Составить систему линейных уравнений. Системы линейных уравнений. Матричная форма записи систем линейных алгебраических уравнений

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы "Система линейных алгебраических уравнений. Основные термины. Матричная форма записи" . В частности, нужны такие понятия, как матрица системы и расширенная матрица системы , поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы - буквой $\widetilde{A}$.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $\rang A=\rang\widetilde{A}$.

Напомню, что система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если $\rang A=\rang\widetilde{A}$, то решение есть; если $\rang A\neq\rang\widetilde{A}$, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква $n$, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

  1. Если $\rang A\neq\rang\widetilde{A}$, то СЛАУ несовместна (не имеет решений).
  2. Если $\rang A=\rang\widetilde{A} < n$, то СЛАУ является неопределённой (имеет бесконечное количество решений).
  3. Если $\rang A=\rang\widetilde{A} = n$, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют - то сколько.

Пример №1

Исследовать СЛАУ $ \left \{\begin{aligned} & -3x_1+9x_2-7x_3=17;\\ & -x_1+2x_2-4x_3=9;\\ & 4x_1-2x_2+19x_3=-42. \end{aligned}\right.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $\widetilde{A}$, запишем их:

$$ A=\left(\begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right);\; \widetilde{A}=\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right). $$

Нужно найти $\rang A$ и $\rang\widetilde{A}$. Для этого есть много способов, некоторые из которых перечислены в разделе "Ранг матрицы" . Обычно для исследования таких систем применяют два метода: "Вычисление ранга матрицы по определению" или "Вычисление ранга матрицы методом элементарных преобразований" .

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг - это наивысший порядок миноров матрицы , среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ - это определитель матрицы $A$, т.е. $\Delta A$. Для вычисления определителя применим формулу №2 из темы "Формулы для вычисления определителей второго и третьего порядков" :

$$ \Delta A=\left| \begin{array} {ccc} -3 & 9 & -7 \\ -1 & 2 & -4 \\ 4 & -2 & 19 \end{array} \right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $\rang A=3$.

Нам требуется найти также и $\rang\widetilde{A}$. Давайте посмотрим на структуру матрицы $\widetilde{A}$. До черты в матрице $\widetilde{A}$ находятся элементы матрицы $A$, причём мы выяснили, что $\Delta A\neq 0$. Следовательно, у матрицы $\widetilde{A}$ есть минор третьего порядка, который не равен нулю. Миноров четвёртого порядка матрицы $\widetilde{A}$ составить мы не можем, поэтому делаем вывод: $\rang\widetilde{A}=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение (хотя бы одно). Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система является определённой, т.е. имеет единственное решение.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $\Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы .

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $\Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может - ни одного. Если $\Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Способ №2. Вычисление ранга методом элементарных преобразований.

Подробно это метод описан в соответствующей теме . Мы станем вычислять ранг матрицы $\widetilde{A}$. Почему именно матрицы $\widetilde{A}$, а не $A$? Дело в том, что матрица $A$ является частью матрицы $\widetilde{A}$, поэтому вычисляя ранг матрицы $\widetilde{A}$ мы одновременно найдем и ранг матрицы $A$.

\begin{aligned} &\widetilde{A} =\left(\begin{array} {ccc|c} -3 & 9 &-7 & 17 \\ -1 & 2 & -4 & 9\\ 4 & -2 & 19 & -42 \end{array} \right) \rightarrow \left|\text{меняем местами первую и вторую строки}\right| \rightarrow \\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ -3 & 9 &-7 & 17\\ 4 & -2 & 19 & -42 \end{array} \right) \begin{array} {l} \phantom{0} \\ r_2-3r_1\\ r_3+4r_1 \end{array} \rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 6 & 3 & -6 \end{array} \right) \begin{array} {l} \phantom{0} \\ \phantom{0}\\ r_3-2r_2 \end{array}\rightarrow\\ &\rightarrow \left(\begin{array} {ccc|c} -1 & 2 & -4 & 9 \\ 0 & 3 &5 & -10\\ 0 & 0 & -7 & 14 \end{array} \right) \end{aligned}

Мы привели матрицу $\widetilde{A}$ к ступенчатому виду . Полученная ступенчатая матрица имеет три ненулевых строки, поэтому её ранг равен 3. Следовательно, и ранг матрицы $\widetilde{A}$ равен 3, т.е. $\rang\widetilde{A}=3$. Делая преобразования с элементами матрицы $\widetilde{A}$ мы одновременно преобразовывали и элементы матрицы $A$, расположенные до черты. Матрица $A$ также приведена к ступенчатому виду: $\left(\begin{array} {ccc} -1 & 2 & -4 \\ 0 & 3 &5 \\ 0 & 0 & -7 \end{array} \right)$. Вывод: ранг матрицы $A$ также равен 3, т.е. $\rang A=3$.

