впрыскивание смеси озона и кислорода в суставы и в точки иглоукалывания .

Однако период существования озона в нормальных условиях крайне непродолжителен. Поэтому вещество используют непосредственно после получения.

Применение озона в медицинских целях начиналось с газовой смеси озона и кислорода. Сейчас эта смесь применяется в основном наружно. Также наружно применяется озонированная вода и озонированное масло. Независимо от того, в каком виде применяется озон, его наносят на пораженный инфекцией участок эпителия. Газовую смесь озона и кислорода применяют и в хирургической практике – в целях предотвращения заражения и нагноения тканей. Количество озона в препаратах не фиксировано. В смеси озона с кислородом его концентрация составляет 3-80 мкг/мл. Озонокислородная смесь мгновенно уничтожает все виды микроорганизмов и эффективно останавливает кровотечения – ее используют для обработки сильно инфицированных и плохо затягивающихся ран, а также при некрозе мягких тканей, гангрене и ожогах . Невысокие концентрации оказывают крайне благоприятный эффект – стимулируют рост новых клеток эпителия и заживление повреждений.

Вместе с тем озон применяют не только в целях уничтожения микроорганизмов. В небольшом количестве он может влиять на местный иммунитет человека, стимулируя лейкоциты к обнаружению и уничтожению чужеродных объектов. Озонотерапия стимулирует поступление кислорода во все клетки и ткани. Попадая в кровь, это вещество стимулирует эритроциты к производству особого энзима, обеспечивающего прочность связи гемоглобина и двухатомного кислорода. Благодаря этому энзиму гемоглобин эффективно снабжает кислородом клетки и ткани.

Благодаря повышенному количеству кислорода, укрепляются мельчайшие капилляры. Кровоток в тканях улучшается, заживление ран ускоряется.

Озон – это газ природного происхождения, который, находясь в стратосфере, оберегает население планеты от негативного воздействия ультрафиолетовых лучей. В медицине это вещество часто используют для стимуляции кроветворения и повышения иммунитета. В то же время при естественном образовании озона в тропосфере в результате взаимодействия прямых солнечных лучей и выхлопных газов его воздействие на человеческий организм противоположно. Вдыхание воздуха с повышенной концентрацией газа может привести не только к обострению аллергических реакций, но и к развитию неврологических нарушений.

Характеристики озона

Озон представляет собой газ, состоящий из трех атомов кислорода. В природе он образуется в результате воздействия прямых лучей солнца на атомарный кислород.

В зависимости от формы и температуры цвет озона может варьироваться от светло-голубого до темно-синего. Соединение молекул в этом газе очень неустойчиво – через несколько минут после образования вещество распадается на атомы кислорода.

Озон является сильным окислителем, благодаря чему часто используется в промышленности, ракетостроении, медицине. В условиях производства этот газ присутствует при сварочных работах, процедурах электролиза воды, изготовлении пероксида водорода.

Отвечая на вопрос ядовит озон или нет, специалисты дают утвердительный ответ. Этот газ относится к наивысшему классу токсичности, которому соответствуют многие боевые отравляющие вещества, в том числе синильная кислота.

Влияние газа на человека

В ходе многочисленных исследований ученые пришли к выводу, что влияние озона на организм человека зависит от того, какое количество газа проникает в легкие вместе с воздухом. Всемирной организацией здравоохранения были установлены следующие предельно допустимые концентрации озона:

  • в жилой зоне – до 30 мкг/м 3 ;
  • в промышленной зоне – не более 100 мкг/м 3 .

Единоразовая максимальная дозировка вещества не должна превышать 0,16 мг/м 3 .

Негативное влияние

Отрицательное воздействие озона на организм часто наблюдается у людей, которым приходится сталкиваться с этим газом в производственных условиях: специалистам ракетостроительной отрасли, работникам, использующим озонаторы и ультрафиолетовые лампы.

Длительное и регулярное воздействие озона на человека приводит к таким последствиям:

  • раздражение органов дыхательной системы;
  • развитие астмы;
  • угнетение дыхательной функции;
  • повышение риска развития аллергических реакций;
  • увеличение возможности развития мужского бесплодия;
  • снижение иммунитета;
  • рост канцерогенных клеток.

Активнее всего озон воздействует на четыре группы людей: детей, лиц с повышенной чувствительностью, спортсменов, проводящих тренировки вне помещений, и пожилых людей. Кроме того, в зону риска входят пациенты с хроническими патологиями дыхательной и сердечно-сосудистой систем.

В результате контакта в производственных условиях с жидким озоном, кристаллизация которого наступает при температуре –200 градусов Цельсия, возможно наступление глубокого обморожения.

