Конспект лекций по термодинамике и теплопередаче. Способы теплопередачи и теплопроводность. Алгоритм решения задач раздела «Термодинамика»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий

ФГБОУ ВПО Ивановский институт Государственной противопожарной службы МЧС России

Кафедра физики и теплотехники

К онтрольная работа

по дисциплине «Теплотехника»

Тема: «Термодинамика и теплопередача»

Выполнил: Ханипов А.Ф.

факультет «Пожарная безопасность»,

11 курс, 112 учебная группа

Руководитель: старший преподаватель,

капитан внутренней службы, к.т.н.

Г.Е. Назаров

ИВАНОВО 2014

Введение

В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.

Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.

Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.

Первый закон термодинамики характеризует и описывает процессы превращения энергии с количественной стороны и дает все необходимое для составления энергетического баланса любой установки или процесса.

Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д. В этой связи второй закон термодинамики существенно дополняет первый.

В качестве третьего начала термодинамики принимается принцип недостижимости абсолютного нуля.

В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.

При наличии в некоторой среде неоднородного поля температур в ней неизбежно происходит процесс переноса тепла. В соответствии со вторым началом термодинамики этот перенос осуществляется в направлении уменьшения температуры (из области с большей температурой в область с меньшей). Точно так же при наличии в среде неоднородного поля концентраций некоторого i-го компонента смеси происходит процесс переноса массы этой примеси. Этот перенос также происходит в направлении уменьшения концентрации примеси. Процессы переноса тепла и массы (тепло и массообмен) могут осуществляться за счет различных механизмов. За счет хаотического теплового движения или тепловых колебаний микрочастиц (молекул, атомов, ионов) осуществляется молекулярный (микроскопический) перенос тепла (теплопроводность) или массы (молекулярная диффузия). В движущейся жидкости или газе за счет перемещения объемов среды из области с одной температурой или концентрацией в область с другой происходит конвективный (макроскопический) перенос тепла или массы, который всегда сопровождается процессом молекулярного переноса.

При турбулентном движении жидкости или газа процессы конвективного переноса тепла и массы приобретают настолько специфический характер, что их можно выделить в самостоятельный вид переноса. Этот перенос, обусловленный пульсационным характером турбулентного движения, осуществляется за счет поперечного перемещения турбулентных молей и называется турбулентной или молярной теплопроводностью (диффузией).

Теоретический вопрос №1

Термодинамический процесс -- переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Например, чтобы уменьшить объем газа, заключенного в сосуде, нужно вдвинуть поршень. При этом газ будет сжиматься и в первую очередь повысится давление газа вблизи поршня -- равновесие будет нарушено. Нарушение равновесия будет тем значительнее, чем быстрее перемещается поршень. Если двигать поршень очень медленно, то равновесие нарушается незначительно и давление в разных точках мало отличается от равновесного значения, отвечающего данному объему газа. В пределе при бесконечно медленном сжатии давление газа будет иметь в каждый момент времени определенное значение. Следовательно, состояние газа все время будет равновесным, так что бесконечно медленный процесс окажется состоящим из последовательности равновесных состояний. Такой процесс называется равновесным или квазистатическим.

Обратимый процесс (равновесный) -- термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Необратимый процесс (неравновесный) называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов:

диффузия, термодиффузия, теплопроводность, вязкое течение и др.

Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.

Рис.1 Изохорный процесс

Изохорный процесс (рис.1) -- термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

Размещено на http://www.allbest.ru/

Рис.2 Изобарный процесс

Изобарный процесс (рис.2) -- термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа. Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе

Рис.3 Изотермический процесс

Изотермический процесс (рис.3) -- термодинамический процесс, происходящий в физической системе при постоянной температуре.

Рис.4 Адиабатный процесс

Адиабатный процесс (рис.4) -- термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством.

Общий метод исследования - метод, использующий законы (начала) ТД и следствия из них (ТД построена дедуктивно: следствия, частные выводы получены из двух законов). Существует другой подход - статистический, в основе которого лежит молекулярно-кинетическая теория, квантовая механика и т.д. При термодинамическом методе исследования не рассматривается внутреннее строение изучаемых тел, а анализируются условия и количественные соотношения при различных превращениях энергии, происходящих в системе. Раздел физики, в котором физические свойства макроскопических систем изучаются с помощью термодинамического метода, называется термодинамикой. Заметим, что статистическая физика и термодинамика при малом числе частиц теряют смысл.

Термодинамика имеет дело с термодинамической системой - совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией, как между собой, так и с другими телами (внешней средой). Состояние системы задается термодинамическими параметрами (параметрами состояния). Обычно в качестве параметров состояния выбирают: - объем V, м3; давление Р, Па, (Р=dFn /dS, где dFn - модуль нормальной силы, действующей на малый участок поверхности тела площадью dS, 1 Па=1 Н/м2); термодинамическую температуру Т, К (Т=273.15 +t). Отметим, что термодинамическая температура прежде именовалась абсолютной температурой. Понятие температуры, строго говоря, имеет смысл только для равновесных состояний. Под равновесным состоянием понимают состояние системы, у которой все параметры состояния имеют определенные значения, не изменяющиеся с течением времени. Параметры состояния, термодинамические параметры -- физические величины, характеризующие состояние термодинамической системы: температура, давление, удельный объём, намагниченность, электрическая поляризация и др. Различают экстенсивные параметры состояния, пропорциональные массе системы: объём, внутренняя энергия, энтропия, энтальпия, энергия Гиббса, энергия Гельмгольца (свободная энергия), и интенсивные параметры состояния, не зависящие от массы системы: давление, температура, концентрация, магнитная индукция и др. Не все параметры состояния независимы, так что равновесное состояние системы можно однозначно определить, установив значения ограниченного числа параметров состояния. Равновесный тепловой процесс -- тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний. Равновесный тепловой процесс называется обратимым, если его можно провести обратно и в телах, окружающих систему, не останется никаких изменений. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью, поэтому не могут быть равновесными. Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому равновесные процессы называют квазистатическими. Примеры равновесных процессов Изотермический процесс, при котором температура системы не изменяется (T=const) Изохорный процесс, происходящий при постоянном объёме системы (V=const) Изобарный процесс, происходящий при постоянном давлении в системе(P=const).

Теоретический вопрос №2

Конвективный теплообмен - совместный процесс конвекции и теплопроводности, т.к. при движении жидкости (под термином «жидкость» здесь и далее подразумевается капельная жидкость (несжимаемая жидкость) и газ (сжимаемая жидкость)) или газа неизбежно происходит соприкосновение отдельных частиц, имеющих различные температуры.

Конвективный теплообмен между потоком жидкости или газа и поверхностью твердого тела называют конвективной теплоотдачей, которая часто сопровождается теплоотдачей излучением.

К основным факторам, определяющим количество тепла, передаваемого в конвективном теплообмене, относятся:

1) причины возникновения движения жидкости. Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция). Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция).

2) режим движения жидкости. Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным. Беспорядочное, хаотическое, вихревое движение называется турбулентным.

3) физические свойства жидкости. В жидкостях в зависимости от их физических свойств процесс теплообмена протекает различно. На процесс теплообмена влияют следующие физические параметры жидкости: коэффициент теплопроводности (л), теплоемкость (Ср), плотность (с), коэффициент температуропроводности (аф), вязкость (н). Эти физические параметры для каждой жидкости имеют свои определенные значения и зависят, как правило, от температуры, а некоторые из них и от давления.

4) форма и размеры поверхности, участвующей в конвективном теплообмене. Существенное влияние на плотность теплового потока в конвективном теплообмене оказывают форма и размеры теплообменивающейся поверхности. Например, при движении жидкости в прямой гладкой трубе при числах Рейнольдса, меньших критического, теплообмен обуславливается ламинарным режимом движения жидкости. Если же труба имеет изгибы, местные сужения или расширения, т.е. турбулирующие факторы, то теплообмен при той же скорости движения становится более интенсивным. Интенсивность теплообмена зависит также от того, движется ли жидкость внутри замкнутого пространства или поверхность тела со всех сторон омывается жидкостью.

5) Направление теплового потока. Опыт показывает, что интенсивность конвективного теплообмена зависит от того, в каком направлении передается тепло: от жидкости к стенке или, наоборот, от стенки к жидкости. Опытные данные показывают, что теплообмен от стенки к жидкости идет интенсивнее.

Таким образом, на конвективный теплообмен влияет много факторов. В общем случае количество переданного тепла зависит от скорости и температуры жидкости, физических параметров жидкости - коэффициентов теплопроводности и температуропроводности, теплоемкости ср, плотности, вязкости, формы, размеров канала, температуры поверхности и других факторов.

Для удобства практических расчетов Ньютоном введена формула, по которой определяется плотность теплового потока в конвективном теплообмене:

где - температура стенки, - температура жидкости, - коэффициент теплоотдачи, характеризующий условия теплообмена между жидкостью и стенкой. (ВТ/м2).

Эта формула действует, если тепловой поток идет от стенки к жидкости, т.е. Если же тепловой поток идет от жидкости к стенке, тогда используется следующая формула:

Представленные уравнения носят название уравнение Ньютона - Рихмана.

При кажущейся простоте это уравнение лишь немного облегчает расчеты. Основная трудность вычисления q по формуле Ньютона - Рихмана заключается в определении коэффициента теплообмена. Чтобы из большого количества процессов выделить рассматриваемый процесс и определить его однозначно, к системе дифференциальных уравнений нужно присоединить условия однозначности, т.е. условия, которые выделяют интересующий нас процесс из числа других процессов конвективного теплообмена. Условия однозначности дают математическое описание частных особенностей рассматриваемого процесса.

Тепловые экраны - это технические устройства, устанавливаемые между излучающей и облучаемой поверхностями и служащие для защиты облучаемой поверхности от лучистой энергии.

По принципу действия тепловые экраны подразделяются на отражающие экраны и поглощающие экраны. О принципе действия говорит название экранов.

Отражающие экраны своей поверхностью отражают тепловые лучи. В качестве материала для отражающих экранов используют тонкие листы полированных металлов.

Поглощающие экраны используют принцип поглощения лучистой энергии или защищают вследствие собственного маленького теплопроводности. В качестве материала для поглощающих экранов используют кирпичную кладку, штукатурку, изоляционные материалы (совелит, вермикулит и т.д.), зеленые насаждения. Хорошим поглощающим экраном является мелкодисперсная распыленная вода. Вода нашла свое применение в качестве экрана из-за своей доступности, дешевизны, безвредности для здоровья человека (рис. 1 а).

Тепловые экраны используются для защиты объектов от лучистой энергии излучающего тела (в том числе и факела). Экраны применяются и при защите 69 бойцов пожарной охраны во время тушения пожара (рис. 1 б). Наиболее известным применением экрана в реальных условиях является применение теплоотражающих костюмов (ТОК) (рис.2). Принцип действия ТОК заключается в отражении инфракрасного (теплового) излучения от факела пожара.

Методика расчёта отражающих экранов.

При рассмотрении задач отражающих экранов расчётными величинами являются температура экрана, необходимое число экранирующих слоёв, а также плотность теплового потока при применении 1 экрана (рис.3).

Как было отмечено выше, принцип действия тепловых экранов заключается в отражении падающей на него тепловой энергии. Это достигается за счёт свойства поверхности. При воздействии на экран высоких температур металл может потускнеть, вследствие чего утратит отражающие способности. Поэтому необходимо уметь рассчитывать температуру экрана и после сравнения с допустимой температурой для данного материала экрана сделать вывод о целесообразности его использования. Расчёт ведётся из условия, что излучающая поверхность, экран и облучаемая поверхность представляют собой систему плоскопараллельных тел.

