X. Метод корреляции. Поиск объектов указанием связей между шаблонами

Корреляция - это степень, в которой события или личные характеристики человека зависят друг от друга. Корреляционный метод - процедура в исследовании, использующаяся, чтобы определить взаимосвязь между переменными. Данный метод может, например, ответить на вопрос: «существует ли корреляция между количеством стресса, с которым сталкиваются люди и степенью испытываемой ими депрессии?» То есть, по мере того, как люди продолжают переживать стресс, насколько увеличивается вероятность того, что они впадут в депрессию?

Корреляция - степень зависимости друг от друга событий или характеристик.

Корреляционный метод - процедура исследований, которая используется для определения того, насколько события или характеристики зависят друг от друга.

Чтобы ответить на этот вопрос, исследователи подсчитывают баллы жизненного стресса (например, количество угрожающих событий, переживаемых человеком в определенный период времени) и баллы депрессии (например, баллы в опросниках по депрессии). Как правило, исследователи обнаруживают, что эти переменные увеличиваются или уменьшаются вместе (Stader & Hokanson, 1998; Paykel & Cooper, 1992). To есть чем больше количество баллов стресса в жизни определенного человека, тем выше его или ее сумма баллов по депрессии. Корреляции такого рода имеют позитивную направленность и их называют позитивной корреляцией.

Корреляция может иметь и негативную, а не позитивную направленность. При негативной корреляции, когда значение одной переменной возрастает, значение другой уменьшается. Исследователи обнаружили, например, негативную корреляцию между депрессией и уровнем активности. Чем больше депрессия человека, тем меньше его занятость.

Существует еще и третья взаимосвязь в корреляционном исследовании. Две переменные могут быть не взаимосвязаны, то есть между ними не существует последовательной взаимосвязи. Когда число одной переменной возрастает, показатели другой переменной иногда возрастают, иногда уменьшаются. Исследования обнаружили, например, что депрессия и интеллект не зависят друг от друга.

Кроме знания направленности корреляции исследователям нужно знать ее величину или силу. То есть насколько близко эти две переменные соотносятся между собой. Действительно ли одна переменная всегда зависит от другой или их взаимосвязь менее определенна? Когда обнаруживается тесная взаимосвязь двух переменных у многих испытуемых, то говорят, что корреляция - высокая или устойчивая.

Направленность и величина корреляции часто имеет численное значение и выражается в статистическом понятии - коэффициенте корреляции (r). Коэффициент корреляции может варьироваться от +1.00, показывающего полную позитивную корреляцию между двумя переменными, и до -1.00 - этот коэффициент указывает на полную негативную корреляцию. Знак коэффициента (+ или -) обозначает направленность корреляции; число представляет ее величину. Чем ближе коэффициент к 0, тем слабее корреляция и меньше ее величина. Так корреляции +0.75 и -0.75 имеют одинаковые величины, а корреляция +.25 слабее и той и другой корреляции.

Коэффициент корреляции (r) - статистический термин, указывающий направленность и величину корреляции, колеблющийся от -1.00 до +1.00.

Поведение людей меняется, и многие человеческие реакции можно оценивать лишь приблизительно. Поэтому в психологических исследованиях корреляции не достигают величины полной позитивной или полной негативной корреляции. В одном исследовании стресса и депрессии, проводившемся с 68 взрослыми, корреляция между двумя переменными составила +0.53 (Miller et al., 1976). Несмотря на то, что эту корреляцию едва ли можно назвать абсолютной, ее величина в психологическом исследовании считается большой.

При наличии двух рядов значений, подвергающихся ранжированию, рационально рассчитывать ранговую корреляцию Спирмена.

Такие ряды могут представляться:

  • парой признаков, определяемых в одной и той же группе исследуемых объектов;
  • парой индивидуальных соподчиненных признаков, определяемых у 2 исследуемых объектов по одинаковому набору признаков;
  • парой групповых соподчиненных признаков;
  • индивидуальной и групповой соподчиненностью признаков.

Метод предполагает проведение ранжирования показателей в отдельности для каждого из признаков.

Наименьшее значение имеет наименьший ранг.

Этот метод относится к непараметрическому статистическому методу, предназначенному для установления существования связи изучаемых явлений:

  • определение фактической степени параллелизма между двумя рядами количественных данных;
  • оценка тесноты выявленной связи, выражаемой количественно.

Корреляционный анализ

Статистический метод, предназначенный для выявления существования зависимости между 2 и более случайными величинами (переменными), а также ее силы, получил название корреляционного анализа.

Получил свое название от correlatio (лат.) – соотношение.

При его использовании возможны варианты развития событий:

  • наличие корреляции (положительная либо отрицательная);
  • отсутствие корреляции (нулевая).

