Какая величина называется теплоемкостью вещества. Что такое объемная теплоемкость? Изохорный процесс газа

Теплоемкость тела характеризуется количеством теплоты, необходимым для нагревание этого тела на один градус (Дж/град). Если для увеличения температуры тела на Т градусов необходимо сообщить ему ΔQ джоулей, то средняя теплоемкость тела в интервале ΔТ определяется как:

Теплоемкость тела пропорциональна массе и зависит от вещества тела. Удельная теплоемкость С уд данного вещества (дерева, железа, воздуха и т. д.) характеризуется количеством тепла на один градус, и измеряется в Дж/кг град. Удельная теплоемкость.

Для газов удобно пользоваться молярной теплоемкостью (С мол или просто С), характеризующейся количеством теплоты, нужным для нагревания одного киломоля данного вещества на один градус.

Очевидно, что

С уд /Дж/кг * град/ * μ/кг/кмоль/ = С /Дж/кмоль * град/.

Поскольку в 1 киломоле любого газа содержится одинаковое количество молекул, а средняя кинетическая энергия молекул не зависит от их массы, то можно ожидать, что молярные теплоемкости всех достаточно разреженных газов должны быть одинаковыми.

Теплоемкость тела существенно зависит от того, как меняются состояния тела в процессе нагревания. Рассмотрим для простоты идеальный одноатомный газ. Если мы будем нагревать газ, заключенный в замкнутом объеме, V = const (рис. 1, а), то все подводимое тепло ΔQ будет идти только на увеличение внутренней энергии газа. Тогда первое начало термодинамики при ΔA = 0 будет иметь вид: ΔQ = ΔU.

При этом температура газа будет возрастать в соответствии с увеличением его внутренней энергии, откуда следует, что температура идеального газа пропорциональна его внутренней энергии. Давление газа Р. также будет возрастать пропорционально температуре. Обозначим теплоемкость газа при постоянном объеме через С.

Если хотим, чтобы в процессе нагревания сохранилось давление, газу следует предоставить возможность расширяться. Для этого поместим газ в цилиндр с поршнем, на который действует постоянное давление Р. = const (рис. 1, б). Так как внутренняя энергия U идеального газа не зависит от его объема, то количество теплоты, необходимое для ее увеличения, останется тем же. Но при нагревании газа до той же температуры часть подводимого тепла расходуется теперь на работу против внешних сил при расширении газа. Следовательно, для нагревания газа до той же температуры, как и в предыдущем случае (V = const), придется затратить большее количество теплоты. Таким образом, теплоемкость ΔQ/ΔТ газа при постоянном давлении, которую мы обозначим через С р. , будет больше, чем С V .



Рассмотренный пример очень важен. Он показывает, что количество теплоты ΔQ, необходимое для нагревания газа на ΔТ градусов, существенно зависит от дополнительных условий – характера измерений других микроскопических параметров, определяющих состояние газа, т. е. Р. и V. Кроме рассмотренных процессов, характеризуемых простейшими дополнительными условиями V = const и Р. = const, можно рассмотреть и множество других, отвечающих различным изменениям V и Р. при нагревании. Каждому процессу будет отвечать своя теплоемкость С.

Величины С р. и С v для идеального газа оказывается связанными простым соотношением:

С р. – С v = R (2)

Это соотношение носит название закона Роберта Майера, полученного им в 1842 году.

Для идеального газа молярная теплоемкость при постоянном давлении превышают молярную теплоемкость при постоянном объеме на величину R т. е. на 8,31 кДж/кмоль град.

Универсальная газовая постоянная R численно равна работе расширения киломоля идеального газа при нагревании его на один градус при постоянном давлении.

Опыт показывает, что во всех случаях превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. Поскольку тепловое движение есть в конечном счете, тоже механическое движение отдельных молекул (только не направленное, а хаотическое), то при всех этих превращениях должен соблюдаться закон сохранения энергии с учетом энергии не только внешних, но и внутренних движений. Такая общая формулировка этого закона носит название первого начала термодинамики и записывается в виде:

ΔQ = ΔU + ΔA, т. е.