Система плоскопараллельных тел, разделенных экраном

Опуская некоторые преобразования, приходим к формуле (1) для расчёта температуры экрана:

где: Т1 - температура излучающей поверхности;

Т2 - температура облучаемой поверхности;

Приведенная степень черноты системы «поверхность 1 - экран»;

Приведенная степень черноты системы «экран - поверхность 2».

Приведенные степени черноты соответственно рассчитываются как:

1. Плотность теплового потока с учетом 1 экрана

Целью использования экрана является снижение плотности теплового потока ниже критической плотности теплового потока.

Для расчёта теплового потока при использовании 1 экрана применяется формула, которую мы приведём без вывода.

Задача №1

Баллон с газом емкостью 85 л при давлении 6 атм. оказался в зоне очага пожара. Определить, каково будет давление газа, если его температура через некоторое повысилась до:

масса, кг

температура, 0C

P1=6 атм.=6·105Па

V=85 л =85·10-3м3

Найти: P2 - ?

P 1 V 1 =mRT 1 ;

P 2 V 2 =mRT 2 ;

Из (1) получим:

Ответ: давление газа в баллоне равно 829 кПа.

Задача №2

Компрессор подает сжатый воздух в резервуар, причем за время работы компрессора давление в резервуаре повышается от атмосферного до P2, а температура от 200С до t2. Объем резервуара 700л. Барометрическое давление, приведенное к 00С, равно 760 мм рт.ст. Определить массу воздуха, поданного компрессором в резервуар:

Найти: P2 - ?, в - ?

Ответ: Конечное давление равно 199,7 кПа; степень сжатия равна 1,88.

Задача №4

3 кг газа при давлении 400 кПа и температуре 1200С расширяется до давления 87 кПа. Определить конечную температуру, количество тепла и совершаемую работу, если расширение происходит:

термодинамический процесс

изохорный

Cl2 т.к. V=const;

P1=400 кПа Q=?U;

Найти: T2 - ?; Q - ?; L - ?

U=CVm·(T2-T1);

U=0,295·(86-393)=-90,565 кДж/кг;

Q=90,565·3=271,695 кДж

Ответ: совершаемая работа равна 0; конечная температура равна 86 К; количество тепла равно 271,695 кДж.

Заключение

Теплопередача является частью общего учения о теплоте, основы которого были заложены еще М. В. Ломоносовым в середине XVIII в., создавшим механическую теорию теплоты и основы сохранения и превращения материи и энергии. С развитием техники и ростом мощности устройств и машин роль процессов переноса тепла в различных теплообменных аппаратах значительно возросла. Окончательное учение о теплоте - теория тепломассообмена сформировалось в самостоятельную научную дисциплину лишь в начале XX в. Значительный вклад в ее формирование внесли русские ученые М. В. Кирпичев, А. А. Гухман и советские Г. М. Кондратьев, М. А. Михеев, С. С. Кутателадзе. Большое развитие в нашей стране получила теория подобия, являющаяся по существу теорией эксперимента. Теория теплообмена - это наука о процессах переноса теплоты в пространстве с неоднородным распределением температуры. Наблюдения за процессами распространения теплоты показали, что теплообмен - сложное явление, которое можно расчленить на ряд простых, принципиально отличных друг от друга процессов: теплопроводность; конвекция; излучение.

Теплопроводность - процесс переноса теплоты (внутренней энергии), происходящий при непосредственном соприкосновении тел (или частей тела) с различной температурой. Обмен энергией осуществляется микрочастицами,

из которых состоят вещества: молекулами, атомами, свободными электронами. За счет взаимодействия друг с другом быстродвижущиеся микрочастицы отдают свою энергию более медленным, перенося таким образом теплоту из зоны с более высокой в зону с более низкой температурой. Явление теплопроводности наблюдается во всех телах: жидких, твердых и газообразных.

Конвекция - процесс переноса теплоты, происходящий за счет перемещения больших масс (макромасс) вещества в пространстве, поэтому наблюдается только в жидких и газообразных телах. Объемы жидкости или газа, перемещаясь из области с большей температурой в область с меньшей

температурой, переносят с собой теплоту.

Конвективный перенос может осуществляться в результате свободного или вынужденного движения теплоносителя. Свободное движение или естественная конвекция вызывается действием массовых (объемных) сил: гравитационной, центробежной, за счет протекания в объеме жидкости электрического тока. В приближении сплошной среды под жидкостью мы понимаем любую текучую среду (то, что отлично от твердого тела). Чаще всего в технических устройствах естественная конвекция вызывается подъемной силой, обусловленной разностью плотностей холодных и нагретых частей жидкости. Возникновение и интенсивность свободного движения определяется тепловыми условиями процесса и зависит от рода жидкости, разности температур и объема пространства, в котором происходит конвекция. Вынужденная конвекция вызывается работой внешних агрегатов (насос, вентилятор). Движущая сила при этом непосредственно связана с разностью давлений на входе и выходе из канала, по которому перемещается жидкость.

Наблюдаемые в природе и технике явления теплообмена включают в себя, как правило, все элементарные способы переноса теплоты. Иногда

интенсивность некоторых способов переноса тепла невелика по сравнению

с другими, ею можно пренебречь, и тогда можно говорить об элементарном процессе теплообмена в чистом виде. Сочетание любых комбинаций элементарных процессов переноса тепла называют сложным теплообменом. Рассмотрим некоторые сложные явления теплообмена, часто встречающиеся на практике.

Теплоотдача или конвективный теплообмен - процесс обмена энергией между движущейся средой и поверхностью твердого тела является сочетанием передачи тепла теплопроводностью в твердой стенке и конвекцией в жидкой среде.

В реальных условиях конвекция теплоты всегда сопровождается молекулярным переносом теплоты, а иногда и лучистым теплообменом. Экспериментальное исследование процесса теплоотдачи позволило установить пропорциональность этого процесса разности температур между стенкой и жидкостью. Коэффициент пропорциональности получил название коэффициента теплоотдачи, который не является теплофизическим свойством вещества, как теплоемкость или плотность, значения которых представлены в справочных таблицах функцией температуры. Факторами, влияющими на коэффициент теплоотдачи, кроме температуры среды, являются, наличие вынужденной или свободной конвекции, их взаимное влияние; внешнее обтекание тела или движение жидкости в канале (трубе); наличие фазового перехода (кипение, конденсация); род жидкости, свойства стенки.

Теплопередача - процесс передачи тепла между двумя жидкими средами через разделяющую их твердую стенку. Как и в случае теплоотдачи, процесс теплопередачи пропорционален разности температур между двумя жидкими средами, его интенсивность характеризуется коэффициентом теплопередачи, который тоже не является теплофизическим свойством. Для передачи тепла от одной жидкой среды к другой применяют устройства - поверхностные теплообменные аппараты, одним из этапов проектирования которых является определение коэффициентов теплопередачи.

термодинамический конвективный теплообмен

Список использованной литературы

1) Кошмаров Ю.А., Теплотехника. - Москва: ИКЦ «Академкнига», 2006. - 501 с.: ил.

2) Cырбу А.А., - Термодинамика газовых систем. Учебное пособие. / Сырбу А.А. - Иваново: ООНИ ИвИ ГПС МЧС России, 2009. - 113 с.

3) Багажков И.В., Первый закон термодинамики. Учебное пособие. / Багажков И.В., Сторонкина О.Е. - Иваново: ООНИ ИвИ ГПС МЧС России, 2011- 69 с.

4) Сторонкина О.Е. Методические указания для выполнения курсовой работы по теплотехнике. / Сторонкина О.Е., Маршалов М.С. - Иваново: ООНИ ИвИ ГПС МЧС России, 2013. - 39 с.

5) Анализ обстановки с пожарами и последствий от них на территории Российской Федерации за 12 месяцев 2013 года. / Аналитические материалы. -М.: Департамент надзорной деятельности МЧС России, 2013.

6) Багажков И.В. Водяной пар. Учебное пособие / И.В.Багажков, О.Е.Сторонкина.-Иваново: ИвИ ГПС МЧС России, 2011.-84с. Багажков И.В. Водяной пар. Учебное пособие / И.В.Багажков, О.Е.Сторонкина.-Иваново: ИвИ ГПС МЧС России, 2011.-84с.

7) Сырбу А.А. Термодинамика газовых потоков. Учебное пособие - Иваново: Ивановский институт ГПС МЧС России, 2009. -113 с.

8) Сырбу А.А. Теплопередача. Учебное пособие. / Сырбу А.А., Сторонкина О.Е. - Иваново: ООНИ ИвИ ГПС МЧС России, 2012. - 114 с.

9) Ульев Д.А. Теплофизика. Лучистый теплообмен. Учебное пособие. / Ульев Д.А., Назаров Г.Е., Маршалов М.С. - Иваново: ООНИ ИвИ ГПС МЧС России, 2014. - 86 с.

Размещено на Allbest.ru

...

Подобные документы

    Основной закон конвективного теплообмена. Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Критерий Нуссельта. Уравнение Фурье-Кирхгофа. Получение критериев подобия. Характеристика температурного поля и гидродинамические характеристики потока.

    презентация , добавлен 24.06.2014

    Изучение понятия теплоотдачи, теплообмена между потоками жидкости или газа и поверхностью твердого тела. Конвективный перенос теплоты. Анализ основного закона конвективного теплообмена. Уравнение Ньютона-Рихмана. Получение критериев теплового подобия.

    презентация , добавлен 09.11.2014

    Обратимые и необратимые термодинамические процессы. Диссипативные динамические системы. Термодинамическая энтропия. Флуктуация основных термодинамических величин. Закон сохранения энергии в адиабатическом процессе. Средние квадраты флуктуации энергии.

    реферат , добавлен 18.12.2013

    Первый закон термодинамики. Обратимые и необратимые процессы. Термодинамический метод их исследования. Изменение внутренней энергии и энтальпии газа. Графическое изображение изотермического процесса. Связь между параметрами газа, его теплоемкость.

    лекция , добавлен 14.12.2013

    Сущность и дифференциальные уравнения конвективного теплообмена. Критерии теплового подобия. Определение коэффициента теплоотдачи. Теплопередача при изменении агрегатного состояния теплоносителей (кипении и конденсации). Расчет ленточного конвейера.

    курсовая работа , добавлен 31.10.2013

    Конвективный теплообмен при вынужденном продольном обтекании плоской поверхности. Теплообмен излучением между газом и твердой поверхностью. Процессы прогрева или охлаждения тел. Процесс нестационарной теплопроводности. Толщина теплового пограничного слоя.

    реферат , добавлен 26.11.2012

    Понятие теплоотдачи как процесса теплообмена между поверхностью твёрдого тела и жидкой (газообразной) средой при их соприкосновении. Подобие процессов теплоотдачи. Процесс переноса энергии в виде электромагнитных волн. Лучистый теплообмен между телами.

    презентация , добавлен 29.09.2013

    Конвективный теплообмен - одновременный перенос теплоты конвекцией и теплопроводностью. Основные факторы, влияющие на процесс теплоотдачи. Свободная конвекция в неограниченном пространстве. Вынужденная конвекция. Уравнения конвективного теплообмена.

    реферат , добавлен 26.01.2012

    Анализ и изображение изотермического процесса. Закон Ньютона–Рихмана. Свободная и вынужденная конвекция. Физический смысл коэффициента теплоотдачи, его зависимость от различных факторов. Основные особенности дизельных и карбюраторных двигателей.

