Строение галактики. Состав и строение галактик Строение и структура галактики

Строение галактик

Спиралевидные галактики обычно имеют форму диска с явно выраженной спиралевидной структурой, почему и получили своё название. У таких галактик можно выделить центр, рукава и гало. Центр - это массивное и плотное скопление звёзд, обычно молодых, и межзвёздного вещества. Предположительно, в центрах спиралевидных галактик могут находиться чёрные дыры . Рукава - звёздные образования в галактическом диске, имеющие форму расходящихся от центра спиралей. Их возникновение обусловлено вращением галактики. Большинство звёзд вне центра галактики находятся именно в рукавах. Гало - звёзды, находящиеся вне галактического диска, но тем не менее причисляемые к данной галактике.

Спиралевидные галактики обычно делят на два подвида: обыкновенные, например наша, Млечный Путь , имеющие больше двух рукавов, изогнутых на всём протяжении, и симметричные, имеющие два симметричных рукава, которые значительную часть своей длины являются прямыми, и только потом начинают загибаться. Также такие галактики имеют название галактики с «баром» - перемычкой.

Кроме того, можно заметить, что крупные скопления газа и пыли (Шаровые скопления) обычно формируют шар вокруг центра галактики, и их расположение практически не зависит от положения диска.

Эллиптические галактики наиболее часто встречаются в плотных скоплениях галактик. Они имеют форму эллипсоида, чаще всего шара. Собственно, шаровые галактики считаются особым подвидом. Наибольшие из известных галактик - именно шаровые. Скорость их вращения обычно значительно меньше, чем у спиралевидных, и диск просто не формируются. Такие галактики обычно насыщены Шаровыми скоплениями .

Галактики неправильной формы Галактики неправильной формы обычно имеют слишком малую массу, чтобы иметь чёткую структуру, либо находятся под воздействием более крупных объектов. В них обычно очень мало шаровых скоплений. Типичными примерами таких галактик являются спутники Млечного Пути - Большое и Малое Магеллановы Облака.

Тем не менее, среди неправильных галактик выделяют так называемые малые эллиптические галактики.

Центр галактики.

Совсем недавно считалось, что сверх массивные чёрные дыры в центре галактики - что то сверхъестественное.

Но более углублённые изучения показали, что в центре каждой или почти в каждой галактики есть такое огромное космическое тело.

По одной из версий, на заре вселенной сверх массивные чёрные дыры начали затягивать в себя космическую пыль и от огромной скорости этого процесса, газы около чёрных дыр начали раскаляться. Начали образовываться звёзды. Как только вещество в зоне действия гравитации заканчивалось, свечение прекращалось, чёрная дыра успокаивалась, пока какая нибудь космическая катастрофа не запустит процесс заново. По этому в некоторых галактиках в центре видно яркое свечение.

Примерно так огромные космические"убийцы", чья гравитация притягивает даже фотоны и радио волны, дали жизнь звёздам, чтобы они дали жизнь планетам, спутникам и наконец нам.


Wikimedia Foundation . 2010 .

Смотреть что такое "Строение галактик" в других словарях:

    Морфологическая классификация галактик система разделения галактик на группы по визуальным признакам, используемая в астрономии. Существует несколько схем разделения галактик на морфологические типы. Наиболее известная была предложены… … Википедия

    Крабовидная туманность Астрономия наука о Вселенной, изучающая расположение, движение, строение, происхождение и … Википедия

    Фибоначчи - (Fibonacci) Фибоначчи первый крупный математик средневековой Европы Десятичная система счисления, арабские цифры, числа, последовательность, уровни, ряд, линии и спираль Фибоначчи Содержание >>>>>>>>> … Энциклопедия инвестора

    Весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. В. существует объективно, независимо от сознания человека, её познающего. В. содержит… …

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    - (греч. kosmogonía, от kósmos мир, Вселенная и gone, goneia рождение) область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех… … Большая советская энциклопедия

    - (от греч. kosmos мир, Вселенная и logos слово, учение), учение о Вселенной как едином целом и о всей охваченной астр. наблюдениями области Вселенной (Метагалактике) как части целого; раздел астрономии. Выводы К. основываются на законах физики и… … Физическая энциклопедия

    Раздел астрономии, исследующий общие закономерности строения, состава, динамики и эволюции звёздных систем и изучающий реализацию этих закономерностей в нашей звёздной системе Галактике (См. Галактика). Конкретные исследования др.… … Большая советская энциклопедия