Так как $\rang A=\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система совместна, т.е. имеет решение. Чтобы указать количество решений, учтём, что наша СЛАУ содержит 3 неизвестных: $x_1$, $x_2$ и $x_3$. Так как количество неизвестных $n=3$, то делаем вывод: $\rang A=\rang\widetilde{A}=n$, поэтому согласно следствия из теоремы Кронекера-Капелли, система определена, т.е. имеет единственное решение.

Какие преимущества второго способа? Главное преимущество - это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса . Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор - это дело вкуса.

Ответ : Заданная СЛАУ совместна и определена.

Пример №2

Исследовать СЛАУ $ \left\{ \begin{aligned} & x_1-x_2+2x_3=-1;\\ & -x_1+2x_2-3x_3=3;\\ & 2x_1-x_2+3x_3=2;\\ & 3x_1-2x_2+5x_3=1;\\ & 2x_1-3x_2+5x_3=-4. \end{aligned} \right.$ на совместность.

Находить ранги матрицы системы и расширенной матрицы системы будем методом элементарных преобразований . Расширенная матрица системы: $\widetilde{A}=\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -1 & 3 & 2 \\ 3 & -2 & 5 & 1 \\ 2 & -3 & 5 & -4 \end{array} \right)$. Найдём требуемые ранги, преобразовывая расширенную матрицу системы:

$$ \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ -1 & 2 & -3 & 3 \\ 2 & -3 & 5 & -4 \\ 3 & -2 & 5 & 1 \\ 2 & -1 & 3 & 2 \end{array} \right) \begin{array} {l} \phantom{0}\\r_2+r_1\\r_3-2r_1\\ r_4-3r_1\\r_5-2r_1\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 4 \\ 0 & 1 & -1 & 4 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\r_3-r_2\\ r_4-r_2\\r_5+r_2\end{array}\rightarrow\\ $$ $$ \rightarrow\left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right) \begin{array} {l} \phantom{0}\\\phantom{0}\\\phantom{0}\\ r_4-r_3\\\phantom{0}\end{array}\rightarrow \left(\begin{array} {ccc|c} 1 & -1 & 2 & -1\\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) $$

Расширенная матрица системы приведена к ступенчатому виду . Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $\rang\widetilde{A}=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $\rang{A}=2$.

Так как $\rang A\neq\rang\widetilde{A}$, то согласно теореме Кронекера-Капелли система несовместна (т.е. не имеет решений).

Ответ : система несовместна.

Пример №3

Исследовать СЛАУ $ \left\{ \begin{aligned} & 2x_1+7x_3-5x_4+11x_5=42;\\ & x_1-2x_2+3x_3+2x_5=17;\\ & -3x_1+9x_2-11x_3-7x_5=-64;\\ & -5x_1+17x_2-16x_3-5x_4-4x_5=-90;\\ & 7x_1-17x_2+23x_3+15x_5=132. \end{aligned} \right.$ на совместность.

Приводим расширенную матрицу системы к ступенчатому виду:

$$ \left(\begin{array}{ccccc|c} 2 & 0 & 7 & -5 & 11 & 42\\ 1 & -2 & 3 & 0 & 2 & 17 \\ -3 & 9 & -11 & 0 & -7 & -64 \\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \overset{r_1\leftrightarrow{r_3}}{\rightarrow} $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 2 & 0 & 7 & -5 & 11 & 42\\ -3 & 9 & -11 & 0 & -7 & -64\\ -5 & 17 & -16 & -5 & -4 & -90 \\ 7 & -17 & 23 & 0 & 15 & 132 \end{array} \right) \begin{array} {l} \phantom{0}\\ r_2-2r_1 \\r_3+3r_1 \\ r_4+5r_1 \\ r_5-7r_1 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 3 & -2 & 0 & -1 & -13\\ 0 & 7 & -1 & -5 & 6 & -5 \\ 0 & -3 & 2 & 0 & 1 & 13 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\4r_3+3r_2 \\ 4r_4-7r_2 \\ 4r_5+3r_2 \end{array} \rightarrow $$ $$ \rightarrow\left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & -11 & 15 & -25 & -76 \\ 0 & 0 & 11 & -15 & 25 & 76 \end{array} \right) \begin{array} {l} \phantom{0}\\ \phantom{0}\\\phantom{0} \\ r_4-r_3 \\ r_5+r_2 \end{array} \rightarrow \left(\begin{array}{ccccc|c} 1 & -2 & 3 & 0 & 2 & 17\\ 0 & 4 & 1 & -5 & 7 & 8\\ 0 & 0 & -11 & 15 & -25 & -76\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) $$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду . Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $\rang\widetilde{A}=\rang{A}\lt{n}$, то согласно следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ : система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