    контрольная работа , добавлен 18.11.2013

    Определение коэффициента теплоотдачи при сложном теплообмене. Обмен теплотой поверхности твёрдого тела и текучей среды. Использование уравнения Ньютона–Рихмана при решении практических задач конвективного теплообмена. Стационарный тепловой режим.

Термодинамический расчёт теплофикационного цикла

Термодинамические основы теплофикации

Как известно, тепловые двигатели, по самому определению, предназначены для преобразования хаотической формы передачи энергии (в виде теплоты) в упорядоченную форму (механическое перемещение, электричество и др.). Однако кроме упорядоченной формы энергии человечество в своей деятельности нуждается также и в теплоте, в частности для отопления и осуществления всевозможных технологических процессов (приготовление пищи, сушка, химическая технология, металлургия и т.д.).

На первый взгляд может показаться, что проблема экономического совершенствования теплоснабжения к технической термодинамике как науке о совершенствовании тепловых двигателей не имеет прямого отношения, однако это не так. Дело в том, что теплота как одна из форм передачи энергии кроме количества, измеряемого в джоулях, обладает также и качеством, а именно потенциалом, т.е. температурой. В самом деле, мало кого заинтересует большое количество теплоты, подводимой в жилое помещение при температуре 10…12 о С. С другой стороны, температура горения большинства из органических топлив, будь то дрова, уголь, газ, нефть и т.д., является слишком высокой для того, чтобы быть непосредственно используемой в целях отопления, либо для других технологических процессов. Техническая термодинамика указывает на один из возможных путей рационального использования «тепловой энергии» (заметим, что это устоявшееся в обиходе словосочетание не является корректным с точки зрения термодинамики; следует иметь в виду, что речь должна идти о передаче энергии в форме теплоты). Поскольку обычно используемый в целях отопления потенциал теплоты (температура) составляет 50…150 о С (330…430 К), а температура горения топлива (температура факела) составляет величину порядка 1500…2000 о С (1800…2300 К), то представляется весьма рациональным осуществить между этими температурными уровнями (потенциалами) цикл какого-либо теплового двигателя, уменьшив тем самым эксергетические потери, т.е. потери, связанные с необратимым теплообменом между обогреваемым помещением и источником теплоты. Такая совместная выработка упорядоченной формы энергии (как правило, электрической) и теплоты для производственных нужд и отопления помещений получила название теплофикация .

Покажем, что совместная выработка электрической и тепловой энергии (теплофикация) всегда более экономична с термодинамической точки зрения, нежели раздельная выработка. Для этого рассмотрим диаграмму , на которой условно изобразим температурные уровни для различных процессов подвода и отвода теплоты (рис. III.27). Точки над величинами в диаграмме обозначают полную производную по времени, т.е. мы будем сравнивать мощности различных схем выработки тепловой и электрической энергии. При этом мы не будем учитывать неизбежные в таких установках потери, так как их учёт не повлияет на ход рассуждений, хотя заметно усложнит анализ.

Раздельная выработка тепловой и электрической энергии представлена на рис. III.27 диаграммами и . В отопительной котельной продукты сгорания топлива отдают теплоту в процессе в количестве теплоносителю (как правило, воде), который через тепловые сети подаётся потребителю, обеспечивая тепловую нагрузку (без учёта потерь). Электрическая нагрузка N обеспечивается паросиловой установкой, работающей по циклу Ренкина со сбросом теплоты охлаждающей воде в конденсаторе. Такая установка получила название конденсационной .

Общий расход теплоты в котельной и в конденсационной установке при заданных тепловой и электрической нагрузках будет тогда определяться суммой


При совместной выработке тех же количеств тепловой и электрической энергии тепловая мощность парогенератора будет равна (также без учёта потерь)

Разность выражений и даёт экономию тепла (а значит топлива)

Теплофикация получила широкое распространение на тепловых и атомных электростанциях, питающих электроэнергией и теплом большие населённые пункты и крупные энергоёмкие производства. При этом в энергетической практике используются две схемы теплофикационных циклов – с противодавлением и с отбором пара на теплофикацию.

Термодинамический расчёт теплофикационного цикла

С противодавлением

Принципиальная схема теплофикационной установки с противодавлением и диаграмма T–s цикла представлены на рис. III.28.

Схема теплофикационной установки с противодавлением конструктивно не отличается от схемы обычной конденсационной установки за исключением того, что в установке с противодавлением давление отработавшего пара на выходе из турбины поддерживается достаточно большим (отсюда название противодавление ), настолько, чтобы температура отработавшего пара составляла 150…180 о С (давление насыщения при этом составляет 5…10 бар). По этой причине в установке с противодавлением конденсатор заменяется менее громоздким теплообменником, носящим название бойлер (англ.boiler котёл , кипятильник , испаритель ).

Приведём алгоритм термодинамического расчёта теплофикационного цикла с противодавлением с учётом потерь в парогенераторе, турбине, механических и электрических потерь и потерь в тепловых сетях. Все эти потери численно оцениваются с помощью коэффициентов η пг, , η мех, η эл, η тс.

С помощью диаграммы h–s или с помощью таблиц термодинамических свойств воды и водяного пара находим стандартным образом удельные энтальпии h 1 , h 2 , h 3 . Далее, исходя из определения относительного внутреннего КПД турбины, находим действительное значение удельной энтальпии отработавшего пара

Считая бойлер идеально теплоизолированным, из его теплового баланса находим массовый расход пара в установке, обеспечивающий заданную тепловую нагрузку,

Мощность установки с учётом перечисленных потерь будет

Подведённое в парогенераторе тепло к рабочему телу

а тепловая мощность парогенератора с учётом потерь η пг будет равна

что позволяет вычислить расход топлива при известном значении его теплотворной способности

ТЕРМОДИНАМИКА И ТЕПЛОПЕРЕДАЧА

Учебное пособие


УДК 621.1:536.7(07)

Термодинамика и теплопередача : Учебное пособие / В. Н. Кузнецов, В. В. Овсянников, А. С. Анисимов, М. В. Кокшаров, В. В. Крайнов; Омский гос. ун-т путей сообщения. Омск, 2006. 128 с.

В первых трех разделах настоящего учебного пособия рассмотрены состояние газа, газовые процессы и газовые циклы с анализом эффективности работы двигателей внутреннего сгорания и газотурбинных установок. В четвертом разделе представлены свойства воды и водяного пара, циклы паросиловых установок, пути повыше­ния их экономичности; приведены сведения о циклах холодильных установок и свойствах влажного воздуха. Пятый раздел посвящен изучению закономерностей основных видов теплопереноса – теплопроводности, конвективного теплообмена и лучеиспускания. В приложениях приведены справочные данные, необходимые для решения теплотехнических задач.

Пособие предназначено для студентов нетеплотехнических специальностей.

Библиогр.: 7 назв. Табл. 4. Рис. 90.

Рецензенты: доктор техн. наук, профессор В. И. Гриценко;

доктор техн. наук, профессор А. С. Ненишев;

доктор техн. наук, профессор Е. И. Сковородников.

Ó Омский гос. университет путей сообщения, 2006

Введение.. 5

1. Основные понятия и определения. Состояние газа... 7

1.1. Метод термодинамики. Термодинамическая система. Рабочее тело... 7

1.2. Основные параметры состояния, их измерение.. 8

1.3. Законы идеального газа... 11

1.4. Смеси идеальных газов... 14

1.5. Понятие теплоемкости газов... 17

2. Первый закон термодинамики. Газовые процессы.... 19

2.1. Виды энергии, внутренняя энергия, внешняя работа... 19

2.2. Уравнение первого закона термодинамики. Энтальпия газа... 21

2.3. Энтропия. Свойства Т, s-диаграммы.... 24

2.4. Термодинамические процессы, их исследование.. 26

2.5. Процессы сжатия в компрессоре.. 38

3. Второй закон термодинамики. Газовые циклы.... 42

3.1. Цикл, его термический КПД. Понятие обратного цикла... 42

3.2. Цикл Карно. Формулировки второго закона термодинамики... 45

3.3. Энтропия необратимых процессов... 49

3.4. Циклы двигателей внутреннего сгорания... 51

3.5. Циклы газотурбинных установок... 58

4. Водяной пар... 62

4.1. Свойства воды и водяного пара. Диаграммы состояния р, v; T, s; h, s 62

4.2. Истечение и дросселирование газов и паров... 69

4.3. Цикл Ренкина. Пути повышения КПД паросиловых установок... 79

4.4. Цикл холодильной установки... 87

4.5. Влажный воздух... 88

5. Основы теплообмена... 93

5.1. Теплопроводность... 96

5.2. Конвективный теплообмен... 101

5.3. Теплопередача... 107

5.4. Теплообмен излучением.... 110

5.5. Теплообменные аппараты.... 116

Библиографический список... 121

Приложение. Таблицы физических свойств различных веществ... 122

Введение

Настоящее пособие предназначено для студентов высших учебных заведений Федерального агентства железнодорожного транспорта, обучающихся по тепловозной, вагонной и машиностроительной специальностям механического факультета, а также для специальности «Подвижной состав электрического транспорта» электромеханического факультета.

Курс «Термодинамика и теплопередача» предполагает подготовку студентов по теоретическим основам теплотехники. Первые четыре раздела посвящены изучению свойств газов и паров, процессов изменения их состояния, термодинамических циклов различных тепловых двигателей и холодильных установок. В пятом разделе рассматриваются основы теплообмена, способы интенсификации передачи тепла в тепломассообменных аппаратах.

Основным содержанием технической термодинамики является изучение процессов взаимного преобразования тепловой и механической энергии. В основу термодинамики положены два основных закона, установленных многовековым опытом деятельности человечества. Первый закон термодинамики характеризует балансовую сторону процессов превращения энергии. Он является количественным выражением закона сохранения и превращения энергии применительно к тепловым процессам. Второй закон термодинамики устанавливает направленность протекания процессов.

Цикличность протекания процессов в реальных теплосиловых установках позволяет ввести понятие цикла и его термического коэффициента полезного действия. Такой метод термодинамики дает возможность оценки эффективности тепловых двигателей, применяемых на предприятиях промышленности и транспорта, наметить пути повышения их экономичности и надежности.

Разработка и эксплуатация теплогенерирующих и теплопотребляющих установок связана с вопросами увеличения мощности теплового потока через единицу площади поверхности стенки, снижения тепловых потерь в окружающую среду, улучшения свойств теплопроводящих и теплоизоляционных материалов, выбора оптимальных характеристик теплоносителей и рациональной конструкции теплообменных аппаратов. В основе решения этих вопросов лежит учение о теплообмене, под которым понимают перенос тепла от одних частей системы к другим при наличии разности температур между ними.

Раздел 1. Термодинамика.

Введение.

Основы технической термодинамики.

Безопасность технологических процессов и производств на воздушном транспорте в узком смысле означает обеспечение безопасности полётов (БП), под которой обычно подразумевается способность авиационной транспортной системы (совокупность летательного аппарата (самолёта, вертолёта), экипажа, служб подготовки и обеспечения полётов, управления воздушным движением) осуществлять воздушные перевозки без угрозы для жизни и здоровья людей.

На исход полёта влияет большое количество факторов, закономерности возникновения которых весьма сложны и изучаются в различных науках: теплотехнике, газовой динамике, теории авиационных двигателей и др.