Положительное воздействие

Максимальное количество озона находится в стратосферном слое воздушной оболочки планеты. Располагающийся там озоновый пласт способствует поглощению самый вредной части ультрафиолетовых лучей солнечного спектра.

В тщательно выверенных дозировках медицинский озон или кислородно-озоновая смесь оказывает на организм человека благоприятное воздействие, благодаря чему часто используется в лечебных целях.

Под контролем лечащего врача использование этого вещества позволяет добиться следующих результатов:

Истории наших читателей


Владимир
61 год

  • устранить кислородную недостаточность;
  • усилить окислительно-восстановительные процессы, протекающие в организме;
  • снизить последствия интоксикации за счет выведения токсинов;
  • устранить болевой синдром;
  • улучшить кровоток и обеспечить снабжение кровью всех органов;
  • восстановить правильное функционирование печени при различных ее заболеваниях, в том числе гепатите.

Помимо этого, использование в медицинской практике озонотерапии позволяет улучшить общее состояние пациента: стабилизировать сон, уменьшить нервозность, повысить иммунитет, устранить хроническую усталость.

Благодаря способности к окислению других химических элементов озон часто используется в качестве средства для дезинфекции. Это вещество позволяет эффективно бороться с грибками, вирусами и бактериями.

Применение озонаторов

Описанные положительные свойства, оказываемые озоном, привели к производству и использованию в промышленных и бытовых условиях озонаторов – приспособлений, продуцирующих трехвалентный кислород.

Использование таких приборов в промышленности позволяет осуществить следующие мероприятия:

  • продезинфицировать воздух в помещении;
  • уничтожить плесень и грибки;
  • обеззаразить воду и канализационные стоки;

В медицинских учреждениях озонаторы используются для дезинфекции помещений, стерилизации инструментария и расходных материалов.

Использование озонаторов распространено и в домашних условиях. Такие приборы часто применяются для обогащения воздуха кислородом, дезинфекции воды и устранения вирусов и бактерий с посуды или предметов быта, используемых человеком с инфекционным заболеванием.

При использовании озонатора в быту необходимо соблюдать все условия, указанные производителем прибора. Категорически запрещено находиться в помещении при включенном приспособлении, а также сразу же употреблять очищенную с его помощью воду.

Симптоматика отравления

Проникновение высокой концентрации озона в организм человека через органы дыхания либо длительное взаимодействие с этим веществом способно вызвать тяжелую интоксикацию. Симптомы отравления озоном могут проявиться как резко – при однократном вдыхании большого количества этого вещества, так и обнаруживаться постепенно – при хронической интоксикации вследствие несоблюдения условий труда или правил использования бытовых озонаторов.

Первыми обнаруживаются признаки отравления со стороны дыхательной системы:

  • першение и жжение в горле;
  • затрудненное дыхание, одышка;
  • невозможность сделать глубокий вдох;
  • появление частого и прерывистого дыхания;
  • боль в загрудинной области.

При воздействии газа на глаза может наблюдаться их слезоточивость, возникновение рези, покраснение слизистой оболочки, расширение сосудов. В некоторых случаях происходит ухудшение либо полная потеря зрения.

При систематическом контакте озон может влиять на организм человека следующим образом:

  • происходят структурные преобразования бронхов;
  • развиваются и обостряются различные заболевания дыхательных путей: пневмонии, бронхиты, астмы, эмфиземы;
  • снижение объема дыхания приводит к приступам удушья и полному прекращению дыхательной функции.

Помимо воздействия на органы дыхания, хроническое отравление озоном влечет за собой патологические процессы в функционировании других систем организма:

  • развитие неврологических нарушений – снижение уровня концентрации и внимания, появление головных болей, нарушение координации движений;
  • обострение хронических заболеваний;
  • нарушение свертываемости крови, развитие анемий, возникновение кровотечений;
  • обострение аллергических реакций;
  • нарушение в организме окислительных процессов, в результате которого происходит распространение свободных радикалов и разрушение здоровых клеток;
  • развитие атеросклероза;
  • ухудшение секреторной функциональности желудка.

Первая помощь при отравлении озоном

Острое отравление озоном может привести к тяжелым последствиям, вплоть до смертельного исхода, поэтому при возникновении подозрения на интоксикацию пострадавшему должна быть немедленно оказана доврачебная помощь. До приезда специалистов необходимо осуществить следующие мероприятия:

  1. Вынести пострадавшего из зоны поражения токсическим веществом либо обеспечить приток в помещение свежего воздуха.
  2. Расстегнуть тесную одежду, придать человеку полусидящее положение, не допуская запрокидывания головы.
  3. В случае прекращения самостоятельного дыхания и остановки сердца провести реанимационные мероприятия – искусственное дыхание изо рта в рот и непрямой массаж сердца.