В случае установления зависимости между переменными речь идет об их коррелировании. Иными словами, можно сказать, что при изменении значения Х, обязательно будет наблюдаться пропорциональное изменение значения У.

В качестве инструментов используются различные меры связи (коэффициенты).

На их выбор оказывает влияние:

  • способ измерения случайных чисел;
  • характер связи между случайными числами.

Существование корреляционной связи может отображаться графически (графики) и с помощью коэффициента (числовое отображение).

Корреляционная связь характеризуется такими признаками:

  • сила связи (при коэффициенте корреляции от ±0,7 до ±1 – сильная; от ±0,3 до ±0,699 – средняя; от 0 до ±0,299 – слабая);
  • направление связи (прямая или обратная).

Цели корреляционного анализа

Корреляционный анализ не позволяет установить причинную зависимость между исследуемыми переменными.

Он проводится с целью:

  • установления зависимости между переменными;
  • получения определенной информации о переменной на основе другой переменной;
  • определения тесноты (связи) этой зависимости;
  • определение направления установленной связи.

Методы корреляционного анализа


Данный анализ может выполняться с использованием:

  • метода квадратов или Пирсона;
  • рангового метода или Спирмена.

Метод Пирсона применим для расчетов требующих точного определения силы, существующей между переменными. Изучаемые с его помощью признаки должны выражаться только количественно.

Для применения метода Спирмена или ранговой корреляции нет жестких требований в выражении признаков – оно может быть, как количественным, так и атрибутивным. Благодаря этому методу получается информация не о точном установлении силы связи, а имеющая ориентировочный характер.

В рядах переменных могут содержаться открытые варианты. Например, когда стаж работы выражается такими значениями, как до 1 года, более 5 лет и т.д.

Коэффициент корреляции

Статистическая величина характеризующая характер изменения двух переменных получила название коэффициента корреляции либо парного коэффициента корреляции. В количественном выражении он колеблется в пределах от -1 до +1.

Наиболее распространены коэффициенты:

  • Пирсона – применим для переменных принадлежащих к интервально шкале;
  • Спирмена – для переменных порядковой шкалы.

Ограничения использования коэффициента корреляции

Получение недостоверных данных при расчете коэффициента корреляции возможно в тех случаях, когда:

  • в распоряжении имеется достаточное количество значений переменной (25-100 пар наблюдений);
  • между изучаемыми переменными установлено, например, квадратичное соотношение, а не линейное;
  • в каждом случае данные содержат больше одного наблюдения;
  • наличие аномальных значений (выбросов) переменных;
  • исследуемые данные состоят из четко выделяемых подгрупп наблюдений;
  • наличие корреляционной связи не позволяет установить какая из переменных может рассматриваться в качестве причины, а какая – в качестве следствия.

Проверка значимости корреляции

Для оценки статистических величин используется понятие их значимости или же достоверности, характеризующей вероятность случайного возникновения величины либо крайних ее значений.

Наиболее распространенным методом определения значимости корреляции является определение критерия Стьюдента.

Его значение сравнивается с табличным, количество степенней свободы принимается как 2. При получении расчетного значения критерия больше табличного, свидетельствует о значимости коэффициента корреляции.

При проведении экономических расчетов достаточным считается доверительный уровень 0,05 (95%) либо 0,01 (99%).

Ранги Спирмена

Коэффициент ранговой корреляции Спирмена позволяет статистически установить наличие связи между явлениями. Его расчет предполагает установление для каждого признака порядкового номера – ранга. Ранг может быть возрастающим либо убывающим.

Количество признаков, подвергаемых ранжированию, может быть любым. Это достаточно трудоемкий процесс, ограничивающий их количество. Затруднения начинаются при достижении 20 признаков.

Для расчета коэффициента Спирмена пользуются формулой:

в которой:

n – отображает количество ранжируемых признаков;

d – не что иное как разность между рангами по двум переменным;

а ∑(d2) – сумма квадратов разностей рангов.

Применение корреляционного анализа в психологии

Статистическое сопровождение психологических исследований позволяет сделать их более объективными и высоко репрезентативными. Статистическая обработка данных полученных в ходе психологических экспериментов способствует извлечению максимума полезной информации.

Наиболее широкое применение в обработке их результатов получил корреляционный анализ.

