Как создать гравитацию в космосе. Проблема невесомости: искусственная гравитация за счет вращения

Поместите человека в космос, подальше от гравитационных пут земной поверхности, и он будет ощущать невесомость. И все же по телевизору нам показывали, что экипаж космического судна вполне успешно ходит ногами по полу. Для этого используется искусственная гравитация, создаваемая установками на борту фантастического судна. Насколько это близко к реальной науке?


Капитан Габриэль Лорка на мостике «Дискавери» во время имитации битвы с клингонцами. Весь экипаж притягивается искусственной силой тяжести, и это как бы уже канон.

Касательно гравитации. Большим открытием Эйнштейна стал принцип эквивалентности: при равномерном ускорении система отсчета неотличима от гравитационного поля. Если бы вы были на ракете и не могли видеть Вселенную через иллюминатор, вы бы и понятия не имели о том, что происходит: вас тянет вниз сила гравитации или же ускорение ракеты в определенном направлении? Такой была идея, которая привела к общей теории относительности. Спустя 100 лет это самое правильное описание гравитации и ускорения, которое нам известно.


Идентичное поведение мяча, падающего на пол в летящей ракете (слева) и на Земле (справа), демонстрирует принцип эквивалентности Эйнштейна.

Есть и другой трюк, как пишет Итан Зигель, который мы можем использовать, если захотим: мы можем заставить космический корабль вращаться. Вместо линейного ускорения (вроде тяги ракеты) можно заставить работать центростремительное ускорение, чтобы человек на борту чувствовал внешний корпус космического корабля, подталкивающий его к центру. Такой прием был использован в «Космической одиссее 2001 года», и если бы ваш космический корабль был достаточно большим, искусственная сила тяжести была бы неотличима от настоящей.
Только вот одно но. Три этих типа ускорения - гравитационное, линейное и вращательное - единственные, которые мы можем использовать для имитации эффектов гравитации. И это огромная проблема для космического аппарата.


Концепт станции 1969 года, которая должна была собираться на орбите из отработанных этапов программы «Аполлон». Станция должна была вращаться на своей центральной оси для создания искусственной гравитации.

Почему? Потому что если вы хотите отправиться в другую звездную систему, вам нужно будет ускорить ваш корабль, чтобы туда добраться, а затем замедлить его по прибытии. Если вы не сможете оградить себя от этих ускорений, вас ждет катастрофа. Например, чтобы ускориться до полного импульса в «Звездном пути», до нескольких процентов световой скорости, придется испытать ускорение в 4000 g. Это в 100 раз больше ускорения, которое начинает препятствовать кровотоку в теле.


Запуск космического шаттла «Колумбия» в 1992 году показал, что ускорение протекает на протяжении длительного периода. Ускорение космического корабля будет во много раз выше, и человеческое тело не сможет с ним справиться.

Если вы не хотите быть невесомым во время длительного путешествия - чтобы не подвергать себя ужасному биологическому износу вроде потери мышечной и костной массы - на тело постоянно должна действовать сила. Для любой другой силы это вполне легко сделать. В электромагнетизме, например, можно было бы разместить экипаж в проводящей кабине, и множество внешних электрических полей просто исчезли бы. Можно было бы расположить две параллельные пластины внутри и получить постоянное электрическое поле, выталкивающее заряды в определенном направлении.
Если бы гравитация работала таким же образом.
Такого понятия, как гравитационный проводник, просто не существует, как и возможности оградить себя от гравитационной силы. Невозможно создать однородное гравитационное поле в области пространства, например между двумя пластинами. Почему? Потому что в отличие от электрической силы, генерируемой положительными и отрицательными зарядами, существует только один тип гравитационного заряда, и это масса-энергия. Гравитационная сила всегда притягивает, и от нее никуда не скрыться. Вы можете лишь использовать три типа ускорения - гравитационное, линейное и вращательное.


Подавляющее большинство кварков и лептонов во Вселенной состоит из материи, но у каждого из них существуют и античастицы из антиматерии, гравитационные массы которых не определены.