Термодинамика, являясь разделом теоретической физики, представляет собой одну из самых обширных областей современного естествознания – науку о превращениях различных видов энергии друг в друга. Эта наука рассматривает самые разнообразные явления природы и охватывает огромную область химических, механических и физико-химических явлений.

Теплотехника – общая профессиональная (общетехническая) дисциплина, изучающаяметоды получения, преобразования, передачи и использования теплоты, а также принципы действия и рабочие процессы тепловых машин, аппаратов и устройств и др. Теплотехника базируется на сведениях из технической термодинамики, теплообмена и массообмена.

Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и является (вместе с теорией теплообмена и массообмена) теоретическим фундаментом теплотехники. На её основе осуществляется расчёт и проектирование тепловых двигателей – паровых и газовых турбин, двигателей внутреннего сгорания, а также всевозможного технологического оборудования – компрессоров, сушильных и холодильных установок и т.д.

Газовая динамика изучает открытые термодинамические системы , в которых рабочее тело представляет поток газа. На постулатах и выводах газовой динамики осуществляется конструирование каналов, лопаток турбомашин и других устройств.

Теория авиационных двигателей изучает схемы, принцип действия различных типов газотурбинных и поршневых двигателей (ГТД и ПД) и их элементов, а также эксплуатационные характеристики ГТД и ПД и их элементов. ГТД широко распространены в гражданской авиации вследствие их большой мощности при малых габаритах и массе, а также из-за использования дешёвых сортов топлива (керосина).

Учебная дисциплина «Термодинамика и теплопередача» является составной частью учебного плана подготовки инженера-механика по специальности «Техническая эксплуатация летательных аппаратов и авиадвигателей» для всех форм обучения. Дисциплина состоит из двух самостоятельных разделов:



Техническая термодинамика;

Теплопередача.

Техническая термодинамика является частью термодинамики – раздела теоретической физики. Объектом исследований технической термодинамики являются авиационные двигатели – тепловые машины, в которых изучаются закономерности взаимного превращения теплоты в работу, устанавливается взаимосвязь между тепловыми, механическими и химическими процессами, имеющими место в тепловых машинах.

Техническая термодинамика начала развиваться с 20-х годов XIX столетия, но, несмотря на свою сравнительную молодость, она заслуженно занимает в настоящее время одно из центральных мест среди физических и технических дисциплин.

В теоретической части техническая термодинамика является общим отделом, науки об энергии, а в прикладной части представляет собой теоретический фундамент всей теплотехники, изучающей процессы, протекающие в тепловых двигателях.

В термодинамике используются два метода исследования: метод круговых процессов и метод термодинамических функции и геометри­ческих построений. Последний метод был разработан и изложен в клас­сических работах Гиббса. Этот метод получил за последнее время ши­рокое распространение.

В начале второй половины XVIII в. была решена очень важная тех­ническая задача – был создан универсальный тепловой двигатель для промышленности и транспорта. Первую паровую машину изобрел русский инженер И. И. Ползунов. Она была построена уже после его смерти в 1766 г., т. е. почти за 20 лет до паровой машины Джемса Уатта. И. И. Ползунов не только создал первую в мире паровую машину, но и изобрел к ней распределительное устройство и впервые осуществил автоматическое питание парового котла.

До 50-х годов XIX столетия наука рассматривала теплоту как осо­бое, невесомое, неуничтожаемое инесоздаваемое вещество – тепло­род. Одним из первых, кто опроверг эту теорию, был М. В. Ломоносов. В 1744 г. в своей диссертации «Размышление о причине теплоты и хо­лода» он писал, что теплота состоит во внутреннем движении собствен­ной материи и указывал, что огонь и теплота состоят во вращатель­ном движении частиц, из которых состоят все тела. Тем самым в своих работах М. В. Ломоносов заложил основы механической теории теплоты. Однако Ломоносов не был понят современниками. Еще дол­гое время физики продолжали толковать о теплороде. Только, к сере­дине XIX в. механическая теория теплоты в результате работ целого ряда ученых находит повсеместное признание, становится основой всей термодинамики.

Теплопередача– это наука, изучающая процессы переноса теплоты (теплообмена) в пространстве с неоднородным температурным полем. В зависимости от характера теплообмена перенос теплоты может быть назван теплопроводностью (например, через стенки корпуса), конвекцией (например, при охлаждении турбинных лопаток воздухом) и излучением (например, при горении топливовоздушной смеси от пламени к стенкам жаровой трубы в камере сгорания).

Техническая термодинамика, применяя основные законы к процессам превращения теплоты в механическую работу и механической работы в теплоту, дает возможность разрабатывать теорию тепловых двигателей, исследовать процессы, протекающие в них, и позволяет выявлять их экономичность для каждого типа отдельно.

«А.Т. Манташов ТЕПЛОТЕХНИКА Часть I Термодинамика и теплопередача Учебное пособие Пермь 2009 УДК 631.371 (075.8) ББК 40.7 М.23 Рецензент: Кандидат технических наук, доцент Пермской...»

-- [ Страница 1 ] --

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

Федеральное государственное образовательное учреждение

высшего профессионального образования

«Пермская государственная сельскохозяйственная академия имени

академика Д.Н.Прянишникова»

А.Т. Манташов

ТЕПЛОТЕХНИКА

Термодинамика и теплопередача

Учебное пособие

УДК 631.371 (075.8)



Рецензент:

Кандидат технических наук, доцент Пермской государственной сельскохозяйственной академии имени академика Д.Н.Прянишникова В.С. Кошман Манташов А.Т.

М 23 Теплотехника. Часть I Термодинамика и теплопередача; Учебное пособие. – Пермь: Изд-во ПГСХА, 2009 – 184 с.

В настоящем учебном пособии изложена часть 1 дисциплины “Теплотехника”, утвержденной Государственным образовательным стандартом высшего профессионального образования, в качестве обязательной при подготовке дипломированного специалиста 660300 Агроинжинерии. В часть дисциплины включены разделы “Техническая термодинамика” и “Основы теории теплообмена”. Учебное пособие предназначено для студентов очного и заочного обучения по специальностям: 110 301 – “Механизация сельского хозяйства”, 280 101 – “Безопасность жизнедеятельности в техносфере”,. 110 304 – “Технология обслуживания и ремонта машин в АПК” и 190603 – “Сервис транспортных и технологических машин и оборудования (в автомобильном транспорте)”.

Печатается по решению методической комиссии инженерного факультета ПГСХА (протокол № 4 от « 10 » декабря 2008 года) УДК 631.371 (075.8) ББК 40.7 © «ФГОУ ВПО. Пермская ГСХА»

Раздел 1. ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА…………………………………….

Глава 1.Законы термодинамики …………………………………………………………………….

1.1.Исходные определения и понятия ……………………………………..

1.1.1.Термодинамическая система ………………………………………… 1.1.2. Термодинамические параметры ……………………………………..

1.1.3. Состояние термодинамической системы …………………………...

1.1.4. Энергия термодинамической системы ……………………………...

1.1.5. Теплота и работа - формы энергообмена …………………………...

1.2. Законы термодинамик ………………………………………………… 1.2.1. Первый закон термодинамики ……………………………………….

1.2.2. Второй закон термодинамики ………………………………………..

1.2.3. Энтропия. Математическое выражение второго закона 31 термодинамики ……………………………………………………………... 31 1.2.4. Эксергия

–  –  –

Глава 2. Термодинамические свойства рабочих тел …………………….

2.1. Рабочее тело тепловых машин ………………………………………...

2.1.1. Газ как рабочее тело ………………………………………………….

2.1.2. Газовые смеси ………………………………………………………...

2.2. Теплоемкость газов и газовых смесей ………………………………..

2.2.1. Понятие теплоемкости ……………………………………………… 2.2.2. Теплоемкости сp и сv ……………………………………………….

2.2.3. Зависимость теплоемкости от температуры ………………………..

2.2.4. Теплоемкость газовых смесей ……………………………………….

2.3. Термодинамические процессы ………………………………………..

2.3.1. Понятие термодинамического процесса ……………………………

–  –  –

Глава 4. Термодинамика газового потока …………………………………

4.1. Уравнения и параметры движущегося газа …………………………..

4.1.1. Уравнение энергии …………………………………………………...

4.1.2. Параметры торможения ……………………………………………... 77 4.1.3.Уравнение скорости движения газа …………………………………. 77 4.1.4.Уравнение расхода ……………………………………………………

4.2. Течение газа в каналах ………………………………………………… 80 4.2.1. Уравнение обращения воздействия ………………………………… 4.2.2.Течение газа в соплах Лаваля ………………………………………... 85 4.2.3.Дросселирование газа и пара ………………………………………… 87 Глава 5. Циклы тепловых машин …………………………………………..

5.1. Цикл Карно ……………………………………………………………...

5.2. Идеальные циклы поршневых ДВС …………………………………..

5.2.1. Цикл ДВС с изохорным подводом тепла …………………………..

–  –  –

…………………………..

5.3. Идеальный цикл газотурбинного двигателя ………………………….

5.4. Цикл паросиловой установки …………………………………………

5.5. Цикл универсальной тепловой машины Стирлинга …………………

5.6. Циклы компрессоров …………………………………………………...

5.6.1. Способы получения высоких давлений газов ……………………...

5.6.2. Поршневой компрессор и его показатели …………………………..

5.6.3. Идеальный цикл одноступенчатого поршневого компрессора 107 …… 107 5.6.4. Идеальный цикл многоступенчатого компрессора ……………….. 109

5.7. Циклы холодильных машин ………………………………………….. 109 5.7.1.Способы получения низких температур …………………………….

5.7.2. Цикл паровой компрессорной холодильной машины …………….. 113 5.7.3. Цикл абсорбционной холодильной машины ………………………. 113

5.8. Цикл теплового насоса ………………………………………………… 115 Раздел II. ОСНОВЫ ТЕОРИИ ТЕПЛООБМЕНА ………………………...

–  –  –

7.2.1. Подобные процессы теплоотдачи …………………………………...

7.2.2. Критерии теплового подобия ………………………………………..

7.2.3. Критериальные уравнения …………………………………………... 153

7.3. Теплоотдача при естественной конвекции ………………………….. 153

7.4. Теплоотдача при вынужденной конвекции ………………………….. 1 7.4.1. Теплоотдача в прямолинейных каналах 155 ……………………………. 157 7.4.2. Теплоотдача на начальном участке канала ………………………… 7.4.3. Теплоотдача в изогнутых каналах ………………………………….. 161 7.4.4. Теплообмен потока с преградами …………………………………... 161 7.4.5. Теплоотдача в газоходах ……………………………………………. 163

7.5. Теплоотдача при изменении агрегатного состояния теплоносителя. 165 7.5.1. Конвективный теплообмен при кипении …………………………...

7.5.2.Теплоотдача при конденсации пара ………………………………… Глава 8. Лучистый теплообмен …………………………………………….

8.1. Закономерности лучистого теплообмена ……………………………..

8.1.1.Понятие лучистой энергии …………………………………………..

8.1.2. Законы теплового излучения ………………………………………...

8.2. Теплообмен излучением между телами, разделенными прозрачной средой …………………………………………………………………...

8.3. Лучистый теплообмен в камерах сгорания …………………………..

Глава 9. Теплопередача и теплообменные аппараты …………………….

9.1. Уравнение теплопередачи ……………………………………………..

9.2. Теплопередача через плоскую и цилиндрическую стенки …………..

9.3. Теплопередача через оребренную стенку …………………………….

9.4. Интенсификация теплопередачи ………………………………………

9.5. Тепловая защита ……………………………………………………..…

9.6. Теплообменные аппараты ……………………………………………..