Уместным является проведение корреляционного анализа результатов, полученных при проведении исследований:

  • тревожности (по тестам R. Temml, M. Dorca, V. Amen);
  • семейных взаимоотношений («Анализ семейных взаимоотношений» (АСВ) опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • уровня интернальности-экстернальности (опросник Е.Ф. Бажина, Е.А. Голынкиной и А.М. Эткинда);
  • уровня эмоционального выгорания у педагогов (опросник В.В. Бойко);
  • связи элементов вербального интеллекта учащихся при разно профильном обучении (методика К.М. Гуревича и др.);
  • связи уровня эмпатии (методика В.В. Бойко) и удовлетворенностью браком (опросник В.В. Столина, Т.Л. Романовой, Г.П. Бутенко);
  • связи между социометрическим статусом подростков (тест Jacob L. Moreno) и особенностями стиля семейного воспитания (опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • структуры жизненных целей подростков, воспитанных в полных и неполных семьях (опросник Edward L. Deci, Richard M. Ryan Ryan).

Краткая инструкция к проведению корреляционного анализа по критерию Спирмена

Проведение корреляционного анализа с использованием метода Спирмена выполняется по следующему алгоритму:

  • парные сопоставимые признаки располагаются в 2 ряда, один из которых обозначается с помощью Х, а другой У;
  • значения ряда Х располагаются в порядке возрастания либо убывания;
  • последовательность расположения значений ряда У определяется их соответствием значений ряда Х;
  • для каждого значения в ряду Х определить ранг — присвоить порядковый номер от минимального значения к максимальному;
  • для каждого из значений в ряду У также определить ранг (от минимального к максимальному);
  • вычислить разницу (D) между рангами Х и У, прибегнув к формуле D=Х-У;
  • полученные значения разницы возводятся в квадрат;
  • выполнить суммирование квадратов разниц рангов;
  • выполнить расчеты по формуле:

Пример корреляции Спирмена

Необходимо установить наличие корреляционной связи между рабочим стажем и показателем травматизма при наличии следующих данных:

Наиболее подходящим методом анализа является ранговый метод, т.к. один из признаков представлен в виде открытых вариантов: рабочий стаж до 1 года и рабочий стаж 7 и более лет.

Решение задачи начинается с ранжирования данных, которые сводятся в рабочую таблицу и могут быть выполнены вручную, т.к. их объем не велик:

Рабочий стаж Число травм Порядковые номера (ранги) Разность рангов Квадрат разности рангов
d(х-у)
до 1 года 24 1 5 -4 16
1-2 16 2 4 -2 4
3-4 12 3 2,5 +0,5 0,25
5-6 12 4 2,5 +1,5 2,5
7 и более 6 5 1 +4 16
Σ d2 = 38,5

Появление дробных рангов в колонке связано с тем, что в случае появления вариант одинаковых по величине находится среднее арифметическое значение ранга. В данном примере показатель травматизма 12 встречается дважды и ему присваиваются ранги 2 и 3, находим среднее арифметическое этих рангов (2+3)/2= 2,5 и помещаем это значение в рабочую таблицу для 2 показателей.
Выполнив подстановку полученных значений в рабочую формулу и произведя несложные расчёты получаем коэффициент Спирмена равный -0,92

Отрицательное значение коэффициента свидетельствует о наличии обратной связи между признаками и позволяет утверждать, что небольшой стаж работы сопровождается большим числом травм. Причем, сила связи этих показателей достаточно большая.
Следующим этапом расчётов является определение достоверности полученного коэффициента:
рассчитывается его ошибка и критерий Стьюдента

При проведении исследования в биологии или медицине, как правило, регистрируются множество учетных признаков. Представляет интерес вопрос об их взаимном изменении, т.е. обнаружение зависимостей между ними. Выявление наличия таких взаимосвязей является одной из важнейших задач любой науки, в том числе и медицины.

Различают две формы количественных связей между явлениями или процессами: функциональную и корреляционную . Под ФУНКЦИОНАЛЬНОЙ понимают такую связь, при которой любому значению одного из признаков соответствует строго определенное значение другого. В точных науках, таких, как физика, химия и другие, может быть установлена функциональная взаимосвязь. Например, зависимость площади круга от длины окружности в геометрии, или в физике длина пути, пройденной телом в свободном падении, от времени. Наиболее известным видом функциональной зависимости является линейная, которая выражается математической формулой: y = ax+b .

В биологии и медицине установить функциональную зависимость, как правило, не удается. Объекты этих исследований имеют большую изменчивость и зависят от огромного числа факторов, измерить которые просто невозможно. В этом случае определяется наличие КОРРЕЛЯЦИОННОЙ связи, при которой значению каждой средней величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака. Например: связь между ростом и массой тела человека. У группы людей с одинаковым ростом наблюдается различная масса тела, однако она варьирует в определенных пределах вокруг средней величины. Поэтому такую зависимость нужно оценивать с использованием понятия случайной величины с привлечением подходов теории вероятности. Такую форму зависимостей называют «Корреляционной».

При поиске зависимости между признаками может быть обнаружена взаимосвязь, различная по направлению и силе:

Прямая (при увеличении одного признака увеличивается второй);

Обратная (при увеличении одного признака второй уменьшается).