Единственный способ, с помощью которого можно было бы создать искусственную гравитацию, которая защитит вас от последствий ускорения вашего корабля и обеспечит вам постоянную тягу «вниз» без ускорения, будет доступен, если вы откроете частицы отрицательной гравитационной массы. Все частицы и античастицы, которые мы нашли до сих пор, обладают положительной массой, но эти массы инерциальны, то есть о них можно судить только при создании или ускорении частицы. Инерционная масса и гравитационная масса одинаковы для всех частиц, которые мы знаем, но мы никогда не проверяли свою идею на антиматерии или античастицах.
В настоящее время проводятся эксперименты именно по этой части. Эксперимент ALPHA в ЦЕРН создал антиводород: стабильную форму нейтральной антиматерии, и работает над изолированием ее от всех других частиц. Если эксперимент будет достаточно чувствительным, мы сможем измерить, как античастица попадает в гравитационное поле. Если падает вниз, как и обычное вещество, то у нее положительная гравитационная масса и ее можно использовать для строительства гравитационного проводника. Если падает в гравитационном поле вверх, это все меняет. Один лишь результат, и искусственная гравитация может внезапно стать возможной.


Возможность получения искусственной гравитации невероятно манит нас, но основана на существовании отрицательной гравитационной массы. Антиматерия может быть такой массой, но мы пока этого не доказали.

Если антиматерия имеет отрицательную гравитационную массу, то при создании поля из обычного вещества и потолка из антивещества, мы могли бы создать поле искусственной гравитации, которое всегда тянуло бы вас вниз. Создав гравитационно-проводящую оболочку в виде корпуса нашего космического корабля, мы защитили бы экипаж от сил сверхбыстрого ускорения, которые в противном случае стали бы смертельными. И что самое крутое, люди в космосе не испытывали бы больше негативных физиологических эффектов, которые сегодня преследуют астронавтов. Но пока мы не найдем частицу с отрицательной гравитационной массой, искусственная гравитация будет получаться только за счет ускорения.

Для находящихся в космосе объектов вращение - дело привычное. Когда две массы двигаются относительно друг друга, но не навстречу или друг от друга, их гравитационная сила создаёт крутящий момент . В итоге в Солнечной системе все планеты вращаются вокруг Солнца.

Но это то, на что человек не влиял. Зачем же вращаются космические аппараты? Чтобы стабилизировать положение, постоянно направлять приборы в нужную сторону и в будущем - для создания искусственной гравитации. Давайте разберём эти вопросы подробнее.

Стабилизация вращением

Когда мы смотрим на автомобиль, мы знаем, в какую сторону он едет. Управление им происходит благодаря взаимодействию с внешней средой - сцеплению колёс с дорогой. Куда поворачивают колёса - туда и весь автомобиль. Но если мы лишим его этого сцепления, если мы отправим машину на лысой резине кататься по льду, то она закружится в вальсе, что будет крайне опасно для водителя. Такой тип движения возникает редко на Земле, но в космосе это норма.

Б. В. Раушенбах, академик и лауреат Ленинской премии, писал в “Управлении движением космических аппаратов” о трёх основных типах задач управления движением космического аппарата:

  1. Получение нужной траектории (управление движением центра масс),
  2. Управление ориентацией, то есть получение нужного положения корпуса космического аппарата относительно внешних ориентиров (управление вращательным движением вокруг центра масс);
  3. Случай, когда эти два типа управления реализуются одновременно (например, при сближении космических аппаратов).
Вращение аппарата осуществляется для того, чтобы обеспечить стабильную позицию космического аппарата. Это наглядно демонстрирует эксперимент на видео ниже. Колесо, закреплённое на тросе, примет положение, параллельное полу. Но если это колесо предварительно раскрутить - оно сохранит своё вертикальное положение. И этому не будет мешать гравитация. И даже двухкилограммовый груз, закреплённый на втором конце оси, не очень сильно изменит картину.

Приспособленный к жизни в условиях земного притяжения организм умудряется выжить и без него. И не только выжить, но и активно работать. Но это маленькое чудо обходится не без последствий. Опыт, накопленный за десятилетия полётов человека в космос, показал: человек испытывает в космосе много нагрузок, которые оставляют след на теле и психике.