9.6.1. Устройство и классификация теплообменных аппаратов ………… 9.6.2. Основы теплового расчета теплообменных аппаратов …………….

9.7.Тепловые трубы ………………………………………………………… Библиографический список ………………………………………………...

Приложение …………………………………………………………………

6 Предисловие

Современный сельскохозяйственный комплекс – это сложный технический и технологический объект. Он оснащен различного рода энергетическими установками, тепловыми машинами, техническими системами и т.п.

Их функционирование связано с такими видами энергии, как химическая, тепловая, механическая и др.

Для освоения этой техники, грамотной ее эксплуатации и готовности к замене модифицированными образцами необходимо знать:

– законы и способы преобразования природных энергоресурсов в непосредственно используемые виды энергии: тепловую, механическую и др.;

– закономерности взаимопреобразования двух форм энергообмена – теплоты и работы в технических устройствах и системах;

– сущность и закономерности процессов, происходящих с рабочими веществами, участвующими в энергообмене;

– принцип действия и оценку эффективности машин и аппаратов для преобразования или передачи тепловой энергии;

– основы теории и инженерные методы расчетов теплопередачи в теплонапряженных устройствах и конструкциях машин и технических систем.

Т е п л о т е х н и к о й называют научную дисциплину и отрасль техники, охватывающие методы и способы преобразования различных видов энергии в теплоту, ее транспортирование и использование при помощи тепловых машин, аппаратов и установок.

Для специалистов сельскохозяйственного производства дисциплина “Теплотехника” по своему содержанию делится на две сомостоятельные части: – теоретические основы теплотехники (термодинамика и теплопередача) и – теплоэнергетика сельскогохозяйственного производства.

Автор настоящей книги, на основе многолетнего опыта чтения курса “Термодинамика и теплопередача” сделал попытку создать краткое учебное пособие по первой части дисциплины “Теплотехника”, соответсвующее в полном объеме ее программе по специальности 660300 Агроинженерии.

Целью данного пособия является получение будущими специалистами теоретических знаний по части программы дисциплины, включающей техническую термодинамику и основы теории теплообмена.

В разделе первом предложен своеобразный подход к понятию термодинамической системы, к изложению термодинамических и калорических параметров состояния; подробно рассмотрены термодинамические процессы, диаграммы состояния систем и их прикладное значение; проведен анализ циклов наиболее распространенных тепловых двигателей. Рассмотрен принцип работы и цикл одного из перспективных тепловых двигателей – двигателя стирлинга.

Во втором разделе при рассмотрениии видов переноса тепла в пространстве (теплопроводности, конвективноого и лучистого теплообменов) существенное внимание уделено природе этих процессов и их методам расчета; подробно проанализированы способы теплозащиты, теплоизоляции и интенсификации теплопередачи.

В приложении приведены данные справочного характера, позволяющие рассмотреть конкретные прикладные задачи.

Наименования величин и единиц, их определения и обозначения соответствуют государственному стандарту “Единицы физических величин”, сборникам рекомендованных терминов Комитета научно-технической терминалогии АН РФ по термодинамике и теплообмену.

Замечания читателей, направленные на улучшение учебного пособия, будут приняты автором с признательностью.

8 Раздел 1 Техническая термодинамика

Слово “термодинамика” в переводе с греческого – движущая сила тепла (“терме” – тепло, жар, огонь; “динамис” – сила, работа). Впервые это словосочетание в указанном смысле применил французский инженер С. Карно (1796-1832) в своей работе “Размышления о движущей силе огня и о машинах, способных развивать эту силу”, опубликованной в 1824 г.

Термодинамике этого периода отводилась роль науки, изучающей переход теплоты в механическую работу, что диктовалось необходимостью создания теоретических основ работы тепловых машин. Она развивалась, когда еще не сложились представления о внутренней структуре материи. Поэтому методы исследования основывалась на изучении самых общих зависимостей между физическими величинами, которые можно было определить непосредственными измерениями, не прибегая к анализу взаимодействия между отдельными частицами материи. Уже к концу ХIХ столетия сформулировались основные понятия и законы термодинамики. Это явилось отправным пунктом для построения логического и математического аппарата т е р м о- д и н а м и ч е с к о г о м е т о д а исследования явлений, происходящих в материальных системах при взаимопреобразованиях теплоты и работы. Таким образом, сущность т е р м о д и н а м и ч е с к о г о метода состоит в анализе условий и установлении количественных связей между физическими величинами в системах, служащих для взаимного преобразования различных видов энергии.

Раздел теоретической физики, в котором физические свойства макроскопических систем изучаются с помощью термодинамического метода, именуют т е р м о д и н а м и к о й. Строго говоря, термодинамика – это наука о наиболее общих свойствах макроскопических физических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими системами. То направление термодинамики, где рассматриваются процессы в энергетических системах и установках, связанные с такими формами энергообмена, как т е п л о т а и р а б о т а, а также свойства тел, участвующих в этих процессах, именуется т е х н и ч е ск о й т е р м о д и н а м и к о й.

Развитие технической термодинамики связано с такими именами отечетственнных и зарубежных ученых, как Михаил Васильевич Ломоносов, Дмитрий Иванович Менделеев, Александр Александрович Радциг, Вячеслав Владимирович Сушков, Василий Игнатьевич Гриневецкий, Михаил Петрович Вукалович, Андрей Станиславович Ястржемский, Николай Леонард Сади Карно, Бенуа Поль Эмиль Клапейрон, Роберт Майер, Джеймс Прескотт Джоуль, Виллиам Томсон (Кельвин), Рудольф Клаузиус, Уильям Джон Ренкин и др

Глава 1 Законы термодинамики

Исходные определения и понятия 1.1.

1.1.1. Термодинамическая система Материальное тело, выделенное в качестве объекта исследования термодинамическим методом, называется т е р м о д и н а м и ч ес к о й с и с т е м о й.

За термодинамическую систему может приниматься и совокупность материальных тел, способных взаимодействовать между собой и с другими телами.

Все, что не включено в систему, но может взаимодействовать с ней (обмениваться энергией и веществом), представляет собой о к р у ж а ющ у ю с р е д у. Поверхность раздела между системой и окружающей средой принято называть к о н т р о л ь н о й п о в е р х н о с т ь ю. Термодинамическая система формируется в соответствии с решаемой задачей. Пространственные размеры термодинамической системы и время ее существования предполагаются достаточными для проведения измерений. Примерами термодинамических систем могут служить: газ в цилиндре поршневого компрессора; продукты сгорания в тракте газотурбинного двигателя; хладагент в агрегатах паровой компрессорной холодильной машины и т.д.

В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем. Если термодинамическая система обменивается с окружающей средой веществом, то такую систему называют о т к р ы т о й. У закрытых систем обмен веществом отсутствует. Среди закрытых систем выделяют э н е р г о и з о л и р о- в а н н ы е – такие, которые не обмениваются с окружающей средой никакими видами энергии. Кроме того, закрытые системы могут быть а д и а- б а т н ы м и – они не обмениваются с окружающей средой энергией только в форме теплоты.

Строго говоря, понятия изолированных и адиабатных систем являются абстрактными. Необходимо отметить, что использование научных абстракций при анализе свойств исследуемых систем является характерным для термодинамики.

Тела, входящие в термодинамическую систему, могут находиться в твердом, жидком, газообразном и ионизированном фазовых состояниях.

Термодинамическую систему, состоящую из одной фазы, называют г о м ог е н н о й, а систему, состоящую из различных фаз, разграниченных поверхностями раздела, – г е т е р о г е н н о й.

10 Вообще говоря, любую термодинамическую систему следует рассматривать как совокупность микрочастиц (агрегатов молекул, молекул, атомов, электронов и т.д.). Все частицы находятся в состоянии движения, и между ними существуют силы взаимодействия. У тел в твердом состоянии силы взаимного притяжения молекул очень велики, вследствие чего тело имеет определенную форму. У тел в жидком состоянии межмолекулярные связи ослаблены до такой степени, что тело принимает форму сосуда, в котором оно находится. В газообразных телах молекулы находятся на столь больших расстояниях друг от друга, что межмолекулярные силы весьма малы, и поэтому газ стремится к беспредельному расширению.

В данном разделе будут рассматриваться в основном гомогенные системы, состоящие из газообразной фазы.

Совокупность физических свойств, присущих рассматриваемой системе, называют с о с т о я н и е м системы. Величины, характеризующие физические свойства, именуют п а р а м е т р а м и с о с т о я н и я. В зависимости от способа определения их численных значений параметры состояния делятся на т е р м о д и н а м и ч е с к и е и к а л о р и ч е с к и е.

К термодинамическим относят те параметры состояния, которые определяются путем измерений (давление, температура, объем).

Калорические параметры также описывают состояние системы, но их значения определяются только расчетным путем (например, энтальпия, энтропия и др.). Особенностью калорических параметров является то, что их изменение зависит только от начальных и конечных состояний системы. По этой причине калорические параметры состояния еще называют ф у н кц и я м и состояния.

Параметры состояния обладают либо свойствами и н т е н с и в н о ст и, либо свойствами э к с т е н с и в н о с т и (а д д и т и в н о с т и).

Интенсивный (с лат. – усиленный) параметр как для всей системы, так и для отдельных ее частей одинаков, он не зависит от количества вещества в системе. К интенсивным параметрам состояния относят температуру, давление и др.

Экстенсивный или аддитивный (с лат. – получаемый сложением) – это тот параметр системы, который вычисляется как сумма идентичных параметров отдельных ее частей. Так как количество вещества в системе равно сумме количеств веществ отдельных ее частей, то термодинамические параметры, пропорциональные количеству вещества в данной части системы, относятся к экстенсивным. Примерами экстенсивных параметров состояния являются внутренняя энергия, энтропия и др.

Будучи отнесены к количеству вещества, экстенсивные величины перестают зависеть от размеров системы, и приобретают свойства интенсивных величин.

Для выражения значений термодинамических величин следует использовать основные и производные, кратные и дольные величины Международной системы единиц (СИ). В табл.1 Приложения приведены основные и производные единицы величин, используемые в теплотехнике.

1.1.2. Термодинамические параметры К термодинамическим параметрам состояния относят т е м п е р а т ур у, д а в л е н и е, у д е л ь н ы й о б ъ е м и п л о т н о с т ь.

Температура Понятие температуры является одним из важнейших в теплотехнике.

С молекулярно-кинетической точки зрения температура характеризует интенсивность движения структурных частиц системы. Более строгое определение температуры как физической величины дается при рассмотрении второго закона термодинамики.

Температура – это термодинамический параметр, определяющий тепловое состояние системы. Численное значение температуры является мерой отклонения состояния данного тела от теплового равновесия с другим телом, состояние которого принято за начало отсчета.

Температура системы измеряется с помощью различных по принципу действия термометрических устройств. При этом на шкалах этих устройств регистрируется не интенсивность теплового движения микрочастиц, а изменение физического свойства чувствительного элемента, находящегося в тепловом соприкосновении с системой, например, изменение объема жидкости или газа при нагревании; зависимость электрического сопротивления металла от температуры и др. Шкала таких устройств имеет температурную градуировку. Градуировка производится путем деления разности показаний устройства в двух произвольно выбранных постоянных температурных точках на некоторое число равных частей, называемых г р а д у с а м и. Так как выбор постоянных температурных точек произволен, то существует несколько температурных шкал. Для численного определения температуры в единицах СИ установлено две температурные шкалы: т е р м о д и н а м и ч е с= к а я и Международная п р а к т и ч е с к а я (МПТШ) с одинаковой ценой деления шкалы – градусом.