6. Общая система линейных алгебраических уравнений. Метод Гаусса.

Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гаусса наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений , который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.



Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.
2) Иметь бесконечно много решений.
3) Не иметь решений (быть несовместной ).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья . Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений?
и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы :
. По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка : рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.



После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями .

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить . Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули .

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля . Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число , отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2 : . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ не изменилась . Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ .

На практике так подробно, конечно, не расписывают, а пишут короче:

Еще раз: ко второй строке прибавили первую строку, умноженную на –2 . Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ : рассмотренные манипуляции нельзя использовать , если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя!

Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду :

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид .

В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса .

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения:

И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число:

Почти всегда здесь должна находиться единица . Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения . Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2 . Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2 :

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3 . Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3 :

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно . Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО иВНИМАТЕЛЬНО :


А мысленный ход самих расчётов я уже рассмотрел выше.

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2 :


Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений:

Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат:

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:


Ответ :

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2


Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса . Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так:
(1) К первой строке прибавляем вторую строку, умноженную на –1 . То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:


Ответ : .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.

В последней части рассмотрим некоторые особенности алгоритма Гаусса.
Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например:

Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод . В расширенной матрице системы на месте отсутствующих переменных ставим нули:

Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном.... Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему четырёх линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением . Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.


Выполненные элементарные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем!
(2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание , что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее.
(3) К третьей строке прибавили вторую строку, умноженную на 5.
(4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход:

Ответ : .

Пример 4: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:
(1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке».
(2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже , «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы

(3) К третьей строке прибавили вторую, умноженную на –1.
(4) Ко второй строке прибавили третью, умноженную на –3.
Нужная вещь на второй ступеньке получена .
(5) К третьей строке прибавили вторую, умноженную на 6.

В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений , где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы , мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Решение систем линейных алгебраических уравненийявляется одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем, кроме того является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Системой линейных алгебраических уравнений называют систему уравнений вида: (1)

где неизвестные; – свободные члены.

Решением системы уравнений (1) называют всякую совокупность чисел которая будучи поставлена в систему (1) на место неизвестных обращает все уравнения системы в верные числовые равенства.

Систему уравнений называют совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений.

Совместную систему уравнений называют определенной , если она имеет одно единственное решение, и неопределенной , если она имеет, по крайней мере, два различных решения.

Две системы уравнений называют равносильными или эквивалентными , если они имеют одно и то же множество решений.

Систему (1) называют однородной , если свободные члены равны нулю:

Однородная система всегда является совместной - она имеет решение (возможно, не единственное).

Если в системе (1) , то имеем систему n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Линейная система может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

Рассмотрим систему двух линейных уравнений с двумя неизвестными

Если то система имеет единственное решение;

если то система не имеет решений;

если то система имеет бесконечное множество решений.

Пример. Система имеет единственное решение пару чисел

Система имеет бесконечное множество решений. Например, решениями данной системы являются пары чисел и т.д.

Система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

Определение. Определителем второго порядка называют выражение вида:

Обозначают определитель символом D.

Числа а 11, …, а 22 называют элементами определителя.

Диагональ, образованную элементами а 11 ; а 22 называют главной, диагональ, образованную элементами а 12 ; а 21 − побочной.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

Пример. Вычислим определители:

Рассмотрим систему двух линейных уравнений с двумя неизвестными: где х 1, х 2 неизвестные; а 11 , …, а 22 – коэффициенты при неизвестных, b 1 , b 2 – свободные члены.


Если система двух уравнений с двумя неизвестными имеет единственное решение, то его можно найти с помощью определителей второго порядка.

Определение. Определитель, составленный из коэффициентов при неизвестных, называют определителем системы: D= .