На Земле наш организм борется с гравитацией, которая тянет кровь вниз. В космосе этоа борьба продолжается, но сила гравитации отсутствует. Поэтому космонавты одутловаты. Внутричерепное давление растёт, растёт давление на глаза. Это деформирует зрительный нерв и влияет на форму глазных яблок. Снижается содержание плазмы в крови, и из-за уменьшения количества крови, которую нужно качать, атрофируются мышцы сердца. Дефект костной массы значителен, кости становятся хрупкими.

Чтобы побороть эти эффекты, люди на орбите вынуждены ежедневно заниматься физическими тренировками. Поэтому создание искусственной силы тяжести считают желательным для долговременных космических путешествий. Такая технология должна создать физиологически естественные условия для обитания людей на борту аппарата. Еще Константин Циолковский считал, что искусственная гравитация поможет решить многие медицинские проблемы полёта человека в космос.

Сама идея основана на принципе эквивалентности силы гравитации и силы инерции, который гласит: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное достаточно малое тело - гравитационная или сила инерции».

У такой технологии есть недостатки. В случае с аппаратом небольшого радиуса разная сила будет воздействовать на ноги и на голову - чем дальше от центра вращения, тем сильнее искусственная гравитация. Вторая проблема - сила Кориолиса , из-за воздействия которой человека будет укачивать при движении относительно направления вращения. Чтобы этого избежать, аппарат должен быть огромным. И третий важный вопрос связан со сложностью разработки и сборки такого аппарата. При создании такого механизма важно продумать, как сделать возможным постоянный доступ экипажа к отсекам с искусственной гравитацией и как заставить этот тор двигаться плавно.

В реальной жизни такую технологию для строительства космических кораблей ещё не использовали. Для МКС предлагали надувной модуль с искусственной гравитацией для демонстрации прототипа корабля Nautilus-X. Но модуль дорог и создавал бы значительные вибрации. Делать всю МКС с искусственной гравитацией с текущими ракетами трудноосуществимо - пришлось бы собирать всё на орбите по частям, что в разы усложнило бы размах операций. А ещё эта искусственная гравитация перечеркнула бы саму суть МКС как летающей микрогравитационной лаборатории.


Концепт надувного модуля с микрогравитацией для МКС.

Зато искусственная гравитация живёт в воображении фантастов. Корабль «Гермес» из фильма «Марсианин» имеет в центре вращающийся тор, который создаёт искусственную гравитацию для улучшения состояния экипажа и снижения воздействия невесомости на организм.

Национальное аэрокосмическое агентство США разработало шкалу уровней готовности технологии TRL из девяти уровней: с первого по шестой - развитие в рамках научно-исследовательских работ, с седьмого и выше - опытно-конструкторские работы и демонстрация работоспособности технологий. Технология из фильма «Марсианин» соответствует пока лишь третьему или четвёртому уровню.

В научно-фантастической литературе и фильмах есть много применений этой идеи. В серии романов Артура Кларка «Космическая Одиссея» описывался «Discovery One» в форме гантели, смысл которой - отделить ядерный реактор с двигателем от жилой зоны. Экватор сферы содержит в себе «карусель» диаметром 11 метров, вращающуюся со скоростью около пяти оборотов в минуту. Эта центрифуга создаёт уровень гравитации, равный лунному, что должно предотвращать физическую атрофию в условиях микрогравитации.


«Discovery One» из «Космической Одиссеи»

В аниме-сериале Planetes космическая станция ISPV-7 имеет огромные помещения с привычной земной гравитацией. Жилая зона и зона для растениеводства размещены в двух торах, вращающихся в разных направлениях.

Даже твёрдая фантастика игнорирует огромную стоимость такого решения. Энтузиасты взяли для примера корабль «Элизиум» из одноимённого фильма. Диаметр колеса – 16 километров. Масса - около миллиона тонн. Отправка грузов на орбиту стоит 2700 долларов за килограмм, SpaceX Falcon позволит сократить эту цифру до 1650 долларов за килограмм. Но придётся осуществить 18382 запуска, чтобы доставить такое количество материалов. Это 1 триллион 650 миллиардов американских долларов - почти сто годовых бюджетов НАСА.