При контакте озона с глазами необходимо сделать промывание при помощи большого количества проточной воды.

В случае воздействия на человека жидкого озона ни в коем случае нельзя пытаться удалить с пострадавшего одежду в месте ее соприкосновения с телом. До приезда специалистов стоит промывать пораженный участок большим количеством воды.

Помимо оказания пострадавшему первой помощи, необходимо незамедлительно доставить его в лечебное учреждение либо вызвать карету скорой помощи, поскольку дальнейшие мероприятия по интоксикации могут быть проведены только квалифицированным медицинским персоналом.

Лечение отравления

Для устранения отравления озоном в условиях медицинского стационара предпринимаются следующие мероприятия:

  • выполняют щелочные ингаляции для устранения раздражения верхних дыхательных путей;
  • назначают лекарственные препараты для прекращения кашля и восстановления функций дыхания;
  • при острой дыхательной недостаточности пациента подключают к аппарату искусственной вентиляции легких;
  • при поражении глаз назначаются сосудосуживающие и обеззараживающие препараты;
  • в случае тяжелого отравления проводится терапия по нормализации функций сердечно-сосудистой системы;
  • осуществляется антиоксидантная терапия.

Последствия

Длительное воздействие озона на организм человека при неправильных условиях труда либо нарушении правил использования озонатора приводит к хроническому отравлению. Это состояние зачастую влечет за собой развитие таких последствий:

  • Образование опухолей. Причина этого явления заключается в канцерогенном действии озона, вследствие которого происходит повреждение генома клеток и развитие их мутации.
  • Развитие мужского бесплодия. При систематичном вдыхании озона происходит нарушение сперматогенеза, по причине которого теряется возможность продолжения рода.
  • Неврологические патологии. У человека происходит нарушение внимания, ухудшение сна, общая слабость, регулярное возникновение головных болей.

Профилактика

Во избежание отравления озоном специалисты рекомендуют придерживаться следующих рекомендаций:

  • Отказаться от занятий спортом вне помещений в жаркое время суток, в особенности летом. Желательно выполнять физические упражнения в помещениях либо на местности, отдаленной от крупных промышленных предприятий и широких автомобильных дорог, в утренние и вечерние часы.
  • В жаркое время суток необходимо как можно реже находиться вне помещений, особенно в местности с повышенной загазованностью.
  • При контакте с озоном в промышленных условиях помещение должно быть оборудовано вытяжной вентиляцией. Помимо этого, во время производственного процесса необходимо использовать устройства для защиты, а также специальные датчики, отображающие уровень газа в помещении. Время непосредственного контакта с озоном должно быть максимально сокращено.

При выборе бытового озонатора важно обратить внимание на его технические характеристики и наличие соответствующего сертификата. Покупка несертифицированного прибора может привести к возникновению интоксикации трехвалентным кислородом. Перед использованием прибора необходимо ознакомиться с правилами его эксплуатации и мерами предосторожности.

Интоксикация озоном – достаточно тяжелое состояние, которое требует незамедлительного вмешательства медицинских работников. Поэтому стоит помнить, что при работе с этим газом либо применении бытовых озонаторов стоит придерживаться техники безопасности, а при малейшем подозрении на отравление – обращаться в лечебное учреждение.

ОЗОН (О 3) — аллотропная модификация кислорода, его молекула состоит из трех атомов кислорода и может существовать во всех трех агрегатных состояниях. Молекула озона имеет угловую структуру в форме равнобедренного треугольника с вершиной 127 o . Однако замкнутого треугольника не образуется, а молекула имеет строение цепи из 3-х атомов кислорода с расстоянием между ними 0,224 нм. В соответствии с этой молекулярной структурой дипольный момент составляет 0,55 дебай. В электронной структуре молекулы озона имеются 18 электронов, которые образуют мезомерностабильную систему, существующую в различных пограничных состояниях. Пограничные ионные структуры отражают дипольный характер молекулы озона и объясняют его специфическое реакционное поведение в сравнении с кислородом, который образует радикал с двумя неспаренными электронами. Молекула озона состоит из трех атомов кислорода. Химическая формула этого газа– O 3 Реакция образования озона: 3O 2 + 68 ккал/моль (285 кДж/моль) ⇄ 2O 3 Молекулярная масса озона – 48 При комнатной температуре озон — это бесцветный газ с характерным запахом. Запах озона чувствуется при концентрации 10 -7 М. В жидком состоянии озон — это темно-синий цвет с температурой плавления -192,50 С. Твердый озон представляет собой кристаллы черного цвета с температурой кипения -111,9 гр.С. При температуре 0 гр. и 1 атм. = 101,3 кПа плотность озона составляет 2,143 г/л. В газообразном состоянии озон диамагнитен и выталкивается из магнитного поля, в жидком -слабопарамагнитен, т.е. обладает собственным магнитным полем и втягивается в магнитное поле.