Степень взаимосвязи признаков по силе (тесноте) принято обозначать как:

Отсутствие;

Средняя;

Сильная;

Способами выявления корреляционной взаимосвязи между признаками являются:

Визуальные (таблицы и графики).

Статистические (корреляция и регрессия).

Следует подчеркнуть, что обнаружение корреляции между двумя признаками еще не говорит о существовании причинной связи между ними, а лишь указывает на возможность таковой или на наличие фактора, определяющего изменение обеих переменных совместно.

Приёмы визуализации данных позволяют обнаружить корреляционную зависимость лишь при небольшом числе наблюдений и только приблизительно. Для обнаружения корреляционной взаимосвязи с помощью таблицы в ней располагают ранжированные вариационные ряды и затем определяют совместное изменение признаков. График более наглядно демонстрирует такую зависимость и позволяет оценить ее форму: линейная, параболическая, тригонометрическая и др.



Наиболее точным способом обнаружения взаимосвязи между признаками является вычисление коэффициента корреляции . В зависимости от природы обрабатываемых данных применяются параметрические или непараметрические методы вычисления этого коэффициента.

При вычислении коэффициента корреляции исследователь получает возможность судить о силе связи (степени сопряженности) и ее направлении, а также с требуемой долей вероятности делать вывод о проявлении этой связи в генеральной совокупности. Чем больше коэффициент корреляции, тем с большей степенью уверенности можно говорить о наличии корреляционной зависимости между признаками. Если каждому заданному значению одного признака соответствуют близкие друг к другу, тесно расположенные около средней величины значения другого признака, то связь является более тесной. Когда эти значения сильно варьируют, связь менее тесная. Таким образом, мера корреляции указывает, насколько тесно связаны между собой параметры.

Коэффициент корреляции может принимать значения от -1 до +1. Направление обнаруженной взаимосвязи определяют по знаку коэффициента корреляции. При его положительном значении обнаруженная связь является прямой, при отрицательном – обратной. Сила связи оценивается по модулю этого коэффициента. Условно выделяют следующие уровни корреляционной связи: отсутствие – 0; слабая – от 0 до 0,3; средняя – от 0,3 до 0,7; сильная – 0,7 и более; полная – 1. Однако обсуждать наличие корреляции имеет смысл только в тех случаях, когда она статистически значима (p <0,05). Поэтому после вычисления коэффициента корреляции производится определение его ошибки репрезентативности и критерия достоверности.

Наиболее часто применяемыми в настоящее время методами обнаружения корреляции являются параметрический анализ по Пирсону и непараметрический анализ по Спирмену. Этими методами проверяется нулевая гипотеза (H 0 ) об отсутствии связи между параметрами. Если такая гипотеза отклоняется при заданном уровне значимости (p ), можно говорить о наличии взаимосвязи между параметрами.

Корреляционный анализ по Пирсону используется при решении задачи исследования линейной связи двух нормально распределенных параметров. Кроме проверки на нормальность распределения каждого параметра, до проведения корреляционного анализа рекомендуется строить график в координатах оцениваемых параметров, чтобы визуально определить характер зависимости.

Коэффициент корреляции Пирсона (r xy ) или коэффициент линейной корреляции, был разработан в 90-х годах XIX века Карлом Пирсон, Фрэнсисом Эджуортом и Рафаэлем Уэлдоном в Англии. Он рассчитывается по формуле:

где: r xy

cov XY – ковариация признаков X и Y ;

σ X X ;

σ Y – среднее квадратическое отклонение признака Y;

X ;

– средняя арифметическая признака Y .

В медицинской литературе встречается упрощенная запись этой формулы:

где: r xy – коэффициент линейной корреляции Пирсона;

d x x от средней этого признака: d x = x - M x ,

d y – отклонение каждой варианты признака y от средней этого признака: d y = y - M y .

В программе Excel значение коэффициент линейной корреляции Пирсона может быть вычислено функцией = КОРРЕЛ(Диапазон ячеек 1-го ряда; Диапазон ячеек 2-го ряда).

Для прогнозирования уровня корреляции в генеральной совокупности определяют ошибку репрезентативности этого коэффициента m r . Она вычисляется по формуле:

,

где: m r – ошибка репрезентативности коэффициента корреляции;

r xy – коэффициент линейной корреляции Пирсона;

n – число парных вариант.

Достоверность коэффициента линейной корреляции оценивается по коэффициенту Стьюдента (t r ), который вычисляется с использованием его ошибки:

где: t r

r xy – коэффициент линейной корреляции Пирсона;

m r – ошибка репрезентативности коэффициента корреляции.