До реальных поселений в космосе, где люди могут наслаждаться привычными 9,8 м/с² ускорения свободного падения, ещё далеко. Возможно, повторное использование частей ракет и космические лифты позволят приблизить такую эпоху.

В последнее время появилось много работ, в которых авторы анализируют возможные последствия длительного пребывания человека в необычном для него состоянии невесомости. Обсуждается, естественно, и проблема создания искусственной гравитации на космическом корабле (под гравитацией понимается действие сил ). В условиях Земли человек ощущает невесомость, как известно, лишь при свободном падении или при полете на самолете по параболической траектории (траектория Кеплера), когда ускорение движения равно ускорению силы тяжести. Все иные способы, например, погружение человека в жидкость, позволяют лишь частично воспроизвести некоторые изменения в функциях организма, возникающие при невесомости.

Часто понятие невесомости и нулевого гравитационного поля отождествляют. На самом же деле между ними есть принципиальное различие, которое можно пояснить следующим образом. Нулевое гравитационное поле (или нулевая гравитация) возможно лишь в отдельных точках космического пространства, где силы притяжения двух или нескольких небесных тел взаимно уравновешиваются. В таких точках невесомость статическая. Любое тело помещенное в такую точку космического пространства, не будет ничего весить.

Динамическая невесомость может возникнуть в любых других точках гравитационного поля, когда сила тяжести уравновешивается центробежной силой. Невесомость этого рода возникает, например, при вращении искусственного спутника Земли по круговой или эллиптической орбите.

Американский ученый Э. Джонс приводит некоторые расчеты, относящиеся к полету космического корабля с Земли на Луну. Выбранная автором траектория полета имеет длину 384 тысячи километров. Примерно через семь часов после старта корабль достигает второй космической скорости и летит с этой скоростью в течение пяти часов, пока не попадет в сферу притяжения Луны. На расстоянии в 350 тысяч километров от Земли корабль проходит точку статической невесомости. На последнем этапе полета продолжительностью около семи часов разность гравитационных сил Земли и Луны будет составлять лишь тысячные доли силы нашего привычного земного тяготения.

Из этого примера следует, что в межпланетном полете на человека могут действовать лишь незначительные гравитационные силы, и он практически будет испытывать состояние статической невесомости.

Исследования влияния невесомости, проведенные при полетах американских космонавтов, показали, что организм человека может приспосабливаться к состоянию относительно кратковременной невесомости. Люди могут находиться в ней без существенных нарушений в системах организма. Однако это приспособление не во всех случаях достаточно совершенно. Кроме того, ученые пока не знают, как перенесет человек длительную невесомость - недели, месяцы. Есть основания думать, что в таких случаях возможны вегетативно-вестибулярные расстройства, которые примут форму болезни укачивания. (А еще интересно как в условиях искусственной гравитации и невесомости люди смогут осуществлять разные привычные действия, например, ту же заправку картриджей, хотя наверняка специалисты, которых можно найти по ссылке tend.kiev.ua/zapravka-kartridzhej/ смогут профессионально заправить картридж и в условиях невесомости).

Резкое снижение мышечной деятельности и уменьшение потребности в энергии могут привести в длительном космическом полете к мышечной адинамии. Невесомость резко снижает нагрузку на сердечнососудистую систему, поскольку отпадает нужда в мышечной работе и облегчается работа сердца по перемещению крови в кровяном русле. Это, в свою очередь, вызывает изменение обменных процессов. Следствием всего этого будет уменьшение потока информации, поступающей в мозговые центры от костно-мышечного аппарата и внутренних органов. А это может сказаться на нервно-психических реакциях космонавта.

Резкие смены условий гравитации могут оказать особенно вредное воздействие на организм, ослабленный адинамией, при возвращении космонавта на Землю и входе в плотные слои атмосферы.