Химические свойства озона

Молекула озона неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно превращается в двухатомный кислород с выделением тепла. Повышение температуры и понижение давления увеличивают скорость разложения озона. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение. Химическая активность озона очень велика, это мощный окислитель. Он окисляет почти все металлы (за исключением золота, платины и иридия) и многие неметаллы. Продуктом реакции в основном является кислород. Озон растворяется в воде лучше, чем кислород, образуя нестойкие растворы, причём скорость его разложения в растворе в 5 -8 раз выше, чем в газовой фазе, чем в газовой фазе (Разумовский С.Д., 1990). Это обусловлено, по-видимому, не спецификой конденсированной фазы, а его реакциями с примесями и ионом гидроксила, поскольку скорость распада очень чувствительна к содержанию примесей и рН. Растворимость озона в растворах хлорида натрия подчиняется закону Генри. С увеличением концентрации NaCl в водном растворе растворимость озона уменьшается (Тарунина В.Н. и соавт.,1983). Озон имеет очень высокое сродство к электрону (1,9 эВ), что и обуславливает его свойства сильного окислителя, превосходимого только фтором (Разумовский С.Д., 1990).

Биологические свойства озона и его влияние на организм человека

Высокая окисляющая способность и то, что во многих химических реакциях, протекающих с участием озона, образуются свободные радикалы кислорода, делают этот газ крайне опасным для человека. Как газообразный озон влияет на человека:
  • Раздражает и повреждает ткани органов дыхания;
  • Воздействует на холестерин в крови человека, образуя нерастворимые формы, что приводит к атеросклерозу;
  • Долгое нахождение в среде с повышенной концентрацией озона может стать причиной мужского бесплодия.
В Российской Федерации озон отнесён к первому, самому высокому классу опасности вредных веществ. Нормативы по озону:
  • Максимальная разовая предельно допустимая концентрация (ПДК м.р.) в атмосферном воздухе населённых мест 0,16 мг/м 3
  • Среднесуточная предельно допустимая концентрация (ПДК с.с.) – 0,03 мг/м 3
  • Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – 0,1 мг/м 3 (при этом, порог человеческого обоняния приближённо равен 0,01 мг/м 3).
Высокую токсичность озона, а именно – его способность эффективно убивать плесень и бактерии, используют для дезинфекции. Применение озона вместо средств дезинфекции на основе хлора позволяет существенно сократить загрязнение окружающей среды хлором, опасным, в числе прочего, и для стратосферного озона. Стратосферный озон играет роль защитного экрана для всего живого на земле, препятствуя проникновению к поверхности Землю жесткого ультрафиолетового излучения.

Вредные и полезные свойства озона

Озон присутствует в двух слоях атмосферы. Тропосферный или приземный озон, находящийся в ближайшем к поверхности Земли слое атмосферы-в тропосфере – опасен. Он вреден и для человека, и для других живых организмов. Он губительно воздействует на деревья, посевы сельскохозяйственных культур. Кроме того, тропосферный озон-один из главных „ингредиентов“ городского смога. В тоже время стратосферный озон очень полезен. Разрушение образованного им озонового слоя (озонового экрана) приводит к тому, что поток ультрафиолетового излучения на земную поверхность увеличивается. Из-за этого возрастает количество заболеваний раком кожи (в том числе наиболее опасного его вида-меланомы), случаев катаракты. Воздействие жесткого ультрафиолета ослабляет иммунитет. Избыточное УФ-излучение может также стать проблемой для сельского хозяйства, так как посевы некоторых культур чрезвычайно чувствительны к ультрафиолету. В то же время следует помнить, что озон – ядовитый газ, и на уровне земной поверхности он является вредоносным загрязнителем. Летом из-за интенсивного солнечного излучения и жары в воздухе образуется особенно много вредоносного озона.

Взаимодействие озона и кислорода друг с другом. Сходства и различия.