Количество теплоты, сообщенное телу (ΔQ), идет на увеличение внутренней энергии (ΔU) и на совершение теплом работы (ΔА).

Однако, если сосуд с расширяющим газом теплоизолировать от окружающей среды, то теплообмен будет отсутствовать, т. е. ΔQ = 0. Процесс, происходящий при таком условии, называется адиабатическим. Уравнение первого начала термодинамики для адиабатического процесса тогда примет вид:

ΔQ = 0 0 = ΔU + ΔA или ΔА = - ΔU. (3)

Следовательно, при адиабатическом процессе работа совершается только за счет внутренней энергии газа. При адиабатическом расширении газ совершает работу, а его внутренняя энергия и, следовательно, температура падают. При адиабатическом сжатии работа газа отрицательная (внешняя среда производит работу над газом), внутренняя энергия и температура газа возрастают.

Теплоемкость при адиабатическом процессе будет равна 0, т. е.

Уравнение, описывающее адиабатический процесс имеет вид:

PV γ = const ; где γ = С Р /С V . (4)

Так как С Р >С V , то γ>1 и кривая, изображаемая уравнением (4), идет круче изотермы (рис. 2). Величина работы адиабатического процесса может быть особенно просто вычислена с помощью уравнения (3):

Для одноатомного газа С =12,5кДж/к моль град, С р. =С v + =20,8 кДж/к моль град и показатель степени адиабаты γ=С Р /С v =1,67.

Для двухатомных газов при обычных температурах

g=29,1/20,8=1,4.

Для многоатомных газов γ еще ближе к единице.

В быстроходных двигателях внутреннего сгорания и при истечении газов через сопла реактивных двигателей процесс расширения газа протекает настолько быстро, что его можно считать практически адиабатическим и

рассчитывать по уравнению /4/.

Опыт также показывает, что для звуковых колебаний с минимальными частотами за время одного колебания /~0,1с/температура между сжатыми/ и тем самым разогретыми/ и разряженными /и тем самым охлажденными/ областями волны не успевает выравниваться. Практически процесс распространения звука можно считать адиабатическим, так что скорость распространения звука в идеальном газе определяется выражением:

Отсюда легко найти :

Таким образом, определение γ сводится к измерению скорости звука и абсолютной температуры воздуха. В данной работе скорость звука определяется методом стоячих волн - методом Кундта.

II. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ.

Схема экспериментальной установки изображена на рисунке 3. Телефон т, получая электрический сигнал от генератора1, излучает звуковые волны в трубу 2. Достигнув микрофона М, звуковая волна преобразуется в напряжение, которое поступает на вертикально отклоняющие пластины У электронного осциллографа 3.Напряжение на горизонтально отклоняющие пластины X подается непосредственно с выходных клемм звукового генератора. Телефон жестко закреплен на левом конце трубы, а микрофон может свободно перемещаться внутри нее.

Фазовый сдвиг сигнала, поступающего на пластины У, относительно сигнала, подведенного к пластинам X зависит от времени, которое тратит звук на прохождение расстояния между микрофоном и телефоном, может быть использована для определения длины волны λ. При включении установки на экране осциллографа должен быть виден эллис. Изменяя расстояние между микрофоном и телефоном, можно добиться превращения эллипса в прямую линию. Если теперь сместить микрофон на λ/2, то на экране вновь возникнет прямая линия, проходящая на этот раз через другие квадранты. При дальнейшем смещении прямая вновь переменит свое направление и т.д. Таким образом, при помощи фигур, получивших название фигур Лиссажу, можно непосредственно измерить длину звуковой волны в воздухе и по формуле определить скорость звука, где - частота генератора в Гц.

III.ПОРЯДОК ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ.

1. Включите осциллограф и дайте ему прогреться в течение 10 минут.

2. Включите и настройте звуковой генератор на частоту /частота задается преподавателем/.Установите напряжение на выходе генератора 1,5 В.