Отмечено, что у американских космонавтов Шепарда, Гриссома и Гленна на этапе перехода от состояния невесомости к перегрузкам наблюдалось резкое учащение пульса, повышение температуры и кровяного давления. У Карпентера эти явления были наиболее продолжительными. Длительная невесомость, по-видимому, будет снижать работоспособность космонавтов и вследствие того, что при таком состоянии затрудняется передвижение по космическому кораблю, ведение ремонтно-монтажных работ, связанных с применением инструментов. Невесомость создает ряд проблем, затрудняющих обслуживание корабля, она делает непригодными открытые контейнеры и камеры для хранения предметов. Из-за нее в кабине корабля будут свободно плавать пыль, грязь и т. д. В целом невесомость может создать серьезные трудности при полете человека на Луну, Венеру и другие планеты.

Начиная с К. Э. Циолковского (1911 г.), многие ученые (Оберт, Браун и др.) считали, что лучшей защитой космонавта от неблагоприятного действия невесомости может служить искусственная гравитация.

Чтобы понять сущность искусственной гравитации, следует иметь в виду, что на человека, когда он идет на земле, кроме сил, действие которых он отчетливо ощущает (например, сила тяжести, сила трения и др.), действуют еще силы, которые настолько малы, что он их не замечает. К ним относятся центробежная и кориолисова силы инерции. Причиной возникновения этих сил является вращение Земли.

Предположим, что основанием, на котором стоит человек, является не Земля, а внутренняя стенка космического корабля. Если этот корабль будет вращаться вокруг оси симметрии, то на человека будет действовать центробежная сила, которая прижмет его к полу, так же как сила тяжести прижимает человека к Земле. Все части человеческого тела обретут вес, так же как и все предметы, находящиеся на космическом корабле.

Посмотрим, однако, все ли при этом будет так, как на Земле. Оказывается, что нет. Величина центробежной силы зависит от радиуса вращения. А голова и руки человека, стоящего на «полу» кабины космического корабля, ближе к оси вращения, чем ноги. Следовательно, центробежная сила, заменяющая в данном случае силу тяжести, будет непрерывно нарастать в направлении от головы к ногам. Поэтому двигать ногами будет труднее, чем головой и руками. Эту разность величин центробежной силы, действующей на голову и ноги человека, называют гравитационным градиентом.

Чем меньше радиус вращения, тем ощутимее для человека этот градиент. Однако пока нет никаких экспериментальных данных о действии гравитационного градиента. Некоторые исследователи (Пенн, Дол и др.) считают, что разность величин центробежной силы, действующей на голову и ноги человека (в расчете на единицу массы), не должна превышать 15 процентов максимальной величины этой силы. Тогда, если принять, что рост человека равен 1,8 метра, радиус вращения кабины космического корабля должен быть не меньше 12 метров.

Предположим теперь, что человек не стоит на месте, а идет по космическому кораблю. Тогда, кроме центробежной силы, на него начнет действовать кориолисова сила инерции. Человек обязательно почувствует это, так как угловая скорость вращения корабля гораздо больше угловой скорости вращения Земли.

Если человек поднимается по лестнице внутри космического корабля, то кориолисова сила инерции будет стремиться сместить его вправо, если же он опускается, то кориолисова сила будет стремиться сдвинуть его влево. Если же человек будет двигаться в сторону вращения корабля, то сила Кориолиса будет прижимать его к полу, если же он будет двигаться против вращения, то сила инерции будет стремиться его приподнять. Только если человек будет перемещаться параллельно оси вращения корабля, он будет избавлен от действия этой столь непривычной для него силы.

Длительные космические полеты, освоение других планет то, о чем ранее писали фантасты Айзек Азимов, Станислав Лем, Александр Беляев и др., станет вполне возможной реальностью благодаря знаниям . Так как при воссоздании земного уровня гравитации мы сможем избежать отрицательных последствий микрогравитации (невесомости) для человека (атрофия мышц, сенсорные, двигательные и вегетативные расстройства). То есть практически любой желающий человек сможет побывать в космосе независимо от физических особенностей тела. При этом пребывание на борту космического корабля станет более комфортным. Люди смогут использовать уже существующие, привычные для них приборы, средства (например, душ, туалет).

На Земле уровень гравитации определяется ускорением силы тяжести в среднем равняется 9,81 м/с 2 («перегрузка» 1 g), в то время как в космосе, в условиях невесомости приблизительно 10 -6 g. К.Э. Циолковский приводил аналогии между ощущением массы тела при погружении в воду или лежа в постели с состоянием невесомости в космосе.