Если число парных вариант n >30, то при t r >2 связь считается достоверной при уровне значимости p <0,05. Если число парных вариант n <30, то критическое значение t r-Крит. находят по таблице критических значений Стьюдента при степени свободы df = n - 2 . В программе Excel это значение вычисляется функцией = СТЬЮДРАСПОБР(Уровень значимости p ; Степени свободыdf ).

С целью уменьшения объема вычислений может применяться функция =КОРРЕЛ(Диапазон1; Диапазон2) или надстройка «Анализ данных» и ее модуль «Корреляционный анализ».

Отсутствие линейной корреляции еще не означает, что параметры полностью независимы. Связь между ними может быть нелинейной, или признаки, используемые в вычислениях, могут не подчиняться нормальному закону распределения. Поэтому, помимо вычисления коэффициента линейной корреляции, прибегают к использованию непараметрических коэффициентов корреляции. К ним относятся:

Коэффициент ранговой корреляции Спирмена;

Коэффициент ранговой корреляции Кендалла;

Коэффициент корреляции знаков Фехнера;

Коэффициент множественной ранговой корреляции (конкордации).

Корреляционный анализ по Спирмену применяется для обнаружения взаимосвязи двух параметров, если распределение хотя бы одного из них отлично от нормального.

Каждому показателю x и y присваивается ранг. На основе полученных рангов рассчитываются их разности d. Затем вычисляется коэффициент корреляции (ρ ) по формуле:

где: r

d – разность рангов;

n – число парных вариант.

Ошибка репрезентативности коэффициента корреляции Спирмена определяется по формуле:

,

а коэффициент достоверности Стьюдента:

где: t r – коэффициент достоверности Стьюдента;

r – коэффициент корреляции Спирмена;

m r – ошибка репрезентативности коэффициента корреляции Спирмена.

Оценка коэффициента корреляции Спирмена и его достоверности выполняется так же, как и коэффициента линейной корреляции Пирсона.

Корреляционно-регрессионный анализ - один из наиболее широко распространенных и гибких приемов обработки стати­стических данных. Данный метод начинает свой отсчет с 1795 г., когда английский исследователь Фрэнсис Гальтон предложил теоретические основы регрессионного метода, а в 1801 г. рассчи­тал с его помощью траекторию полета планеты Церера. Им же введен в статистику термин «корреляция». Можно также назвать

французского кристаллографа Огюста Браве, немецкого физика Густава Теодора Фехнера, английского экономиста и статистика Фрэнсиса Эджуорта, впервые высказывавших в середине-конце XIX в. идеи о количественном измерении связей явлений. В раз­ное время над теорией анализа работали известные в области теоретической статистики ученые Карл Фридрих Гаусс (Герма­ния), Адриен Мари Лежандр (Франция), Карл Пирсон (Англия) и др.

Корреляционно-регрессионный анализ состоит в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), характеризующего зависи­мость признака от определяющих его факторов.

Корреляционно-регрессионный анализ предполагает сле­дующие этапы:

Предварительный анализ (здесь формулируются основные направления всего анализа, определяется методика оценки ре­зультативного показателя и перечень наиболее существенных факторов);

Сбор информации и ее первичная обработка;

Построение модели (один из важнейших этапов);

Оценка и анализ модели.

Задачи корреляционного анализа сводятся к выделению важ­нейших факторов, которые влияют на результативный признак, измерению тесноты связи между факторами, выявлению неиз­вестных причин связей и оценке факторов, оказывающих макси­мальное влияние на результат.

Задачи регрессионного анализа заключаются в установлении формы зависимости, определении уравнения регрессии и его ис­пользовании для оценки неизвестных значений зависимой пере­менной, прогнозировании возможных значений результативного признака при задаваемых значениях факторных признаков.



При использовании корреляционно-регрессионного анализа необходимо соблюдать следующие требования.

1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.

2. Все факторные признаки должны иметь количественное (цифровое) выражение.

3. Необходимо наличие массовости значений изучаемых по­казателей.

4. Причинно-следственные связи между явлениями и процес­сами могут быть описаны линейной или приводимой к линейной формой зависимости.

5. Не должно быть количественных ограничений на парамет­ры модели связи.

6. Необходимо обеспечить постоянство территориальной и временной структуры изучаемой совокупности.

Корреляция - статистическая зависимость между случай­ными величинами, не имеющими строго функционального харак­тера, при которой изменение одной из случайных величин приво­дит к изменению математического ожидания другой.

В статистике принято различать следующие варианты зави­симостей.

1. Парная корреляция - связь между двумя признаками (ре­зультативным и факторным).

2. Частная корреляция - зависимость между результатив­ным и одним из факторных признаков при фиксированном значе­нии других факторных признаков.

3. Множественная корреляция - зависимость результатив­ного и двух или более факторных признаков, включенных в ис­следование.