3. Установите указатель штока микрофона 5 в крайнее правое положение шкалы 4 /рис/, при этом на экране осциллографа появится фигура Лиссажу /эллипс или прямая линия/.

4. Перемещая шток с микрофоном в лево, зафиксируйте положение штока микрофона / /, при которых эллипс превращается в четкую прямую линию, что соответствует узлам стоячей волны /отсчет производить в см по шкале 4/.

5. Вычислите разность между узловыми точками, которая является половиной длины волны .

11.Сделайте выводы.

IV. КОНТРОЛЬНЫЕ ВОПРОСЫ.

Смотри работу №10.

ТЕПЛОЁМКОСТЬ - кол-во теплоты; поглощаемой телом при нагревании на 1 градус (1 °С или 1 К); точнее - отношение кол-ва теплоты, поглощаемой телом при бесконечно малом изменении его темп-ры, к этому изменению. Т. единицы массы вещества наз. удельной Т., 1 моля вещества-молярной (мольной) Т. Единицами Т. служат Дж/(кг · К), ДжДмоль · К), Дж/(м 3 · К) и внесистемная единица кал/(моль·К).

Кол-во теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их темп-ры), но и от способа, к-рым был осуществлён процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при пост. объёме (C V )и Т. при пост. давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. При нагревании при пост. давлении часть теплоты идёт на производство работы расширения тела, а часть - на увеличение его внутренней энергии , тогда как при нагревании при пост. объёме вся теплота расходуется на увеличение внутр. энергии; в связи с этим С Р всегда больше, чем C V . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. С P - C V = R , где R - универсальная газовая постоянная ,равная 8,314 Дж/(Дмоль·К) или 1,986 калДмоль·К). У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала. Т. С Р нек-рых веществ и материалов приведены в табл. 1 и 2.

В твёрдых (кристаллич.) телах тепловое движение атомов представляет собой малые колебания вблизи определ. положений равновесия (узлов кристаллич. решётки). Каждый атом обладает, т. о., тремя колебат. степенями свободы, и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллич. решётки) должна быть равной ЗnR , где n -число атомов в молекуле. В действительности, однако, это значение - лишь предел, к к-рому стремится Т. твёрдого тела при высоких темп-pax. Он достигается уже при обычных темп-pax у мн. элементов, в т. ч. у металлов (п=1 , т.н. Дюлонга и Пти закон )и у нек-рых простых соединений ; у сложных соединений этот предел фактически не достигается, т. к. раньше наступает плавление вещества или его разложение.

При низких темп-pax решёточная составляющая Т, твёрдого тела оказывается пропорц. T 3 (Дебая закон теплоёмкости) . Критерием, позволяющим различать высокие и низкие темп-ры, является сравнение их с характерным для каждого данного вещества параметром - т. н. характеристической или Дебая температурой q D , Эта величина определяется спектром колебания атомов в теле и тем самым существенно зависит от его кристаллич. структуры (см. Колебания кристаллической решётки) . Обычно q D -величина порядка неск. сотен К, но может достигать (напр., у алмаза) и тысяч К,

У металлов определ. вклад в Т. дают также и электроны проводимости (см. Электронная теплоёмкость) . Эта часть Т. может быть вычислена с помощью Ферми - Дирака, статистики, к-рой подчиняются электроны. Электронная Т. металла пропорц. Т . Она представляет собой, однако, сравнительно малую величину, её вклад в Т. металла становится существенным лишь при темп-pax, близких к абс, нулю (порядка неск. К), когда решёточная Т. ( 3 )становится пренебрежимо малой. У кристаллич. тел с упорядоченным расположением спиновых магн. моментов атомов (ферро- и антиферромагнетиков) существует дополнит. магн, составляющая Т. При темп-ре фазового перехода в парамагн. состояние (в Кюри точке или соответственно Нееля точке )эта составляющая Т. испытывает резкий подъём - наблюдается "пик" Т., что является характерной особенностью фазовых переходов 2-го рода. .