Озон – аллотропная форма кислорода. Аллотропия – существование одного и того же химического элемента в виде двух и более простых веществ. В данном случае и озон (O3) и кислород (O 2) образованы химическим элементом О. Получение озона из кислорода Как правило, исходным веществом для получения озона выступает молекулярный кислород (O 2), а сам процесс описывается уравнением 3O 2 → 2O 3 . Эта реакция эндотермична и легко обратима. Для смещения равновесия в сторону целевого продукта (озона) применяются определенные меры. Один из способов получения озона – использование дугового разряда. Термическая диссоциация молекул резко возрастает с ростом температуры. Так, при Т=3000К - содержание атомарного кислорода составляет ~10 %. Температуру в несколько тысяч градусов можно получить при помощи дугового разряда. Однако при высокой температуре озон разлагается быстрее молекулярного кислорода. Чтобы предотвратить это, можно сместить равновесие, сначала нагрев газ, а затем резко его охладив. Озон в данном случае-промежуточный продукт при переходе смеси O 2 +O к молекулярному кислороду. Максимальная концентрация O 3 , которую можно получить при таком способе производства, достигает 1 %. Этого достаточно для большинства промышленных целей. Окислительные свойства озона Озон - мощный окислитель, намного более реакционноспособный по сравнению с двухатомным кислородом. Окисляет почти все металлы и многие неметаллы с образованием кислорода: 2 Cu 2+ (aq) + 2 H 3 O + (aq) + O 3(g) → 2 Cu 3+ (aq) + 3 H 2 O (1) + O 2(g) Озон может участвовать в реакциях горения, температура горения при этом выше, чем при горении в атмосфере двухатомного кислорода: 3 C 4 N 2 + 4 O 3 → 12 CO + 3 N 2 Стандартный потенциал озона равен 2.07 В, поэтому молекула озона неустойчива и самопроизвольно превращается в кислород с выделением тепла. При небольших концентрациях озон разлагается медленно, при высоких — со взрывом, т.к. его молекула обладает избыточной энергией. Нагревание и контакт озона с ничтожными количествами органических веществ (гидроокиси, перекиси, металлы переменной валентности, их окислы) резко ускоряет превращение. Напротив, присутствие небольших количеств азотной кислоты стабилизирует озон, а в сосудах из стекла и некоторых пластмасс или чистых металлов озон при -78 0 C. практически разлагается. Сродство озона к электрону равняется 2 эв. Таким сильным сродством обладает только фтор и его окислы. Озон окисляет все металлы (за исключением золота и платиновых), а также большинство других элементов. Хлор участвует в реакциях с озоном с образованием гипохлора ОCL. Реакции озона с атомарным водородом являются источником образования гидроксильных радикалов. Озон имеет максимум поглощения в УФ-области при длине волны 253,7 нм с молярным коэффициентом экстинции: E = 2,900 На основании этого УФ-фотометрическое определение концентрации озона вместе с йодо-метрическим титрованием принято за международные стандарты. Кислород, в отличие от озона, в реакцию с KI не вступает.

Растворимость озона и его стабильность в водных растворах

Скорость разложения озона в растворе в 5-8 раз выше, чем в газовой фазе. Растворимость озона в воде в 10 раз выше, чем кислорода. По данным разных авторов величина коэффициента растворимости озона в воде колеблется от 0,49 до 0,64 мл озона/ мл воды. В идеальных термодинамических условиях равновесие подчиняется закону Генри, т.е. концентрация насыщенного раствора газа пропорциональна его парциальному давлению. C S = B × d × Рi где: С S — концентрация насыщенного раствора в воде; d — масса озона; Pi — парциальное давление озона; B — коэффициент растворения; Выполнение закона Генри для озона как метастабильного газа условно. Распад озона в газовой фазе зависит от парциального давления. В водной среде имеют место процессы, выходящие за область действия закона Генри. Вместо него в идеальных условиях действует закон Gibs-Dukem-Margulesdu. В практике принято выражать растворимость озона в воде через соотношение концентрации озона в жидкой среде к концентрации озона в газовой фазе: Насыщение озоном зависит от температуры и качества воды, поскольку органические и неорганические примеси изменяют рН среды. При одинаковых условиях в водопроводной воде концентрация озона составляет 13 mg/l, в бидистиллированной воде — 20mg/l. Причиной этого является значительный распад озона из-за различных ионных примесей в питьевой воде.

Распад озона и период полураспада (т 1/2)