В термодинамической температурной шкале за начало отсчета принимается наинизшая температура, при которой возможно полное прекращение теплового движения микрочастиц. Эта точка отсчета называется а б с о л ю т н ы м н у л е м температуры. Термодинамическая температура обозначается Т, за единицу температуры принят кельвин (К).



По МПТШ за нуль отсчета принимается температура тройной точки воды; за 100 делений шкалы – температура точки кипения воды. Эта градуировка соответствует температурной шкале, предложенной в 1742 г. шведским физиком А. Цельсием, по которой температура обозначается t и за единицу принимается градус Цельсия (оС).

–  –  –

р**абс. рбар. Отсюда р*абс = ризб + рбар и р**абс = рбар – рраз.

Иногда используются внесистемные единицы давления: бар; мм рт.ст.;

мм вод. ст.; техническая атмосфера (ат); физическая атмосфера (атм). Численные соотношения между единицами давления приведены в табл.2 Приложения. Ниже внесистемные единицы выражены через паскаль.

1 бар = 1 105 Па = 1 105 Н/м2; 1 мм рт.ст. = 133,3 Па;

1 мм вод. ст. = 9,81 Па; 1 бар = 750 мм рт.ст.;

1 1ат = 1 кг/см = 735,6 мм рт.ст. = 0,981 105 Па;

–  –  –

где – плотность, кг/м.

Очевидно, что плотность системы – величина, обратная ее удельному объему.

Массу системы и ее объем, как правило, не относят к параметрам состояния, но определенные с их помощью v и являются термодинамическими параметрами.

1.1.3. Состояние термодинамической системы Состояние термодинамической системы описывается совокупностью термодинамических и калорических параметров, по которым можно отличить данную систему от других, а также проследить за изменениями, возникающими в системе при ее взаимодействии с окружающей средой.

Если термодинамическая система закрытая и энергоизолированная, то с течением времени внутри системы между различными ее частями прекращается обмен энергией и веществом, одноименные параметры во всех точках системы принимают одинаковое значение. Такое состояние системы называется р а в н о в е с н ы м. При невыполнении указанных условий состояние системы является н е р а в н о в е с н ы м.

Понятие равновесного состояния играет в термодинамике чрезвычайно важную роль: только равновесные состояния термодинамических систем и их изменения могут быть количественно описаны методами термодинамики.

Для задания состояния термодинамической системы иногда используют так называемые “н о р м а л ь н ы е ф и з и ч е с к и е у с л о в и я” (НФУ) или “н о р м а л ьн ы е т е х н и ч е с к и е у с л о в и я” (НТУ).

При нормальных физических (атмосферных) условиях значения температуры и давления равны соответственно t = 0 оС, р = 760 мм рт.ст.

При нормальных технических условиях t = 15 оС и р =735,6 мм рт.ст.

Как отдельные, так все параметры системы могут изменяться. Всякое изменения, происходящее в системе и связанное с изменением хотя бы одного из ее параметров состояния, называется т е р м о д и н а м и ч е с к и м п р о ц е с с о м.

Процесс изменения состояния системы, который может происходить в случае какого-либо взаимодействия с окружающей средой, представляет собой отклонение от состояния равновесия. Если процесс изменения состояния системы протекает так медленно, что в системе в каждый момент времени успевает установиться практически равновесное состояние, то его можно назвать к в а з и р а в н о в е с н ы м п р о ц е с с о м. Степень приближения квазиравновесного процесса к чисто равновесному будет тем больше, чем медленнее изменяется состояние системы.

Равновесные процессы изменения состояния характеризуются определенными зависимостями термодинамических параметров и поэтому допускают графическое изображение.

Среди различных термодинамических процессов особый интерес представляют так называемые “з а м к н у т ы е” (или к р у г о в ы е) процессы, при которых система, пройдя через ряд последовательных состояний, возвращается в начальное состояние.

1.1.4. Энергия термодинамической системы Энергия Понятие энергии неразрывно связано с материей. Все, что нас окружает, что воспринимается человеком и существует независимо от него, это материя. Необходимым условием существования материи является движение.

И если масса служит количественной характеристикой материи, то энергия является физической мерой ее движения.

Э н е р г и я – это общая количественная мера движения и взаимодействия всех видов материи.

Исторически же сложилось так, что энергию стали классифицировать по формам движения. Механической форме движения соответствует кинетическая энергия; соединению и разложению молекул – химическая энергия;

перемещению электронов в проводниках – электрическая энергия и т.д. Такое разделение энергии на виды удобно для исследования и анализа явлений природы.

Всякая термодинамическая система обладает определенной энергией, которая, независимо от конкретных форм проявления, обозначается Е.

За единицу энергии в СИ принят д ж о у л ь (Дж) – производная единица, определяемая через основные величины. Джоуль – это энергия, затраченная системой при перемещении точки приложения силы 1 Н на расстояние 1 м в направлении действия силы, т.е. 1 Дж = 1 Н 1 м.

Вычислить абсолютное значение энергии термодинамической системы невозможно, нет нуля отсчета энергии. Такое положение не играет существенной роли для практики, потому что при исследовании энергообмена важна не абсолютная величина энергии, а ее изменение. Для отдельных же форм энергии с целью количественной оценки их изменений в процессах устанавливается условное “начало отсчета”.

В общем случае энергия термодинамической системы Е включает в себя кинетическую энергию механического движения тела или тел внутри нее Ек, потенциальную энергию системы во внешнем поле (гравитационном, электромагнитном, сил давления) Еп и в н у т р е н н ю ю энергию (связанную с энергией микрочастиц тел, входящих в систему) Ев:

Е = Ек + Еп + Ев. (1.3) В технической термодинамике, как правило, рассматривают неподвижную в окружающей среде термодинамическую систему, форма и размеры которой могут изменяться. Однако может иметь место и перемещение тел или тела внутри системы со скоростью с. В большинстве случаев гравитационной и электромагнитной составляющими потенциальной энергии пренебрегают. Существенной в таких системах будет потенциальная энергия в поле сил давления, которая выражается через объем и давление:

Еп = pV. (1.4) Величина pV представляет собой энергию, которую нужно было затратить для того, чтобы ввести тело объемом V во внешнюю среду, имеющую повсюду одинаковое давление p.

Внутреннюю энергию Ев в технической термодинамике обозначают U.

Таким образом, энергия системы, рассматриваемой технической термодинамикой, равна кинетической энергии, потенциальной энергии в поле сил давления и внутренней энергии:

с2 Е=m + pV + U. (1.5) Внутренняя энергия Понятие внутренней энергии системы связано с микроскопическим строением последней. Это значит, что систему нужно рассматривать как совокупность большого числа структурных частиц (молекул, атомов, ионов и т.д.). Внутренняя энергия включает в себя энергию хаотичного (теплового) движения всех микрочастиц системы, энергию взаимодействия этих частиц, энергию электронных оболочек атомов. В термодинамической системе, состоящей из идеального газа, учитывается только тепловая энергия микрочастиц, включающая энергию поступательного, вращательного и колебательного движений.

Под внутренней энергией понимают калорический параметр, характеризующий совокупность энергии теплового движения микрочастиц системы.

За единицу внутренней энергии принят джоуль.

Особенностью внутренней энергии U является то, что она однозначно является функцией состояния термодинамической системы. Значение внутренней энергии в каком-либо произвольно выбранном процессе не зависит от того, каким образом система пришла в это состояние. Иначе говоря, изменение внутренней энергии U1-2 при переходе системы из сотояния 1 в состояние 2 не зависит от пути перехода и равно U1-2 = U2 – U1.

В круговых процессах изменение внутренней энергии равно нулю.

–  –  –

Если система неподвижна, то энтальпия равна полной энергии системы объемом V, находящейся под давлением р.

Энтальпия является одной из вспомогательных функций, использование которых значительно упрощает термодинамические расчеты. Она не может быть измерена непосредственно, а определяется, как и внутренняя энергия, только расчетным путем.

Внутренняя энергия и энтальпия характеризуются рядом общих свойств:

–  –  –

Однако удельные значения внутренней энергии и энтальпии относятся к интенсивным параметрам. Удельные массовые значения внутренней энергии и энтальпии вычисляют с помощью соотношений:

u =U/m и i = I/m и выражают в Дж/кг.

1.1.5. Теплота и работа – формы энергообмена Обмен энергией между закрытой термодинамической системой и внешней средой или между телами внутри системы может осуществляться посредством двух качественно различных форм. Одна форма обмена энергией происходит без видимого перемещения тел и системы в целом, другая сопровождается изменением ее размеров или расположения ее тел в пространстве.

Для процессов, изучаемых в технической термодинамике, первый способ передачи энергии может быть реализован только при хаотическом, ненаправленном движении микрочастиц внутри неравновесной системы или при обмене энергией термодинамической системы и окружающей среды, имеющих разные температуры. Такую форму называют т е п л о о б м е н о м.

Для количественной оценки теплообмена введено понятие т е п л о т ы.

Теплота Под теплотой понимают количество энергии, которой термодинамическая система обменивается с окружающей средой микроскопическим путем (теплообменом).

Обмен энергией в форме теплоты возможен и между телами внутри системы.

18 Теплота здесь понимается только как форма передачи энергии, и неверно говорить, что она выражает свойство системы, тем более содержится в системе. Можно говорить о теплоте, подведенной к системе или от нее отведенной, но нельзя говорить об увеличении или уменьшении теплоты в той или иной системе, т.е. не следует путать теплоту и внутреннюю тепловую энергию.

Теплоту обозначают Q. За единицу теплоты принят джоуль. В термодинамике подводимую теплоту принято считать положительной, отводимую – отрицательной.

Вторая форма передачи энергии связана с изменением объема системы и перемещением ее в окружающей среде под воздействием различных силовых полей – гравитационного, упругостного, магнитного; поля сил давления и др. Такая форма энергообмена, реализуемая макроскопическим путем, называется р а б о т о й.

Работа Под работой понимают количество энергии, которой термодинамическая система обменивается с окружающей средой в результате макроскопического, упорядоченного, направленного движения.

Работа обозначается L. За единицу работы принят джоуль.

В термодинамике работу, совершаемую системой по преодолению внешних сил, принято считать положительной, а совершаемую внешними силами над системой - отрицательной. Работа, связанная с увеличением объема системы, называется работой расширения (Lрасш.); с уменьшением объема

– работой сжатия (Lсж.).

Работа процесса В общем случае термодинамическая система может совершать одновременно работу по увеличению своего объема; работу по преодолению внешних сил давления, сил трения; работу по преодолению воздействия гравитационных, магнитных и других полей. Тогда техническая (полезная) работа системы с учетом правила знаков может быть выражена в виде:

Lтех = Lрасш - Lд - Lпр, (1.8) где Lтех – техническая работа системы;

Lрасш – работа расширения;

Lд – работа по преодолению поля сил давления;

Lпр – сумма работ по преодолению сил трения, гравитационных, магнитных и прочих полей.

Выразим работу через термодинамические параметры. Пусть система будет задана в виде объема газа, находящегося в цилиндре под поршнем, рис. 1.2.

Давление газа над поршнем р1. При давлении окружающей среды рн*, равном р1, поршень будет неподвижен. При бесконечно медленном уменьшении давления среды от рн* до рн** поршень переместится из положения 1 в положение 2. Произойдет равновесный процесс расширения газа с совершением работы. Элементарное значение этой работы будет равно силе, действующей на поршень pF, умноженной на перемещение поршня dh, т.е.

dLрасш = pF dh, где F – площадь поршня;

p – давление газа, имеющее величину p1 p p2.