В столбцах определителя D стоят коэффициенты соответственно при х 1 и при , х 2 . Введем два дополнительных определителя, которые получаются из определителя системы заменой одного из столбцов столбцом свободных членов: D 1 = D 2 = .

Теорема 14 (Крамера, для случая n=2). Если определитель D системы отличен от нуля (D¹0), то система имеет единственное решение, которое находят по формулам:

Данные формулы называют формулами Крамера.

Пример. Решим систему по правилу Крамера:

Решение. Найдем числа

Ответ.

Определение. Определителем третьего порядка называют выражение вида:

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

В запись с плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали. Слагаемые с минусом образуют по той же схеме относительно побочной диагонали.

Пример. Вычислим определители:

Рассмотрим систему трех линейных уравнений с тремя неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

В случае единственного решения систему 3-х линейных уравнений с тремя неизвестными можно решить с помощью определителей 3-го порядка.

Определитель системы D имеет вид:

Введем три дополнительных определителя:

Теорема 15 (Крамера, для случая n=3). Если определитель D системы отличен от нуля, то система имеет единственное решение, которое находят по формулам Крамера:

Пример. Решим систему по правилу Крамера.

Решение. Найдем числа

Воспользуемся формулами Крамера и найдем решение исходной системы:

Ответ.

Заметим, что теорема Крамера применима, когда число уравнений равно числу неизвестных и когда определитель системы D отличен от нуля.

Если определитель системы равен нулю, то в этом случае система может либо не иметь решений, либо иметь бесчисленное множество решений. Эти случаи исследуются особо.

Отметим только один случай. Если определитель системы равен нулю (D=0), а хотя бы один из дополнительных определителей отличен от нуля, то система решений не имеет, то есть является несовместной.

Теорему Крамера можно обобщать для системы n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Если определитель системы линейных уравнений с неизвестными то единственное решение системы находят по формулам Крамера:

Дополнительный определитель получают из определителя D, если в нем столбец коэффициентов при неизвестном x i заменить столбцом свободных членов.

Заметим, что определители D, D 1 , … , D n имеют порядок n .

Метод Гаусса решения систем линейных уравнений

Одним из наиболее распространенных методов решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных −метод Гаусса . Данный метод представляет собой обобщение метода подстановки и состоит в последовательном исключении неизвестных до тех пор, пока не останется одно уравнение с одним неизвестным.

Метод основан на некоторых преобразованиях системы линейных уравнений, в результате которых получается система, равносильная исходной системе. Алгоритм метода состоит из двух этапов.

Первый этап называют прямым ходом метода Гаусса. Он заключается в последовательном исключении неизвестных из уравнений. Для этого на первом шаге делят первое уравнение системы на ( в противном случае осуществляют перестановку уравнений системы). Обозначают коэффициенты полученного приведенного уравнения, домножают его на коэффициент и вычитают из второго уравнения системы, исключая, тем самым, из второго уравнения (обнуляя коэффициент ).

Аналогично поступают с остальными уравнениями и получают новую систему, во всех уравнениях которой, начиная со второго коэффициенты при , содержатся только нули. Очевидно, что полученная при этом новая система, будет равносильна исходной системе.

Если новые коэффициенты, при , не все равны нулю, можнотаким же образом исключить из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приводят систему к так называемому треугольному виду:

Здесь символами и обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

Из последнего уравнения системы единственным образом определяют , а затем последовательной подстановкой – остальные неизвестные.

Замечание. Иногда, в результате преобразований, в каком-либо из уравнений все коэффициенты и правая часть обращаются в ноль, то есть уравнение превращается в тождество 0=0. Исключив такое уравнение из системы, уменьшают число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

где неизвестные; – коэффициенты при неизвестных, – свободные члены. , подставляя найденное

Решение. Применив к этой системе метод Гаусса, получим

Откуда Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

Ответ. Система не имеет решений.

Заметим, что рассмотренный ранее метод Крамера можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений.

Система линейных алгебраических уравнений. Основные термины. Матричная форма записи.

Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.

Под системой линейных алгебраических уравнений (СЛАУ) подразумевают систему

Параметры aij называют коэффициентами , а bi – свободными членами СЛАУ. Иногда, чтобы подчеркнуть количество уравнений и неизвестных, говорят так «m×n система линейных уравнений», – тем самым указывая, что СЛАУ содержит m уравнений и n неизвестных.