Лит..: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976; Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976. E. М. Лифшиц .

Теплоёмкость тела (обычно обозначается латинской буквой C ) - физическая величина , определяемая отношением бесконечно малого количества теплоты δQ , полученного телом, к соответствующему приращению его температуры δT :

C = {\delta Q \over \delta T}.

Единица измерения теплоёмкости в Международной системе единиц (СИ) - Дж / .

Удельная теплоёмкость

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость (С ), также называемая просто удельной теплоёмкостью - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1).

А при постоянном давлении

c_p = c_v + R = \frac{i+2}{2} R.

Переход вещества из одного агрегатного состояния в другое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения - температура плавления (переход твёрдого тела в жидкость), температура кипения (переход жидкости в газ) и, соответственно, температуры обратных превращений: замерзания и конденсации.

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях - 4200 Дж/(кг·К); льда - 2100 Дж/(кг·К).

Теория теплоёмкости

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга - Пти и закон Джоуля - Коппа . Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна . Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая . Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Напишите отзыв о статье "Теплоёмкость"

Примечания

Литература

  • // Энциклопедический словарь юного физика / В. А. Чуянов (сост.). - М .: Педагогика, 1984. - С. 268–269. - 352 с.

См. также

Отрывок, характеризующий Теплоёмкость

Он не мог иметь цели, потому что он теперь имел веру, – не веру в какие нибудь правила, или слова, или мысли, но веру в живого, всегда ощущаемого бога. Прежде он искал его в целях, которые он ставил себе. Это искание цели было только искание бога; и вдруг он узнал в своем плену не словами, не рассуждениями, но непосредственным чувством то, что ему давно уж говорила нянюшка: что бог вот он, тут, везде. Он в плену узнал, что бог в Каратаеве более велик, бесконечен и непостижим, чем в признаваемом масонами Архитектоне вселенной. Он испытывал чувство человека, нашедшего искомое у себя под ногами, тогда как он напрягал зрение, глядя далеко от себя. Он всю жизнь свою смотрел туда куда то, поверх голов окружающих людей, а надо было не напрягать глаз, а только смотреть перед собой.
Он не умел видеть прежде великого, непостижимого и бесконечного ни в чем. Он только чувствовал, что оно должно быть где то, и искал его. Во всем близком, понятном он видел одно ограниченное, мелкое, житейское, бессмысленное. Он вооружался умственной зрительной трубой и смотрел в даль, туда, где это мелкое, житейское, скрываясь в тумане дали, казалось ему великим и бесконечным оттого только, что оно было неясно видимо. Таким ему представлялась европейская жизнь, политика, масонство, философия, филантропия. Но и тогда, в те минуты, которые он считал своей слабостью, ум его проникал и в эту даль, и там он видел то же мелкое, житейское, бессмысленное. Теперь же он выучился видеть великое, вечное и бесконечное во всем, и потому естественно, чтобы видеть его, чтобы наслаждаться его созерцанием, он бросил трубу, в которую смотрел до сих пор через головы людей, и радостно созерцал вокруг себя вечно изменяющуюся, вечно великую, непостижимую и бесконечную жизнь. И чем ближе он смотрел, тем больше он был спокоен и счастлив. Прежде разрушавший все его умственные постройки страшный вопрос: зачем? теперь для него не существовал. Теперь на этот вопрос – зачем? в душе его всегда готов был простой ответ: затем, что есть бог, тот бог, без воли которого не спадет волос с головы человека.