В водной среде распад озона сильно зависит от качества воды, температуры и рН среды. Повышение рН среды ускоряет распад озона и снижает при этом концентрацию озона в воде. Аналогичные процессы происходят при повышении температуры. Период полураспада озона в бидистиллированной воде составляет 10 часов, в деминерализованной воде — 80 минут; в дистиллированной воде — 120 минут. Известно, что разложение озона в воде является сложным процессом реакций радикальных цепей: Максимальное количество озона в водном образце наблюдается в течение 8-15 минут. Через 1 час в растворе отмечаются только свободные радикалы кислорода. Среди них важнейшим является гидроксильный радикал (ОН’) (Staehelin G., 1985), и это необходимо принимать во внимание при использовании озонированной воды в терапевтических целях. Поскольку в клинической практике находят применение озонированная вода и озонированный физиологический раствор, нами проведена оценка этих озонированных жидкостей в зависимости от концентраций, используемых в отечественной медицине. Основными методами анализа явились йодометрическое титрование и интенсивность хемилюминесценции с использованием прибора биохемилюминометра БХЛ-06 (производство Нижний Новгород) (Конторщикова К. Н., Перетягин С. П., Иванова И. П. 1995). Явление хемилюминесценции связано с реакциями рекомбинации свободных радикалов, образующихся при разложении озона в воде. При обработке 500 мл би- или дистиллированной воды барботированием озоно-кислородной газовой смесью с концентрацией озона в пределах 1000-1500 мкг/л и скоростью потока газа 1 л/мин в течение 20 минут хемилюминесценция выявляется в течение 160 минут. Причем в бидистиллированной воде интенсивность свечения существенно выше, чем в дистиллированной, что объясняется наличием примесей, гасящих свечение. Растворимость озона в растворах NaCl подчиняется закону Генри, т.е. уменьшается с увеличением концентрации солей. Физиологический раствор обрабатывали озоном с концентрацией 400, 800 и 1000 мкг/л в течение 15 минут. Общая интенсивность свечения (в mv) увеличивалась с ростом концентрации озона. Продолжительность свечения составляет 20 минут. Это объясняется более быстрой рекомбинацией свободных радикалов и отсюда гашением свечения за счет наличия в физиологическом растворе примесей. Несмотря на высокий окислительный потенциал, озон обладает высокой селективностью, которая обусловлена полярным строением молекулы. Мгновенно реагируют с озоном соединения, содержащие свободные двойные связи (-С=С-). В результате чувствительными к действию озона являются ненасыщенные жирные кислоты, ароматические аминокислоты и пептиды, прежде всего содержащие SH- группы. Согласно данным Криге (1953) (цит. По Vieban R. 1994), первичным продуктом взаимодействия молекулы озона с биоорганическими субстратами является 1-3 диполярная молекула. Эта реакция является основной при взаимодействии озона с органическими субстратами при рН < 7,4. Озонолиз проходит в доли секунды. В растворах скорость этой реакции равна 105 г/моль·с. В первом акте реакции образуется пи-комплекс олефинов с озоном. Он относительно стабилен при температуре 140 0 С и затем превращается в первичный озонид (молозонид) 1,2,3-триоксалан. Другое возможное направление реакции — образование эпоксидных соединений. Первичный озонид нестабилен и распадается с образованием карбоксильного соединения и карбонилоксида. В результате взаимодействия карбонилоксида с карбонильным соединением образуется биполярный ион, который затем превращается во вторичный озонид 1,2,3 — триоксалан. Последний при восстановлении распадается с образованием смеси 2-х карбонильных соединений, с дальнейшим образованием пероксида (I) и озонида (II). Озонирование ароматических соединений протекает с образованием полимерных озонидов. Присоединение озона нарушает ароматическое сопряжение в ядре и требует затрат энергии, поэтому скорость озонирования гомологов коррелирует с энергией сопряжения. Озонирование насушенных углеводородов связано с механизмом внедрения. Озонирование серо- и азотосодержащих органических соединений протекает следующим образом: Озониды обычно плохо растворимы в воде, но хорошо в органических растворителях. При нагревании, действии переходных металлов распадаются на радикалы. Количество озонидов в органическом соединении определяется йодным числом. Йодное число — масса йода в граммах, присоединяющееся к 100 г органического вещества. В норме для жирных кислот йодное число составляет 100-400, для твердых жиров 35-85, для жидких жиров — 150-200. Впервые озон, как антисептическое средство был опробован A. Wolff еще в 1915 во время первой мировой войны. Последующие годы постепенно накапливалась информация об успешном применении озона при лечении различных заболеваний. Однако длительное время использовались лишь методы озонотерапии, связанные с прямыми контактами озона с наружными поверхностями и различными полостями тела. Интерес