Так как Fdh = dV, то dL расш = pdV.

Проинтегрировав последнее выражение от начального состояния до конечного, получим:

–  –  –

Lтех = – 1 Vdp. (1.11) Обратимся к выражению (1.8). Если сумма работ по определению сил трения, гравитационных, магнитных и прочих полей принять равной нулю, то работа системы при переходе из одного состояния в другое есть не что иное, как работа техническая.

Правые части выражений (1.9) и (1.11) представляют собой определенные интегралы непрерывных и положительных внутри промежутка 1-2 функций. Такие интегралы имеют простое геометрическое истолкование.

Так, интеграл вида 1 p (V)dV численно равен площади под кривой функции p(V), изображенной на графике, рис. 1.3, где по оси ординат отложено давление, а по оси абсцисс – объем. Интеграл – 1 V (P)dp = 2 V (p)dp также численно равен площади под кривой, но уже функции V(p), изображенной в координатах pV, рис.1.4. Отсюда работа расширения численно равна площади, ограниченной кривой процесса 1-2, ординатами V1 и V2 и осью абсцисс, т.е.

Lрасш = F1-2-V2-V1-1.

Техническая работа численно равна площади, ограниченной кривой процесса 1-2, абсциссами p1 и p2 и осью ординат, т.е. Lтех =L 2-P2-P1-1.

–  –  –

Здесь рассматриваются системы, в которых протекают о б р а т и м ы е процессы, хотя в действительности все реальные процессы в той или иной степени н е о б р а т и м ы.

Обратимым называют такой процесс, который может быть осуществлен в обратном направлении через те же состояния и точно с тем же обменом энергии в форме теплоты и работы, что и в прямом напправлении.

Это значит, что Qп р= Qобр и Lп р= Lобр. Если хотя бы одно из условий не выполняется, то процесс необратим. Типичным примером нарушения условия обратимости является протекание процесса при наличии трения, так как результатом трения является необратимое преобразование работы в теплоту.

1.2. Законы термодинамики Основу термодинамики составляют фундаментальные законы природы, сформулированые на основании обобщения результатов множества опытных исследований и открытий. Из этих законов, принимаемых за аксиомы; логическим путем получены все главнейшие следствия, касающиеся различных термодинамических систем, которые именуются н а ч а л а м и или з а к о- н а м и термодинамики.

1.2.1. Первый закон термодинамики Абсолютный по своему существу, один из наиболее общих законов природы – закон сохранения и превращения энергии. Согласно этому закону, энергия закрытой системы при любых процессах, происходящих в системе, остается неизменной. При этом энергия может только превращаться из одной формы в другую.

Первый закон термодинамики является частным случаем этого всеобщего закона и представляет собой его приложение к процессам в термодинамических системах. Он устанавливает возможность превращения различных форм энергии друг в друга и определяет, в каких количественных соотношениях эти взаимные превращения осуществляются.

Изменение энергии произвольной неизолированной системы может происходить в общем случае только за счет двух форм энергообмена – теплоты и работы:

E = Q –L, (1.12) где E – изменение энергии системы;

Q – теплота, подведенная к системе;

L – работа, совершенная над системой.

Согласно уравнению (1.12), изменение энергии термодинамической системы возможно за счет подведенной к системе теплоты и совершенной над системой работой.

Уравнение (1.12) представляет собой общее аналитическое выражение первого закона термодинамики. Выразим его через параметры состояния системы. Изменение энергии E получим из выражения (1.7):

–  –  –

Для термодинамической системы, в которой разностью кинетической энергии можно пренебречь, изменение энергии системы будет равно изменению энтальпии, т.е. E = I. Тогда с учетом выражений (1.11) и (1.12) получим уравнение первого закона термодинамики в виде:

Q = I + Lтех (1.13) Теплота, подведенная к системе, идет на изменение энтальпии системы и совершение системой технической работы.

Заменим в уравнении (1.13) изменение энтальпии I изменением внутренней энергии U и, используя выражение (1. 6), получим:

Q = U + L расш. (1.14) Уравнения (1.13) и (1.14) представляют собой интегральную форму записи первого закона термодинамики.

Из выражения (1.13) следует, что техническая работа может быть совершена термодинамической системой за счет уменьшения энтальпии и подведенной теплоты. Если процесс круговой, то I = 0, следовательно, в постоянно действующих машинах (в них процессы изменения состояния круговые) для получения технической работы необходимым условием является подведение теплоты.

Аналогичное рассуждение можно провести и по уравнению (1.14).

Термодинамическая система может совершить работу расширения только за счет уменьшения своей внутренней энергии или за счет подведенной теплоты. Если в результате процесса внутренняя энергия системы не изменяется (например, в системе не изменяется температура), то вся теплота, полученная системой от окружающей среды, идет на совершение работы:

Это выражение позволяет дать следующие формулировки первого закона термодинамики.

При неизменной внутренней энергии системы теплота и работа эквивалентны.

Вечный двигатель первого рода невозможен.

Предполагалось, что вечный двигатель первого рода должен только совершать работу над окружающей средой, ничего не получая от нее.

До сих пор рассматривались системы произвольной массы. Для анализа удобнее пользоваться величинами, приведенными к единице массы вещества. Запишем уравнения (1.13) и (1.14) для 1 кг массы:

–  –  –

во-первых, он формирует принцип устройства теплоэнергетических установок и систем;

во-вторых, он объясняет физическую сущность процессов, происходящих в тепловых машинах;

в-третьих, он используется при расчетах термодинамических процессов и позволяет оценить энергетический баланс тепловых машин.

1.2.2. Второй закон термодинамики Первый закон термодинамики, являясь частным случаем закона сохранения и превращения энергии, рассматривает только его количественную сторону, заключающуюся в том, что при известном изменении энергии системы соотношение между теплотой и работой строго определенно. Этот закон не устанавливает направлений и полноты передачи энергии между телами, не определяет условий, при которых возможно преобразование теплоты в работу, не делает различий между их прямыми и обратными превращениями. Если исходить лишь из первого закона термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе. Ответ на поставленные вопросы дает второй закон термодинамики, который представляет собой совокупность положений, обобщающих опытные данные о качественной стороне закона сохранения и превращения энергии.

Многообразие особенностей взаимного превращения теплоты и работы, а также различные аспекты, в которых эти превращения рассматриваются, объясняют наличие нескольких, по сути эквивалентных, формулировок второго закона термодинамики.

Основные положения этого закона были высказаны французским инженером С. Карно (1824 г.). Карно пришел к выводу, что для преобразования теплоты в работу необходимы два источника теплоты с разной температурой. Само же название “Второй закон термодинамики” и исторически первая его формулировка (1850 г.) принадлежат немецкому физику Р. Клаузиусу:

“Теплота может переходить сама собой только от горячего тела к холодному; для обратного перехода надо затратить работу”, Из этого утверждения следует, что для перехода теплоты от тела с меньшей температурой к телу с большей температурой обязательно необходим подвод энергии от внешнего источника в какой-либо форме, например, в форме работы. В противоположность этому теплота от тела с большей температурой самопроизвольно, без затрат каких-либо видов энергии, переходит к телам с меньшей температурой. Это означает, в частности, что теплообмен при конечной разности температур представляет собой строго односторонний, необратимый процесс, и направлен он в сторону тел с меньшей температурой.

Второй закон термодинамики лежит в основе теории тепловых двигателей. Тепловой двигатель представляет собой непрерывно действующее устройство, результатом действия которого является превращение теплоты в работу. Так, чтобы создать тепловой двигатель, непрерывно производящий работу, необходимо, прежде всего, иметь тело, являющееся поставщиком энергии в форме теплоты. Назовем его и с т о ч н и к о м т е п л о т ы.

Обязательно наличие и другого тела, которое воспринимает от первого

–  –  –

ской точки зрения замена рабочего вещества может рассматриваться как возращение рабочего тела в исходное состояние.

Таким образом, для непрерывного преобразования теплоты в работу нужны: источник теплоты; рабочее тело и теплоприемник, имеющий более низкую температуру, чем теплоисточник. Отвод некоторой части теплоты в теплоприемник является обязательным условием функционирования тепловых двигателей. Это условие изложено в следующих формулировках второго закона термодинамики:

“Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме работы и охлаждения источника теплоты” (В. Томсон).

“ Все естественные процессы являются переходом от менее вероятных к более вероятным состояниям” (Л. Больцман).

–  –  –

1.2.3. Энтропия. Математическое выражение второго закона термодинамики.

“Энтропия” в переводе с греческого означает “поворот” или “превращение”. Сначала понятие энтропии было введено в науку формально.

Р.Клаузиус (1854г.) показал, что для термодинамической системы существует некая функция S, приращение которой определяется выражением dQ (1.22) dS.

T Он назвал эту функцию энтропией. Позже, при рассмотрении большого числа задач, было выявлено физическое содержание энтропии.

Так как энтропия не поддается простому интуитивному представлению, попытаемся уточнить ее смысл путем сравнения с аналогичными величинами, более доступными для нашего понимания. Запишем выражение работы расширения в дифференциальной форме:

dLрасш = p dV.

Здесь давление p является величиной необходимой, но не достаточной для совершения работы. Изменение же объема приведет к работе расширения. Объем в приведенном уравнении выполняет свойство достаточного параметра. Таким образом, судить о том, что совершена работа расширения или сжатия можно лишь по изменению объема.

Теперь запишем выражение (1.22) в виде:

Здесь температура является величиной необходимой, но еще не достаточной для того, что бы говорить о том, подводится тепло к системе или отводится от не. Так, в адиабатном процессе система не обменивается теплотой с окружающей средой, а температура изменяется существенно. Остается один параметр, который должен обладать свойством достаточности, и этот параметр – энтропия. Только по изменению энтропии можно судить о теплообмене системы с окружающей средой. Отсюда Энтропия есть калорический параметр состояния термодинамической системы, характеризующий направление протекания процесса теплообмена между системой и внешней средой.

Можно сказать, что энтропия – это единственная физическая величина, изменение которой в процессе однозначно указывает на наличие энергообмена в форме теплоты.

Выражение (1.22) устанавливает как качественную, так и количественную связь между теплотой и энтропией: если изменяется энтропия тела или системы, то в том и другом случае подводится энергия в форме теплоты; если энтропия неизменна, то процесс протекает без энергообмена в форме теплоты. Равенство (1.22) является аналитическим выражением второго закона термодинамики для элементарного равновесного процесса.

Выражение (1.22) дает возможность установить единицу энтропии, которая равна Дж/К.

Абсолютное значение энтропии определяется с точностью до некоторой постоянной S0. Численное значение постоянной S0 на основе только первого и второго законов термодинамики не может быть определено. Однако это не накладывает ограничений на использование энтропии в расчетах. В практике, как правило, интерес представляет не абсолютная величина энтропии, а ее изменение, для которого численное значение постоянной S0 особой роли не играет. Поэтому часто величине придают произвольное значение для условно принятого, так называемого с т а н д а р т н о г о состояния тела.

–  –  –

В термодинамике максимально возможную техническую работу системы называют э к с е р г и е й.

Обозначают эксэргию системы через Ex. За единицу эксэргии в СИ принят джоуль. Ее приведенное значение (ex = Еx/m) имеет единицу измерения Дж/кг.