Корреляционная связь - частный случай стохастической связи и состоит в том, что разным значениям одной переменной соответствуют различные средние значения другой.

Обязательное условие применения корреляционного метода - массовость значений изучаемых показателей, что позволяет вы­явить тенденцию, закономерность развития, форму взаимосвязи между признаками. Тогда, в соответствии с законом больших, чи­сел, влияние других факторов сглаживается, нейтрализуется. На­личие корреляционной связи присуще многим общественным явлениям.

Показатели тесноты связи между признаками называют ко­эффициентами корреляции. Их выбор зависит от того, в каких шкалах измерены признаки. Основными шкалами являются:

1) номинальная шкала (наименований) предназначена для описания принадлежности объектов к определенным социальным группам (например, коэффициенты ассоциации и контингенции, коэффициенты Пирсона и Чупрова);

2) шкала порядка (ординальная) применяется для измерения упорядоченности объектов по одному или нескольким признакам (например, коэффициенты Спирмена и Кенделла);

3) количественная шкала используется для описания количе­ственных показателей - например, линейный коэффициент кор­реляции и корреляционное отношение.

Корреляционный анализ - метод статистического исследо­вания экспериментальных данных, позволяющий определить сте­пень линейной зависимости между переменными.

Парная линейная корреляция - простейшая система корре­ляционной связи, представляющая линейную связь между двумя признаками. Ее практическое значение состоит в выделении од­ного важнейшего фактора, который и определяет вариацию ре­зультативного признака.

Для определения степени тесноты парной линейной зависи­мости служит линейный коэффициент корреляции, который был впервые введен в начале 1890-х гг. Пирсоном, Эджуортом и Велдоном. В теории разработаны и на практике применяются раз­личные варианты формул расчета данного коэффициента:

Где ,

где n - число наблюдений.

При малом числе наблюдений для практических вычислений линейный коэффициент корреляции удобнее исчислять по формуле:

,

где r принимает значения в пределах от -1 до 1.

Чем ближе линейный коэффициент корреляции по абсолют­ной величине к I, тем теснее связь. С другой стороны, если он ра­вен 1, то зависимость является не стохастической, а функциональ­ной. Знак при нем указывает направление связи: знак «-» соответ­ствует обратной зависимости, «+» - прямой. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям.

Степень взаимного влияния факторов в зависимости от ко­эффициента корреляции приведена в табл. 1.

Таблица 1

Количественная оценка тесноты связи

при различных значениях коэффициента корреляции

После того, как с помощью корреляционного анализа выяв­лено наличие статистических связей между переменными и оце­нена степень их тесноты, обычно переходят к математическому описанию зависимостей, то есть к регрессионному анализу.

Термин «регрессия» (произошел от латинского regression - отступление, возврат к чему-либо) был также введен Ф. Гальтоном в 1886 г. Обрабатывая статистические данные в связи с ана­лизом наследственности роста, он отметил прямую зависимость между ростом родителей и их детей (наблюдение само по себе не слишком глубокое). Но относительно старших сыновей ему уда­лось установить более тонкую зависимость. Он рассчитал, что средний рост старшего сына лежит между средним ростом насе­ления и средним ростом родителей. Если рост родителей выше среднего, то их наследник, как правило, ниже; если средний рост родителей ниже среднего, то рост их потомка выше. Когда Гальтон нанес на график средний рост старших сыновей для различ­ных значений среднего роста родителей, он получил почти пря­мую линию, проходящую через нанесенные точки.

Поскольку рост потомства стремится двигаться к среднему, Гальтон назвал это явление регрессией к среднему состоянию, а ли­нию, проходящую через точки на графике, - линией регрессии.

Регрессивный анализ применяется в тех случаях, когда необ­ходимо отыскать непосредственно вид зависимости х и у. При этом предполагается, что независимые факторы не случайные величины, а результативный показатель у имеет постоянную, не­зависимую от факторов дисперсию и стандартное отклонение.

Одна из проблем построения уравнения регрессии - размер­ность, то есть определение числа факторных признаков, вклю­чаемых в модель. Их число должно быть оптимальным.

Сокращение размерности за счет исключения второстепен­ных, несущественных факторов позволяет получить модель, бы­стрее и качественнее реализуемую. В то же время построение мо­дели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс в единой системе национального счетоводства.

При построении модели число факторных признаков должно быть в 5-6 раз меньше объема изучаемой совокупности.

Если результативный признак с увеличением факторного признака равномерно возрастает или убывает, то такая зависи­мость является линейной и выражается уравнением прямой.

Линейная регрессия сводится к нахождению уравнения вида:

где х - индивидуальное значение факторного признака; а 0 , а 1 - параметры уравнения прямой (уравнения регрессии); у х - теоре­тическое значение результирующего фактора.