к озонотерапии усиливался по мере накопления данных о биологическом действии озона на организм и появления сообщений из различных клиник мира об успешном использовании озона при лечении целого ряда заболеваний. История медицинского применения озона начинается с XIX века. Пионерами клинического применения озона были западные ученые Америки и Европы, в частности, C. J. Kenworthy, B. Lust, I. Aberhart, Е. Payer, E. A. Fisch, Н. Н. Wolff и другие. В России о лечебном применении озона было известно мало. Только в 60-70 годы в отечественной литературе появилось несколько работ по ингаляционной озонотерапии и по применению озона в лечении некоторых кожных заболеваний, а с 80-х годов в нашей стране этот метод стал интенсивно разрабатываться и получать более широкое распространение. Основы для фундаментальных разработок технологий озонотерапии были во многом определены работами Института химической физики АМН СССР. Книга «Озон и его реакции с органическими веществами» (С. Д. Разумовский, Г. Е. Зайков, Москва, 1974 г.) явилась отправной точкой для обоснования механизмов лечебного действия озона у многих разработчиков. В мире широко действует Международная озоновая ассоциация (IOA), которая провела 20 международных конгрессов, а с 1991 года в работе этих конгрессов принимают участие и наши врачи и ученые. Совершенно по-новому сегодня рассматриваются проблемы прикладного использования озона, а именно в медицине. В терапевтическом диапазоне концентраций и доз озон проявляет свойства мощного биорегулятора, средства, способного во многом усилить методы традиционной медицины, а зачастую выступать в качестве средства монотерапии. Применение медицинского озона представляет качественно новое решение актуальных проблем лечения многих заболеваний. Технологии озонотерапии используются в хирургии, акушерстве и гинекологии, стоматологии, неврологии, при терапевтической патологии, инфекционных болезнях, дерматологии и венерических болезнях и целом ряде других заболеваний. Для озонотерапии характерна простота исполнения, высокая эффективность, хорошая переносимость, практическое отсутствие побочных действий, она экономически выгодна. Лечебные свойства озона при заболеваниях различной этиологии основаны на его уникальной способности воздействовать на организм. Озон в терапевтических дозах действует как иммуномодулирующее, противовоспалительное, бактерицидное, противовирусное, фунгицидное, цитостатическое, антистрессовое и аналгезирующее средство. Его способность активно коррегировать нарушенный кислородный гомеостаз организма открывает большие перспективы для восстановительной медицины. Широкий спектр методических возможностей позволяет с большой эффективностью использовать лечебные свойства озона для местной и системной терапии. В последние десятилетия на передний план вышли методы, связанные с парентеральным (внутривенным, внутримышечным, внутрисуставным, подкожным) введением терапевтических доз озона, лечебный эффект которых связан, в основном, с активизацией различных систем жизнедеятельности организма. Кислородно-озоновая газовая смесь при высоких (4000 — 8000 мкг/л) концентрациях в ней озона в эффективна при обработке сильно инфицированных, плохо заживающих ран, гангрене, пролежней, ожогов, грибковых поражениях кожи и т.п. Озон в высоких концентрациях можно также использовать как кровоостанавливающее средство. Низкие концентрации озона стимулируют репарацию, способствуют эпителизации и заживлению. В лечении колитов, проктитов, свищей и ряда других заболеваний кишечника используют ректальное введение кислородно-озоновой газовой смеси. Озон, растворенный в физиологическом растворе, успешно применяют при перитоните для санации брюшной полости, а озонированную дистиллированную воду в челюстной хирургии и др. Для внутривенного введения используется озон, растворенный в физиологическом растворе или в крови больного. Пионерами Европейской школы было высказано постулирующее положение о том, что главной целью озонотерапии является: «Стимуляция и реактивация кислородного метаболизма без нарушения окислительно-восстановительных систем»,- это значит, что при расчете дозировок на сеанс или курс, озонотерапевтическое воздействие должно находиться в пределах, в которых ферментативно выравниваются радикальные кислородные метаболиты или избыточно полученный пероксид» (З. Риллинг, Р. Фибан 1996 в кн. Практика озонотерапии). В зарубежной медицинской практике для парентерального введения озона используются, в основном, большая и малая аутогемотерапии. При проведении большой аутогемотерапии, взятая у пациента кровь тщательно смешивается с определенным объемом кислородно-озоновой газовой смеси, и сразу же капельно вводится обратно в вену того же пациента. При малой аутогемотерапии озонированная кровь вводится внутримышечно. Терапевтическая доза озона в этом случае выдерживается за счет фиксированных объемов газа и концентрации озона в нем.