В закрытой термодинамической системе при преобразовании теплоты в работу по циклу Карно можно принять ex = l ц. Тогда, при отводе тепла от источника с температурой T1 в окружающую среду с температурой T0 вправе T0 записать). Определим условия, при которых эти преобex = q· = q (1 - t T1 разования дадут максимально возможную работу в других циклах.

Пусть начальное состояние системы характеризуется точкой а, рис.1.8. При взаимодействии с окружающей средой состояние системы стремится к равновесному, обозначенному точкой о. Процесс а-о не что иное, как переход системы из начального в равновесное состояние. Будем иметь в виду, что температура окружающей среды, несмотря на ее взаимодействие с системой, остается постоянной и равной а T0. Используя уравнение первого закона термодинамики вида (1.15) и Рис. 1.8 и заменяя техническую работу эксэргией, получим:

ex = qa-o+(i0 – iа). (1.27) Изменение энтальпии не зависит от характера процесса. Поэтому, если известны начальное и конечное состояние системы, всегда можно определить разность энтальпий. Количество тепла является функцией процесс а-о.

Для определения qa-o воспользуемся вторым законом термодинамики. Очевидно, что количество тепла, полученное окружающей средой qср, равно количеству тепла, переданному системой среде, qа-о, т.е.

qср = - qa-o (1.28) Количество тепла qa-o пропорционально площади под кривой процесса (рис.1.8, пл.so-o-a-sa). Окружающая среда воспринимает теплоту в изотермическом процессе при T = To. Начальное состояние этого процесса характеризуется точкой о, а конечное (точка о) должно быть таким, чтобы пл. so-o-o"-so/, согласно (1.28), была равна пл. so-o-a-sa.

Так как по второму закону термодинамики dqср = To dsср, то после интегрирования этого выражения от состояния о до состояния а будет иметь:

qcp = T0(s0" -sa) = T0(sa –s0) + T0 (s0 - sa). (1.29)

Тогда с учетом (1.28) выражение (1.27) запишется:

ex = (ia – io) – To(sa – so) – To (so/ - sa). (1.30)

Из уравнения (1.30) следует ряд важных выводов:

1. В системе при обратимых процессах эксэргия больше, чем в той-же системе с необратимыми процессами, т.к. T0 (s0/ -sa) 0.

2. Чем больше значение начальной энтропии системы sa, тем меньшую работу может она совершить при неизменной разности энтальпий (ia – i0).

Следовательно, энтропия характеризует энергию системы.

– пределяет условия, необходимые для взаимного преобразования таких форм энергообмена, как теплота и работа;

– устанавливает полноту преобразования теплоты в работу.

1.2.5 Понятие о третьем законе термодинамики При изучении свойств различных веществ в условиях низких температур, близких к абсолютному нулю (Т = 0), обнаруживается важная закономерность в поведении реальных тел: в области абсолютного нуля энтропия тела в любом равновесном состоянии не зависит от температуры, объема и других параметров, характеризующих состояние тела.

Этот результат, являющийся обобщением ряда опытных данных и не вытекающий непосредственно из первого или второго законов термодинамики, составляет содержание тепловой теоремы Нернста.

Похожие работы:

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОЗЫБКОВСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ТЕХНИКУМ ­ ФИЛИАЛ ФГБОУ ВО «БРЯНСКИЙ ГАУ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ ПО ПМ.04. УПРАВЛЕНИЕ РАБОТАМИ ПО ОБЕСПЕЧЕНИЮ РАБОТОСПОСОБНОСТИ ЭЛЕКТРОТЕХНИЧЕСКОГО ХОЗЯЙСТВА СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПОТРЕБИТЕЛЕЙ И АВТОМАТИЗИРОВАННЫХ СИСТЕМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ Для студентов специальности 35.02.08. «Электрификация и автоматизация сельского хозяйства» ...»

« «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮСАМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА по дисциплине Б1.Б3 ОСНОВЫ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ Код и направление 40.06.01 Юриспруденция подготовки Криминалистика; судебно-экспертная Профиль (направленность деятельность; оперативно-розыскная подготовки...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ГЕНЕТИКА ПРИЗНАКОВ КАЧЕСТВА СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ Методические указания по проведению практических занятий для аспирантов по направлению: 06.06.01 – биологические науки Краснодар, 2015 Составитель: С.В. Гончаров Генетика признаков качества сельскохозяйственных растений: метод....»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению курсовой работы по дисциплине «История отечественного государства и права» Направление подготовки: 40.03.01 Юриспруденция Факультет: экономики и права Форма обучения: очная, заочная В рамках освоения дисциплины «История...»

«РОССИЙСКАЯ ФЕДЕРАЦИЯ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ПО ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ ВЫСШЕГО ОБРАЗОВАНИЯ направление 20.03.01 –Техносферная безопасность профиль Безопасность технологических процессов и производств Квалификация: академический бакалавр Форма обучения очная, заочная Орел 2015 СОДЕРЖАНИЕ: 1. Общие положения Определение....»

«Зарегистрировано в Минюсте РФ 4 мая 2009 г. N 13883 МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПРИКАЗ от 24 февраля 2009 г. N 75 ОБ УТВЕРЖДЕНИИ МЕТОДИЧЕСКИХ УКАЗАНИЙ ПО ПОДГОТОВКЕ, ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ АУКЦИОНОВ ПО ПРОДАЖЕ ПРАВА НА ЗАКЛЮЧЕНИЕ ДОГОВОРОВ АРЕНДЫ ЛЕСНЫХ УЧАСТКОВ, НАХОДЯЩИХСЯ В ГОСУДАРСТВЕННОЙ ИЛИ МУНИЦИПАЛЬНОЙ СОБСТВЕННОСТИ, ЛИБО ПРАВА НА ЗАКЛЮЧЕНИЕ ДОГОВОРА КУПЛИ-ПРОДАЖИ ЛЕСНЫХ НАСАЖДЕНИЙ В СООТВЕТСТВИИ СО СТАТЬЯМИ 78 80 ЛЕСНОГО КОДЕКСА РОССИЙСКОЙ ФЕДЕРАЦИИ В...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Селекция на качество сельскохозяйственных растений Методические указания Для самостоятельной работы аспирантов направления: 35.06.01 сельское хозяйство Краснодар, 2015 Составитель: С.В. Гончаров Селекция на качество сельскохозяйственных растений: метод. указания для самостоятельной работы...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ самостоятельной работы по дисциплине Б1. В. ОД.2 Организация учебной деятельности в вузе и методика преподавания в высшей школе Код и направление подготовки 40.06.01 «Юриспруденция» Наименование направленности (проГражданское право; предпринимафиля) программы...»

«Министерство сельского хозяйства Российской Федерации Департамент мелиорации Федеральное государственное бюджетное научное учреждение «РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОБЛЕМ МЕЛИОРАЦИИ» (ФГБНУ «РосНИИПМ») МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ ЗАКРЫТОЙ ОРОСИТЕЛЬНОЙ СЕТИ Новочеркасск Методические указания по эксплуатации закрытой оросительной сети подготовлены сотрудниками ФГБНУ «РосНИИПМ»: доктором технических наук, доцентом С. М. Васильевым; кандидатом технических наук В. В....»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮСАМОСТОЯТЕЛЬНОЙ РАБОТЫ АСПИРАНТА по дисциплине Б1.Б3 ОСНОВЫ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ Код и направление 40.06.01 подготовки Юриспруденция Профиль (направленность Уголовный процесс подготовки Квалификация Исследователь. Преподавательстепень)...»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра государственного и муниципального управления МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению курсовых работ по дисциплине «Система муниципального управления» для студентов направления подготовки 38.03.04 Государственное и муниципальное управление Квалификация (степень) выпускника Бакалавр КРАСНОДАР...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ УКАЗАНИЯПО ПРОВЕДЕНИЮ СЕМИНАРСКИХ ЗАНЯТИЙ по дисциплине Б1.В.ДВ.2.1 УПРАВЛЕНИЕ РАССЛЕДОВАНИЕМ ПРЕСТУПЛЕНИЙ Код и направление 40.06.01 Юриспруденция подготовки Наименование профиля Криминалистика; судебно-экспертная программы подготовки деятельность; оперативно-розыскная...»

«Министерство сельского хозяйства Российской Федерации Департамент научно-технологической политики и образования ФГБОУ ВПО «Волгоградский государственный аграрный университет»КАТАЛОГ НАУЧНОЙ, УЧЕБНОЙ, УЧЕБНО-МЕТОДИЧЕСКОЙ ЛИТЕРАТУРЫ ИПК «Нива» ВолГАУ Волгоград Волгоградский ГАУ Составители: С. А. Агапов А. Г. Бондарев Компьютерная верстка, дизайн обложки Бондарева А. Г. © ФГБОУ ВПО Волгоградский ГАУ, 2014 ОГЛАВЛЕНИЕ Журнал.. Многопрофильные конференции. Агрономия.. Монографии. 14 Учебники Учебные...»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Механизация животноводства и безопасность жизнедеятельности» МЕТОДИЧЕСКИЕ УКАЗАНИЯ по организации самостоятельной работы по дисциплине «Ресурсосберегающие технологии производства продукции животноводства» для аспирантов, обучающихся по направлению подготовки 35.06.04 Технологии,...»

«Министерство сельского хозяйства РФ ФГБОУ ВПО «Кубанский государственный аграрный университет» В. Д. Жуков, З. Р. Шеуджен КАДАСТРОВАЯ ОЦЕНКА ЗЕМЕЛЬ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ Учебное пособие Допущено учебно-методическим объединением вузов Российской Федерации по образованию в области землеустройства и кадастров в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки 21.03.02 – Землеустройство и кадастры Краснодар УДК 332.334.4:631.1(075)...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра философии Методические указания к семинарским занятиям по дисциплине ИСТОРИЧЕСКИЕ ТИПЫ ОНТОЛОГИИ Краснодар УДК 167/168 (078) ББК 87 В подготовке методических указаний принимали участие: Данилова М.И., д.ф.н., профессор, зав. кафедрой философии; Бочковой Д.А., преподаватель кафедры...»

« государственный аграрный университет им. А^.А*о|!й«йш:кого НИН А.С. 2 0 ^ "Т. РА С СМ О ТРЕН О на заседании Ученого Совета ЗабАИ « // » 20/?. Основная профессиональная образовательная программа высшего образования по направлению подготовки 36.06.01 В Е Т Е РИ Н А РИ Я И ЗО О Т Е Х Н И Я уровень подготовки кадров: В Ы С Ш АЯ КАТЕГОРИЯ...»

«П.С. Кобыляцкий, А.Л. Алексеев Технология производства продуктов из мяса птицы Методические указания к лабораторно-практическим занятиям для бакалавров по направлению подготовки 19.03.03 Продукты питания животного происхождения пос. Персиановский МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГБОУ ВПО «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Технология производства продуктов из мяса птицы Методические указания к лабораторно-практическим...»

« УПРАВЛЕНИЯ АГРАРНЫМ ПРОИЗВОДСТВОМ КАФЕДРА ТЕХНОЛОГИИ И ЭКСПЕРТИЗЫ ТОВАРОВ УТВЕРЖДАЮ СОГЛАСОВАНО Начальник УМО Декан факультета Н.Н. Левина Л.М. Благодарина «16» сентября 2009г. «14» сентября 2009г. СТАНДАРТИЗАЦИЯ, СЕРТИФИКАЦИЯ И МЕТРОЛОГИЯ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для студентов специальности 080401.65 Товароведение и экспертиза...»