Данное уравнение показывает среднее значение изменения ре­зультативного признака х на одну единицу его измерения. Знак па­раметра показывает направление этого изменения. На практике по­строение линейной регрессии сводится к оценке ее параметров а 0 , а 1.

При классическом подходе параметры уравнения а 0 , а 1 нахо­дятся методом наименьших квадратов, который позволяет полу­чить такие оценки параметров, при которых сумма квадратов от­клонений фактических значений результативного признака у от расчетных, теоретических (у х) была бы минимальной.

Для нахождения минимума данной функции приравняем к нулю частные производные и тем самым получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

В уравнении прямой параметр а 0 экономического смысла не имеет, параметр а 1 является коэффициентом регрессии и показы­вает изменение результативного признака при изменении фак­торного на единицу.

Или по следующим формулам:

Где , , ,

Между линейным коэффициентом корреляции и коэффици­ентом регрессии существует определенная зависимость, выра­женная формулой

Часто исследуемые признаки имеют разные единицы измере­ния, поэтому для оценки влияния факторного признака на ре­зультативный применяется коэффициент эластичности. Он рас­считывается для каждой точки и в среднем по всей совокупности по формуле:

где у" х - первая производная уравнения регрессии.

Коэффициент эластичности показывает, на сколько процен­тов изменяется результативный признак при изменении фактор­ного признака на 1%.

Чтобы иметь возможность судить о сравнительной связи влияния отдельных факторов и о тех резервах, которые в них за­ложены, должны быть вычислены частные (средние) коэффициенты эластичности .

Различия в единицах измерения факторов устраняют с помо­щью частных (средних) коэффициентов эластичности , которые рассчитываются по формуле:

где а i - коэффициент регрессии при факторе х; - средние значения факторного и результативного признаков.

Частные коэффициенты эластичности показывают, на сколь­ко процентов в среднем изменяется анализируемый показатель с изменением на 1 % каждого фактора при фиксированном поло­жении других факторов.

Альтернативным показателем степени зависимости между двумя переменными является линейный коэффициент детерми­нации , представляющий собой квадрат линейного коэффициента корреляции r 2 . Его числовое значение всегда заключено в пределе от 0 до 1. Он характеризует долю вариации (разброса) зависимой переменной. Значение коэффициента детерминации непосредст­венно указывает степень влияния независимого фактора на ре­зультативный показатель.

Степень тесноты связи полностью соответствует теоретиче­скому корреляционному отношению , которое является универ­сальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.

С помощью теоретического корреляционного отношения из­меряется теснота связи любой формы, а посредством линейного коэффициента корреляции - только прямолинейной связи.

Теоретическое корреляционное отношение рассчитывается по формулам:

где - факторная дисперсия; - общая дисперсия.

Для упрощения расчетов меры тесноты корреляционной свя­зи часто применятся индекс корреляционной связи, который оп­ределяется по формулам:

где - остаточная дисперсия.

Линейные модели отличаются простой интерпретируемостью и хорошо разработанными приемами оценивания коэффициентов регрессии. Обычно для них все три наиболее распространенных метода статистического оценивания - максимального правдопо­добия, наименьших квадратов и моментов - дают оптимальные решения и соответственно приводят к оценкам, обладающим ли­нейностью, эффективностью, несмещенностью. Принимая во внимание, что линейные регрессионные модели не могут с оди­наково высокой степенью достоверности описывать многообраз­ные процессы, происходящие в реальности, их дополняет боль­шой класс нелинейных моделей. Для последних, однако, с учетом их сложности и специфичности приемов параметрического оце­нивания предпочтительным остается приведение к простой ли­нейной форме.

Корреляционные методы (correlation methods)

К. м., получившие свое назв. благодаря тому, что основываются на «со-отношении» («co-relation») переменных, представляют собой статистические методы, начало к-рым было положено в работах Карла Пирсона примерно в конце XIX в. Они тесно связаны с понятием регрессии, еще раньше сформулированным сэром Фрэнсисом Гальтоном, к-рый первым начал статистически изучать связь между ростом отцов и сыновей. Именно Гальтон нанял Пирсона в качестве статистика для обработки рез-тов исслед., к-рые он и его отец, находясь под влиянием идей своих родственников - Дарвинов, проводили с целью определения вклада наследственности в развитие челов. качеств. Благодаря этому сотрудничеству между Гальтоном и Пирсоном и более ранним открытиям первого в области регрессионного анализа символ «r» (первая буква слова regression) исторически закрепился в качестве маркера К. м.

Корреляция как произведение моментов

Пирсон определял коэффициент корреляции как «среднее произведение Z-оценок». С этих пор r известен всем как коэффициент произведения моментов:

r = (aZxZy) / N.