Научные достижения отечественных учёных стали регулярно докладываться на международных конгрессах и симпозиумах

  • 1991 г. – Куба, Гавана,
  • 1993 г. – США Сан-Франциско,
  • 1995 г. – ФранцияЛилль,
  • 1997 г. – Япония, Киото,
  • 1998 г. – Австрия, Зальцбург,
  • 1999г. – Германия,Баден-Баден,
  • 2001 г. – Англия, Лондон,
  • 2005 г. – Франция,Страсбург,
  • 2009 г. – Япония, Киото,
  • 2010 г. — Испания, Мадрид
  • 2011 г.Турция(Стамбул),Франция (Париж),Мексика(Канкун)
  • 2012г. – Испания, Мадрид
Научными центрами разработок озонотерапии в России стали клиники городов Москвы и Нижнего Новгорода. Очень скоро к ним присоединились учёные из Воронежа, Смоленска, Кирова, Новгорода, Екатеринбурга, Саранска, Волгограда, Ижевска и других городов. Распространению технологий озонотерапии безусловно способствовало регулярное проведение Всероссийских научно-практических конференций с международным участием, организуемых по инициативе Ассоциации российских озонотерапевтов с 1992 года в г. Н. Новгород, собирающие специалистов со всех уголков страны.

Всероссийские научно-практические конференции с Международным участием по озонотерапии

I – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1992 г ., Н.Новгород II – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1995 г ., Н.Новгород III – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 1998 г ., Н.Новгород IV – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 2000 г ., Н.Новгород V – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2003 г ., Н.Новгород VI – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2005 г ., Н.Новгород «I Конференция по озонотерапии Азиатско-Европейского союза озонотерапевтов и производителей медоборудования»– 2006 г ., Большое Болдино, Нижегородская область VII – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2007 г ., Н.Новгород У111«Озон, активные формы кислорода и методы интенсивной терапии в медицине» — 2009, г.Н.Новгород К 2000 г. Российская школа озонотерапии окончательно сформировала свой, отличающийся от Европейского, подход к применению озона как лечебного средства. Главные отличия — широкое использование физиологического раствора в качестве носителя озона, применение значительно более низких концентраций и доз озона, разработанные технологии экстракорпоральной обработки больших объёмов крови (озонированное искусственное кровообращение), индивидуальный выбор доз и концентраций озона при системной озонотерапии. В стремлении большинства российских врачей использовать наименьшие из эффективных концентраций озона нашел отражение основной принцип медицины — «не навреди». Безопасность и эффективность Российских методик озонотерапии многократно обоснована и доказана применительно к различным областям медицины. В результате многолетних фундаментально-клинических исследований нижегородскими учёными была «Установлена неизвестная закономерность формирования адаптационных механизмов организма млекопитающих при системном воздействии низкими терапевтическими дозами озона, заключающаяся в том, что пусковым механизмом является влияние озона на про- и антиоксидантный баланс организма и обусловленная умеренной интенсификацией свободно-радикальных реакций, что, в свою очередь, увеличивает активность ферментативного и неферментативного звеньев антиоксидантной системы защиты» (Конторщикова К. Н., Перетягин С. П.), на которую авторы получили открытие (Диплом № 309 от 16 мая 2006 г.). В работах отечественных учёных нашли развитие новые технологии и аспекты использования озона с лечебными целями:
  • Широкое использование в качестве носителя растворенного озона физиологического раствора (0,9% раствор NaCl)
  • Применение сравнительно малых концентраций и доз озона при системном воздействии (внутрисосудистое и внутрикишечное введение)
  • Внутрикостные вливания озонированных растворов
  • Внутрикоронарное введение озонированных кардиоплегических растворов
  • Тотальная экстракорпоральная обработка озоном больших объемов крови при искусственном кровообращении
  • Низкопоточная озонокислородная терапия
  • Внутрипортальное введение озонированных растворов
  • Применение озона на театре военных действий
  • Сопровождение системной озонотерапии методами биохимического контроля
В 2005-2007 гг. впервые в мировой практике в России озонотерапия получила официальный статус на государственном уровне в виде утверждения МЗ и социального развития РФ новых медицинских технологий использования озона в дерматологии и косметологии, акушерстве и гинекологии, травматологии. В настоящее время в нашей стране ведутся активные работы по распространению и внедрению метода озонотерапии. Анализ Российского и Европейского опыта озонотерапии позволяет сделать важные выводы :
  1. Озонотерапия — немедикаментозный метод лечебного воздействия, позволяющий получать положительные результаты при патологии различного генеза.
  2. Биологическое действие парентерально введенного озона проявляется на уровне низких концентраций и доз, что сопровождается клинически выраженными позитивными лечебными эффектами, имеющими четко выраженную дозозависимость.
  3. Опыт Российской и Европейской школ озонотерапии свидетельствует о том, что использование озона в качестве лечебного средства значительно повышает эффективность лекарственной терапии, позволяет в ряде случаев заменить или уменьшить фармакологическую нагрузку на пациента. На фоне озонотерапии восстанавливаются собственные кислородзависимые реакции и процессы больного организма.
  4. Технические возможности современных медицинских озонаторов, обладающих возможностями сверхточной дозировки, позволяют применять озон в диапазоне низких терапевтических концентраций аналогично общепринятым фармакологическим средствам.