Пьер почти не изменился в своих внешних приемах. На вид он был точно таким же, каким он был прежде. Так же, как и прежде, он был рассеян и казался занятым не тем, что было перед глазами, а чем то своим, особенным. Разница между прежним и теперешним его состоянием состояла в том, что прежде, когда он забывал то, что было перед ним, то, что ему говорили, он, страдальчески сморщивши лоб, как будто пытался и не мог разглядеть чего то, далеко отстоящего от него. Теперь он так же забывал то, что ему говорили, и то, что было перед ним; но теперь с чуть заметной, как будто насмешливой, улыбкой он всматривался в то самое, что было перед ним, вслушивался в то, что ему говорили, хотя очевидно видел и слышал что то совсем другое. Прежде он казался хотя и добрым человеком, но несчастным; и потому невольно люди отдалялись от него. Теперь улыбка радости жизни постоянно играла около его рта, и в глазах его светилось участие к людям – вопрос: довольны ли они так же, как и он? И людям приятно было в его присутствии.
Прежде он много говорил, горячился, когда говорил, и мало слушал; теперь он редко увлекался разговором и умел слушать так, что люди охотно высказывали ему свои самые задушевные тайны.
Княжна, никогда не любившая Пьера и питавшая к нему особенно враждебное чувство с тех пор, как после смерти старого графа она чувствовала себя обязанной Пьеру, к досаде и удивлению своему, после короткого пребывания в Орле, куда она приехала с намерением доказать Пьеру, что, несмотря на его неблагодарность, она считает своим долгом ходить за ним, княжна скоро почувствовала, что она его любит. Пьер ничем не заискивал расположения княжны. Он только с любопытством рассматривал ее. Прежде княжна чувствовала, что в его взгляде на нее были равнодушие и насмешка, и она, как и перед другими людьми, сжималась перед ним и выставляла только свою боевую сторону жизни; теперь, напротив, она чувствовала, что он как будто докапывался до самых задушевных сторон ее жизни; и она сначала с недоверием, а потом с благодарностью выказывала ему затаенные добрые стороны своего характера.
Самый хитрый человек не мог бы искуснее вкрасться в доверие княжны, вызывая ее воспоминания лучшего времени молодости и выказывая к ним сочувствие. А между тем вся хитрость Пьера состояла только в том, что он искал своего удовольствия, вызывая в озлобленной, cyхой и по своему гордой княжне человеческие чувства.
– Да, он очень, очень добрый человек, когда находится под влиянием не дурных людей, а таких людей, как я, – говорила себе княжна.
Перемена, происшедшая в Пьере, была замечена по своему и его слугами – Терентием и Васькой. Они находили, что он много попростел. Терентий часто, раздев барина, с сапогами и платьем в руке, пожелав покойной ночи, медлил уходить, ожидая, не вступит ли барин в разговор. И большею частью Пьер останавливал Терентия, замечая, что ему хочется поговорить.

Теплоемкость тела - это физическая величина, определяемая отношением количества теплоты, поглощенной телом при нагревании, к изменению его температуры:

Физический смысл теплоемкости тела: теплоемкость тела равна количеству теплоты, поглощенному телом при нагревании или выделенному при его охлаждении на 1К.

Так как теплоемкости переменные величины, то различают среднюю и истинную теплоемкости. Под средней теплоемкостью понимают отношение количества теплоты q , подведенной к единице количества вещества (газа), к изменению его температуры от t 1 до t 2 при условии, что разность температур t 2 – t 1 является величиной конечной. Средние массовая, объемная и мольная теплоемкости соответственно обозначаются через c m , c m ’ и m . Из определения средней теплоемкости следует, что если температура газа повышается от t 1 до t 2 то его средняя теплоемкость [кДж/(кг*К)]

Под истинной теплоемкостью понимают теплоемкость газа, соответствующую бесконечно малому изменению температуры газа, соответствующую бесконечно малому изменению температуры dt , т. е.

c = dq/dt,

откуда dq = cdt.

Удельная теплоемкость - это способность разных веществ к поглощению теплоты при их нагревании. Удельная теплоемкость вещества определяется отношением количества теплоты, полученной им при нагревании, к массе вещества и изменению его температуры, если :

соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера) : Cp = CV + R. ИЛИ БОЛЕЕРАЗВЕРНУТО Теплоёмкость идеального газа Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT). Во многих случаях удобно использовать молярную теплоемкость C: C = M · c, где M – молярная масса вещества. Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры. Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе (p = const). В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует QV = CVΔT = ΔU. Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры. Для процесса при постоянном давлении первый закон термодинамики дает: Qp = ΔU + p(V2 – V1) = CVΔT + pΔV, где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует: Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля: pV = RT, где R – универсальная газовая постоянная. При p = const Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера) : Cp = CV + R.