Его обоснованное вычисление предполагает, что: а) две коррелируемые переменные непрерывны и нормально распределены; б) линии наилучшего соответствия для совместного двумерного распределения яв-ся прямыми; в) одинаковая вариабельность сохраняется по всей широте совместного распределения переменных. Простая формула для вычисления коэффициента корреляции произведения моментов Пирсона по «сырым» (нестандартизованным) данным выглядит следующим образом:

Бисериальная корреляция

Разновидностью коэффициента корреляции произведения моментов яв-ся бисериальный коэффициент корреляции, тж разраб. Пирсоном. В тех случаях, когда только одна из переменных непрерывна и имеет приемлемо нормальное распределение, а др. искусственно дихотомизирована (предполагается, что она тоже непрерывна и нормально распределена, но представлена в бинарной форме, напр.: «справился/не справился»), связь между этими двумя переменными тж можно выразить при помощи r. В этом случае коэффициент корреляции обозначается через rbis. Как и коэффициент произведения моментов r, он изменяется в диапазоне от +1,00 (прямая функциональная связь) через 0,00 (отсутствие связи) до -1,00 (обратная функциональная связь). Метод бисериальной корреляции оказался весьма полезным в процедурах анализа заданий, т. к. он измеряет связь между рез-тами выполнения каждого задания теста, выраженными в бинарной форме («справился/не справился»), и общей оценкой по данному тесту.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r. Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через rpbis Поскольку в rpbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае rbis, его знак определяется произвольно. Поэтому для всех практ. целей rpbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции rtet, к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления rtet достаточно сложны. Поэтому при практ. применении этого метода используются приближения rtet, получаемые на основе сокращенных процедур и таблиц.

Ранговая корреляция

Непараметрический аналог параметрических методов корреляции существует в форме коэффициента ранговой корреляции, обозначаемого греческой буквой ρ(ро). Он применяется для определения степени связи между двумя переменными, значения к-рых представлены рангами, а не «сырыми» или стандартизованными оценками. Логическое обоснование вывода коэффициента ρ не требует соблюдения строго определенного набора допущений, и потому ρ является непараметрической стат. Его формула, получаемая из формулы произведения моментов Пирсона путем замены интервальных данных на ранжированные, приводится к виду:

ρ = 1 - (6Σd2) / N(N2 - 1), где d - ранговая разность, а N - число пар вариантов.

Множественная корреляция

Методы корреляции произведения моментов Пирсона и линейного регрессионного анализа Гальтона были обобщены и расширены в 1897 г. Джорджем Эдни Юлом до модели множественной линейной регрессии, предполагающей использование многомерного нормального распределения. Методы множественной корреляции позволяют оценить связь между множеством непрерывных независимых переменных и одной зависимой непрерывной переменной. Коэффициент множественной корреляции обозначается через R0.123...p Его вычисление требует решения совместной системы линейных уравнений. Число линейных уравнений равно числу независимых переменных.

Иногда необходимо исключить эффект третьей переменной, с тем чтобы определить «чистую» связь между любой парой переменных. Частный (парциальный) коэффициент корреляции выражает связь между двумя переменными при исключенном (элиминированном) влиянии еще одной или неск. др. переменных. В простейшем случае частный коэффициент корреляции вычисляется как функция парных корреляций (произведений моментов) между Y, X1 и Х2:

Если требуется исключить влияние двух переменных, скажем, Х2 и Х3, то формула принимает вид:

Каноническая корреляция

Множественная корреляция, позволяющая оценивать тесноту связи между множеством независимых переменных и одной из множества зависимых переменных, представляет собой частный случай более общего метода - канонической корреляции. Этот метод был разраб. в 1935 г. Гарольдом Хотеллингом. Коэффициенты канонической корреляции (RCi) определяются на двух множествах переменных. Чтобы показать связи, существующие между этими двумя множествами непрерывных переменных, вычисляется неск. канонических коэффициентов; их число определяется по числу переменных в меньшем множестве (если число переменных в них не одинаково). При канонической корреляции в обоих множествах (по отдельности) отыскиваются линейные комбинации входящих в них переменных, позволяющие определить (новые) координатные оси в пространстве каждого множества. Каждая такая линейная комбинация наз. канонической величиной (или канонической переменной). Канонические переменные отличаются друг от друга весами, к-рые они придают первичным переменным в соотв. множестве. Каноническая корреляция - это корреляция произведения моментов между парой канонических переменных, по одной из каждого множества. Т. о., каждый коэффициент канонической корреляции является мерой тесноты линейной связи между двумя координатными осями соотв. множеств переменных. Каноническая корреляция яв-ся методом многомерного статистического анализа.