«Земля - это колыбель разума, но нельзя вечно жить в колыбели».
«Мир должен быть еще проще».
Константин Циолковский

Интересно, что для гравитационной биологии - умение создавать различные гравитационные условия будет настоящим прорывом. Станет возможным изучить: как изменяется структура, функции на микро-, макроуровнях, закономерности при гравитационных воздействиях разной величины и направленности. Эти открытия, в свою очередь, помогут развить достаточно новое сейчас направление - гравитационную терапию. Рассматривается возможность и эффективность применения для лечения изменения силы тяжести (повышенная по сравнению с Земной). Повышение силы тяжести мы ощущаем, как будто тело чуть-чуть потяжелело. Сегодня ведутся исследования применения гравитационной терапии при гипертонической болезни, а также для восстановления костных тканей при переломах.

(искусственной гравитации) в большинстве случаев основываются на принципе эквивалентности сил инерции и гравитации. Принцип эквивалентности говорит о том, что мы ощущаем приблизительно одинаково ускорение движения не отличая причину, которая его вызвала: гравитация или же силы инерции. В первом варианте ускорение происходит за счет воздействия гравитационного поля, во втором благодаря ускорению движения неинерциальной системы отсчета (система, которая движется с ускорением), в которой находится человек. Например, подобное воздействие сил инерции испытывает человек в лифте (неинерциальная система отсчета) при резком подъёме вверх (с ускорением, появляется на несколько секунд ощущение как будто тело потяжелело) или торможении (ощущение, что пол уходит из-под ног). С точки зрения физики: при подъёме лифта вверх к ускорению свободного падения в неинерциальной системе приплюсовывается ускорение движения кабины. Когда восстанавливается равномерное движение - исчезает «прибавка» в весе, то есть возвращается привычное ощущение массы тела.

Сегодня, как и почти 50 лет назад, для создания искусственной силы тяжести применяются центрифуги (используется центробежное ускорение при вращении космических систем). Проще говоря во время вращения космической станции вокруг своей оси будет возникать центробежное ускорение, которое будет «выталкивать» человека от центра вращения в сторону и в результате космонавт или другие объекты смогут находится на «полу». Для лучшего понимания этого процесса и с какими трудностями сталкивается ученые давайте посмотрим на формулу по которой определяется центробежная сила при вращении центрифуги:

F=m*v 2 *r, где m ‒ масса, v ‒ линейная скорость, r ‒ расстояние от центра вращения.

Линейная скорость равняется: v=2π*rT , где Т - количество оборотов в секунду, π ≈3,14…

То есть чем быстрее будет вращаться космический корабль, и чем дальше от центра будет находится космонавт, тем сильнее будет созданная искусственная сила тяжести.

Внимательно посмотрев на рисунок можем заметить, что при небольшом радиусе сила тяжести для головы и для ног человека будет значительно отличатся, что в свою очередь затруднит передвижение.

При движении космонавта в направлении вращения возникает сила Кориолиса. При этом велика вероятность того, что человека будет постоянно укачивать. Обойти это возможно при частоте вращения корабля 2 оборота в минуту при этом образуется искусственная сила тяжести 1g (как на Земле). Но при этом радиус будет составлять 224 метра (приблизительно ¼ километра, это расстояние подобно высоте 95-этажного здания или в длину как две большие секвои). То есть теоретически построить орбитальную станцию или космический корабль таких размеров можно. Но практически это требует значительных затрат ресурсов, сил и времени, которые в условиях приближающихся глобальных катаклизмов (см. доклад ) человечней направить на реальную помощь нуждающимся.

В следствие невозможности воссоздать необходимое значение уровня гравитации для человека на орбитальной станции или космическом корабле, учёные решили изучить возможность «снижения поставленной планки», то есть создания силы тяжести меньше земной. Что говорит о том, что за полвека исследований не удалось получить удовлетворяющих результатов. Это неудивительно так как в экспериментах стремятся создать условия, при которых сила инерции или же другие оказывали бы влияние, аналогичное воздействию гравитации на Земле. То есть получается, что искусственная гравитация, по сути, гравитацией не является.