Газовая постоянная численно равна работе расширения 1 моля идеального газа под постоянным давлением при нагревании на 1 K. R = pV/T = 1.01 10 5 22.4 10-3/273[Па м 3 /моль]/K =8.31(44) Dж/(моль K)

Универсальная газовая постоянная - универсальная, фундаментальная физическая константа R, равная произведению постоянной Больцмана k на постоянную Авогадро

Физический смысл: Газовая постоянна я численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К

В системе СГС Газовая постоянная равна:

Удельная Газовая постоянная равна:

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) - отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинскаябуква .

Смесью газов называется совокупность нескольких разнородных газов, которые при рассматриваемых условиях не вступают друг с другом в химические реакции.

Смесь газов – гомогенная термодинамическая система (внутри которой нет поверхностей раздела, отделяющих друг от друга макроскопические части системы, различающиеся по своим свойствам и составу).

Парциальным давлением P i i-го газа в смеси называется давление, под которым находился бы этот газ, если бы из смеси были удалены все остальные газы, а V и T остались прежними.

Закон Дальтона - Давление смеси газов, не взаимодействующих друг с другом химически, равно сумме парциальных давлений этих газов.

Для того чтоб понять, что представляет из себя закон Дальтона , рассмотрим для этого воздух в комнате. Он представляет собой смесь нескольких газов: азота (80%), кислорода (20%). Парциальное давление каждого из этих газов - это давление, которое имел бы газ, если бы он один занимал весь объем. К примеру, если бы все газы, кроме азота, удалили из комнаты, то давление того, что осталось, и было бы парциальным давлением азота. Закон Дальтона утверждает, что общее давление всех газов вместе взятых равно сумме парциальных давлений каждого газа в отдельнсти. (Строго говоря, закон применим только к идеальным газам, но с достаточно хорошим приближением он описывает также и реальные газы.)

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение Δ U внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами.

ΔU = Q A .

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A .

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила названиевечного двигателя (perpetuum mobile) первого рода . Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии.

Применим первый закон термодинамики к изопроцессам в газах.

    В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно,

    Первый закон термодинамики для изобарного процесса дает:

    Q = U (T 2) – U (T 1) + p (V 2 – V 1) = ΔU + p ΔV .

  1. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T 2 < T 1 ; внутренняя энергия убывает, ΔU < 0.

    В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.

Первый закон термодинамики для изотермического процесса выражается соотношением

Q = A .

Количество теплоты Q , полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками , а процессы расширения или сжатия газа в таких сосудах называются адиабатическими .

В адиабатическом процессе Q = 0; поэтому первый закон термодинамики принимает вид

A = –ΔU ,

По своему физическому смыслу первое начало термодинамики представляет собой закон сохранения (изменения) энергии в термодинамике. Если, согласно закону изменения энергии в механике, работа неконсервативных сил равна приращению механической энергии системы (в частности, имеющая отрицательный знак работа сил трения равна уменьшению механической энергии системы), то согласно первому началу термодинамики, приращение внутренней энергии термодинамической системы равно сумме работы внешних сил, совершенной над системой, и энергии, переданной системе путём теплопередачи.

Энтальпия (от греч. enthalpo - нагреваю) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении.

Единицы энтальпии - британская тепловая единица или Джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

11 вопрос

Теплоемкостью называют количество теплоты, которое необходимо сооб­щить телу (газу), чтобы повысить тем­пературу какой-либо количественной единицы на 1° С.