Если все свободные члены bi=0 то СЛАУ называют однородной . Если среди свободных членов есть хотя бы один, отличный от нуля, СЛАУ называют неоднородной .

Решением СЛАУ (1) называют всякую упорядоченную совокупность чисел (α1,α2,…,αn), если элементы этой совокупности, подставленные в заданном порядке вместо неизвестных x1,x2,…,xn, обращают каждое уравнение СЛАУ в тождество.

Любая однородная СЛАУ имеет хотя бы одно решение: нулевое (в иной терминологии – тривиальное), т.е. x1=x2=…=xn=0.

Если СЛАУ (1) имеет хотя бы одно решение, ее называют совместной , если же решений нет – несовместной . Если совместная СЛАУ имеет ровно одно решение, её именуют определённой , если бесконечное множество решений – неопределённой .

Матричная форма записи систем линейных алгебраических уравнений.

С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность.

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. rangA=rangA˜.

Система называется совместной, если она имеет хоть одно решение. Теорема Кронекера-Капелли говорит вот о чём: если rangA=rangA˜, то решение есть; если rangA≠rangA˜, то данная СЛАУ не имеет решений (несовместна). Ответ на вопрос о количестве этих решений даёт следствие из теоремы Кронекера-Капелли. В формулировке следствия использована буква n, которая равна количеству переменных заданной СЛАУ.

Следствие из теоремы Кронекера-Капелли

    Если rangA≠rangA˜, то СЛАУ несовместна (не имеет решений).

    Если rangA=rangA˜

    Если rangA=rangA˜=n, то СЛАУ является определённой (имеет ровно одно решение).

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения нет, а если существуют – то сколько.

Методы решения СЛАУ

    Метод Крамера

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода Крамера можно выразить в трёх пунктах:

    Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. Δ≠0.

    Для каждой переменной xi необходимо составить определитель Δ X i , полученный из определителя Δ заменой i-го столбца столбцом свободных членов заданной СЛАУ.

    Найти значения неизвестных по формуле xi= Δ X i /Δ

Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

    Записать три матрицы: матрицу системы A, матрицу неизвестных X, матрицу свободных членов B.

    Найти обратную матрицу A -1 .

    Используя равенство X=A -1 ⋅B получить решение заданной СЛАУ.

Метод Гаусса. Примеры решения систем линейных алгебраических уравнений методом Гаусса.

Метод Гаусса является одним из самых наглядных и простых способов решения систем линейных алгебраических уравнений (СЛАУ): как однородных, так и неоднородных. Коротко говоря, суть данного метода состоит в последовательном исключении неизвестных.

Преобразования, допустимые в методе Гаусса:

    Смена мест двух строк;

    Умножение всех элементов строки на некоторое число, не равное нулю.

    Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

    Вычеркивание строки, все элементы которой равны нулю.

    Вычеркивание повторяющихся строк.

Насчет последних двух пунктов: повторяющиеся строки можно вычёркивать на любом этапе решения методом Гаусса, – естественно, оставляя при этом одну из них. Например, если строки №2, №5, №6 повторяются, то можно оставить одну из них, – например, строку №5. При этом строки №2 и №6 будут удалены.

Нулевые строки убираются из расширенной матрицы системы по мере их появления.

где x * - один из решений неоднородной системы (2) (например (4)), (E−A + A) образует ядро (нуль пространство) матрицы A .

Сделаем скелетное разложение матрицы (E−A + A) :

E−A + A=Q·S

где Q n×n−r - матрица rank(Q)=n−r , S n−r×n -матрица rank(S)=n−r .

Тогда (13) можно записать в следующем виде:

x=x*+Q·k, kR n-r .

где k=Sz .

Итак, процедура нахождения общего решения системы линейных уравнений с помощью псевдообратной матрицы можно представить в следующем виде:

  1. Вычисляем псевдообратную матрицу A + .
  2. Вычисляем частное решение неоднородной системы линейных уравнений (2): x *=A + b .
  3. Проверяем совместность системы. Для этого вычисляем AA + b . Если AA + b b , то система несовместна. В противном случае продолжаем процедуру.
  4. Высисляем E−A + A.
  5. Делаем скелетное разложение E−A + A=Q·S.
  6. Строим решение

x=x*+Q·k, kR n-r .

Решение системы линейных уравнений онлайн

Онлайн калькулятор позволяет найти обшее решение системы линейных уравнений с подробными объяснениями.