На сегодня в науке существуют лишь теории о том что такое гравитация, большинство из которых основываются на теории относительности. При этом не одна из них не является полной (не объясняет протекание, результаты любых экспериментов в любых условиях, да и ко всему порой не согласовывается с другими физическими теориями подтвержденными экспериментально). Нет четкого знания и понимания: что же такое гравитация, как гравитация связана с пространством и временем, из каких частиц состоит и какие их свойства. Ответы на эти и многие другие вопросы можно найти сопоставив информацию изложенную в книге «Эзоосмос» А.Новых и докладе ИСКОННАЯ ФИЗИКА АЛЛАТРА. предлагает совершенно новый подход, который основывается на базовых знаниях первичных основ физики фундаментальных частиц , закономерностей их взаимодействия. То есть на основе глубокого понимания сути процесса гравитации и как следствие возможности точного расчет для воссоздания любых значений гравитационных условий как в космосе, так и на Земле (гравитационная терапия), прогнозирования результатов мыслимых и немыслимых экспериментов, поставленных как человеком, так и природой.

ИСКОННАЯ ФИЗИКА АЛЛАТРА - это намного больше, чем просто физика. Она открывает возможным решения задач любой сложности. Но главное благодаря знанию процессов происходящих на уровне частиц и реальных действий каждый человек может осознать смысл своей жизни, разобраться как работает система и получить практический опыт соприкосновения с духовным миром. Осознать глобальность и первичность Духовного, выйти из рамочных/шаблонных ограничений сознания, за пределы системы, обрести Настоящую Свободу.

«Как говорится, когда имеешь в руках универсальные ключи (знания об основах элементарных частиц), то можешь открыть любую дверь (микро- и макромира)».

«В таких условиях возможен качественно новый переход цивилизации в русло духовного саморазвития, масштабного научного познания мира и себя».

«Всё что угнетает человека в этом мире, начиная от навязчивых мыслей, агрессивных эмоций и заканчивая шаблонными желаниями эгоиста-потребителя это результат выбора человека в пользу септонного поля ‒ материальной разумной системы, которая шаблонно эксплуатирует человечество. Но если человек следует выбору своего духовного начала, то он приобретает бессмертие. И в этом нет религии, а есть знание физики, её исконных основ».

Елена Федорова

Условия невесомости, воспроизводимой на самолете лаборатории, наиболее близки к условиям реального космического полета и позволяют отрабатывать большинство операций в промежутки времени заданной величины – 25-30 секунд. В период с 1967 по 1979 годы такие полеты проводились на самолетах-лабораториях Ту-104А. С 1980 года по настоящее время полеты на невесомость проводятся с использованием самолетов-лабораторий ИЛ-76 МДК.

Полеты на невесомость выполняются по траектории, называемой «парабола Кеплера». Поэтому их часто называют «параболическими». Методика выполнения таких полетов пилотами самолетов-лабораторий тщательно отработана. Параболические полеты выполняются следующим образом. В зоне выполнения полетов самолет летит горизонтально на высоте шесть тысяч метров. Затем самолет с ускорением начинает набирать высоту под углом 45 градусов. В криволинейном полете на всех присутствующих на борту действуют перегрузки величиной до 2g. Это ощущение тяжести длится недолго – примерно 15 секунд, пока самолет выбирается на подъем. На высоте девять тысяч метров пилот почти полностью убирает тягу двигателей, и самолет продолжает полет по инерции. Как только сила инерции, противоположная по направлению силе тяготения, становится равна ей по величине, то сила тяжести внутри салона самолета-лаборатории становится равна нулю. Поэтому вес людей и оборудования, находящихся внутри самолета, равен нулю, и они находятся в состоянии невесомости. Это происходит в верхней точке параболы Кеплера. Затем пилот отдает штурвал от себя, и самолет начинает резкое снижение на минимальной тяге двигателей. Снижение происходит под тем же углом, что и набор высоты. Невесомость может длиться 22-28 секунд в зависимости от условий выполнения полета. По истечении этого промежутка времени экипаж максимально увеличивает тягу двигателей и переводит машину в горизонтальный полет на высоте шесть тысяч метров.