Для определения значений перечис­ленных выше тепло­емкостей доста­точно знать величину одной какой-либо - из них. Удобнее, всего иметь величину мольной теплоем­кости, то­гда массовая теплоемкость:

а объемная теплоемкость:

Объемная и массовая теплоемкости связаны между собой зависимостью:

где - плотность газа при нормаль­ных условиях.

Теплоемкость газа зависит от его тем­пературы. По этому признаку разли­чают среднюю и истинную теплоём­кость.

Если q- количествотеплоты, сообща­емой единице количества газа (или от­нимаемого от него) при изменении температуры газа от t 1 до t 2 то

Представляет собой среднюю тепло­ёмкость в пределах . Предел этого отношения, когда разность температур стремиться к нулю, называют истинной теплоёмко­стью.

ИЗОХОРНЫЙ ПРОЦЕСС ГАЗА

Изохорный процесс – процесс сооб­щения или отнятия теплоты при по­стоянном объеме газа (v = const).

При постоянном объёме давление газа изменяется прямо пропорционально абсолютным температурам:

Внешняя работа газа при v = const равна нулю l=0.

количество теплоты или изменение внутренней энергии газа:

Изохорный процесс на pv – диа­грамме отображается прямой верти­кальной линией - изохора. При по­ложительном количестве тепла ли­ния идёт снизу вверх.

Изменение энтропии находится:

ИЗОБАРНЫЙ ПРОЦЕСС ГАЗА.

Изобарный процесс – процесс сообще­ния или отнятия теплоты при по­стоян­ном давлении = const)

Кривая процесса называется изоба­рой.

Поскольку в изобарном процессе dp=0 то в системе не совершается техническая работа, а количество тепла необходимое для перехода тела из состояния 1 в состояние 2 определяется как:

Таким образом в изобарном термо­динамическом процессе подводимое (отводимое) к телу количество тепла пропорционально изменению энтальпии в данном процессе. Дан­ный вывод справедлив как для обра­тимого так и для необратимого про­цессов, при условии, что система находится в термодинамическом равновесии в начале и конце про­цесса.



В случае обратимого процесса:

Изобарный процесс на pv – диа­грамме отображается прямой гори­зонтальной линией. При подводе тепла в процесс линия простирается слева направо.

Механическая работа в таком про­цессе:

Удельная располагаемая (полезная) внешняя работа:

Изменение удельной внутренней энергии:

Из уравнения состояния идеального газа можно получить следующее соот­ношение для изобарного процесса:

Таким образом, при изобарном про­цессе объём идеального газа пропор­ционален абсолютной температуре. При расширении газа температура по­вышается, при сжатии уменьшается.

Изменение энтропии в изобарном про­цессе может быть расчитано следую­щим образом:

ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС ГАЗА.

Изотермический процесс – процесс сообщения или. отнятия теплоты при по­стоянной температуре (t - const)

Для изотермического процесса иде­ального газа зависимость между начальными и конечными парамет­рами определяется формулами:

При постоянной температуре объём газа изменяется обратно пропорцио­нально его давлению.

На pv- диаграмме изотермы идеаль­ного газа представляются равносто­ронней гиперболой. Площадь под кри­вой процесса численно выражает ме­ханическую работу в данном процессе.

Работа 1 кг идеального газа находят из уравнений:

Так как в изотермическом процессе t = const, то для идеального газа

Изменение энтропии в изотермиче­ском процессе

выразится следующей форму­лой:

АДИАБАТНЫЙ ПРОЦЕСС ГАЗА.

Процесс протекающий без подвода и отвода теплоты, т.е. при отсутствии теплообмена с окружающей средой, называют адиабатным, а кривая этого процесса –адиабатой. Условия процесса: dq=0 , q=0.

Т.к. dq=0 , то согласно первому закону термодинамики:

Таким образом совершаемая рабочим телом механическая работа в адиабат­ном термодинамическом процессе равна уменьшению внутренней энер­гии тела, техническая работа при этом пропорциональна изменению (умень­шению) энтальпии. В обратимом диа­батном процессе энтропия термодина­мического тела не меняется: S=Const .