    - (позднегреч. Galaktikos молочный, млечный, от греческого gala молоко) обширная звёздная система, к которой принадлежит Солнце, а следовательно, и вся наша планетная система вместе с Землёй. Г. состоит из множества звёзд различных типов, а … Большая советская энциклопедия

    Внегалактические туманности или островные Вселенные, гигантские звездные системы, содержащие также межзвездный газ и пыль. Солнечная система входит в нашу Галактику Млечный Путь. Все космическое пространство до пределов, куда могут проникнуть… … Энциклопедия Кольера

Книги

  • Учение мастера два. Книга 2. Уровни Вселенной. Строение Вселенной. Сокровенное. Глобальная сеть , Дара Преображенская , Данная книга - это вовсе не одна из попыток "просчитать математически" Бога. Здесь показана работа, которая позволит нам познать энергии вселенной, понять, как можносуществовать в этой… Категория: Вселенная. Космоэнергетика Издатель: Золотое Сечение ,
  • Учение мастера Два Книга 2 Уровни Вселенной Строение Вселенной Сокровенное Глобальная сеть , Преображенская Д. , Данная книга - это вовсе не одна из попыток "просчитать математически" Бога. Здесь показана работа, которая позволит нам познать энергии вселенной, понять, как можно существовать в этой… Категория:

Методика проведения 1 урока
"Наша Галактика"

Цель: формирование понятия о нашей Галактике.

Задачи обучения:

Общеобразовательные - формирование астрономических понятий:

1) о галактиках как одной из основных типов космических систем на примере рассмотрения физической природы и основных характеристик нашей Галактики:
- основных физических характеристик нашей Галактики (массы, размеров, формы, светимости, возраста, образующих ее космических объектов и их числа);
- строения Галактики и основных типов галактического населения.
2) о межзвездной среде, ее газовой и пылевой составляющих и о космических лучах.
3) о взаимосвязи эволюции космической среды в Галактике с эволюцией звезд.

Воспитательные:

1) Формирование научного мировоззрения учащихся:
- в ходе знакомства с историей изучения и природой Галактики и ее основными физическими характеристиками, строением и составом;
- на основе раскрытия философских положений о материальном единстве и познаваемости мира при изложении астрономического материала о природе Галактики;
2) Политехническое образование и трудовое воспитание при повторении и углублении знаний о методах и инструментах, применяемых для изучения Галактики (спектральный анализ, радиоастрономия (радиотелескопы), ИК – астрономия и т.д.).
Развивающие
: формирование умений анализировать информацию, объяснять свойства космических систем на основе важнейших физических теорий, использовать обобщенный план для изучения космических объектов, делать выводы.

Ученики должны знать : основные признаки понятия "галактика" как отдельного типа космических систем и главные физические характеристики, строение и состав нашей Галактики.

Ученики должны уметь : анализировать и систематизировать учебный материал, использовать обобщенный план для изучения космических объектов, делать выводы.

Наглядные пособия и демонстрации:

- фотографии , схемы и рисунки спиральных галактик, подобных нашей Галактике; Млечного Пути, рассеянных и шаровых скоплений; строения нашей Галактики;
- диапозитивы из серийслайд-фильма "Иллюстрированная астрономия: "Звезды и галактики"; "Галактики, эволюция Вселенной";
- диафильмы и фрагменты диафильмов : "Развитие представлений о Вселенной"; "Галактики"; "Строение Вселенной";
- фрагменты кинофильма "Вселенная";
- таблицы : "Радиоастрономия"; "Звездные скопления, туманности, Галактика"; "Млечный Путь"; "Галактики";
- наглядные пособия и ТСО: настенная и подвижные карты звездного неба.

План урока

Этапы урока

Методы изложения

Время, мин

Повторение и актуализация астрономических знаний

Фронтальный опрос, беседа

Изложение нового материала:
1. Основные физические характеристики Солнца.
2. Строение Галактики; основные группы ее населения.
3. Эволюция космической среды в Галактике

Лекция, беседа, рассказ учителя

20-25

Закрепление изученного материала. Решение задач

Работа у доски, решение задач в тетради

10-12

Подведение итогов урока. Домашнее задание

Задание на дом: по материалу учебников:

- Б.А. Воронцов-Вельяминова : изучить §§ 27, 28; вопросы к параграфам.
- Е.П. Левитана : изучить § 28; вопросы к параграфу.
- А.В. Засова, Э.В. Кононовича : изучить §§ 28-30; вопросы к параграфам; упр. 28.4, 29.4 (4)

Методика проведения урока:

Учитель объявляет школьникам цель и задачи данного урока: изучение нашей Галактики. Производится актуализация "донаучных" познаний о природе нашей Галактики и других галактик и повторение материала о космических (звездных) системах. Ученикам задают вопросы:

1. Что такое космическая система? Какие космические системы вы знаете? Какими характеристиками и свойствами они обладают?
2. По каким признакам классифицируются известные вам космические системы?
3. Что такое Галактика? Являются ли синонимами слова "Галактика" и "Млечный Путь"?
4. Что вы знаете о нашей Галактике? Каковы ее размеры? Форма? Какие космические объекты входят в ее состав?
5. Существуют ли во Вселенной другие галактики? Что вы о них знаете?

При сообщении сведений об основных физических характеристиках Галактики необходимо обратить внимание учеников на трудности ее исследования, обусловленные тем, что мы наблюдаем Галактику "изнутри". В пособии рекомендуется использовать аналогию, задав ученикам вопрос: как легче и точнее составить план вашего города: из при наблюдениях из окна своего одного дома или по данным аэрофотосъемки? Нужно объяснить ученикам, как основные детали структуры Галактики (галактический диск, ядро) наблюдаются на звездном небе Земли. Строение Галактики можно продемонстрировать при помощи соответствующей таблицы (при этом экономится учебное время), но для более качественного усвоения материала учениками лучше поэтапно с соответствующими пояснениями воспроизвести ее на доске (а ученики перерисовывают ее в свои тетради). Количественные характеристики Галактики желательно сообщать как в числовой форме, так и в сравнении с размерами известных им объектов.

Ученики должны понимать, что Галактика является гравитационно-связанной космической системой: силы тяготения играют решающую роль в ее существовании и наряду с силами инерции и силами электромагнитной природы определяют структуру и основные свойства Галактики.

Наша Галактика

Наша Галактика - спиральная система массой от 2× 10 11 М¤ до 8,5-11,5× 10 11 М¤ (2,3× 10 42 кг), радиусом около 1,5-2× 10 4 пк и светимостью 2-4× 10 10 L¤ . Галактика состоит из 150-200 миллиардов звезд и множества других космических объектов: более 6000 галактических молекулярных облаков, содержащих в себе до 50% межзвездного газа, туманностей, планетных тел и их систем, нейтронных звезд, белых и коричневых карликов, черных дыр, космической пыли и газа. Диск Галактики пронизан крупномасштабным магнитным полем, удерживающим частицы космических лучей и заставляющим их двигаться вдоль магнитных линий по винтовым траекториям. 85-95% массы Галактики сосредоточено в звездах, 5-15% - в межзвездном диффузном газе. Массовая доля тяжелых элементов в химическом составе Галактики составляет 2%. Возраст Галактики 14,4 ± 1,3 млрд. лет. Большая часть звезд Галактики образовалась свыше 9 млрд. лет назад.

Основная часть образующих Галактику звезд наблюдается с Земли как опоясывающая все небо белесая, слабосветящаяся полоса неправильных очертаний - Млечный путь , в котором сливается сияние миллиардов слабосветящихся звезд.

Мы наблюдаем свою Галактику изнутри, что затрудняет определение ее формы, структуры и некоторых физических характеристик. Телескопическим наблюдениям доступно лишь 10 9 звезд - до 1% всех звезд Галактики.

Ядро Галактики наблюдается в созвездии Стрельца (a = 17 h 38 m , d = -30њ ), занимая часть созвездий Щита, Скорпиона и Змееносца. Ядро полностью скрыто за мощными темными газопылевыми облаками (ГМО) общей массой 3× 10 8 М¤ в 700 пк от центра Галактики, поглощающими видимое, но пропускающими радио- и инфракрасное излучение. В их отсутствие ядро Галактики было бы самым ярким после Солнца и Луны небесным светилом.

В центре ядра наблюдается сгущение - керн. Всего в 400 св. годах от центра, в недрах газопылевой туманности Стрелец А массой 10 5 М¤ скрывается черная дыра массой около 4,6× 10 6 М¤ . В самом центре в области размерами менее 1 пк и массой 5× 10 6 М¤ , вероятно, находится очень плотное скопление голубых сверхгигантов (до 50000 звезд).

Рис. 67. Строение нашей Галактики:

1 - Керн
2 - Ядро Галактики
3 - Балдж ("вздутие"): сферическое население центра Галактики
4 - Бар – галактическая "перемычка".
5 - Молодая плоская подсистема (звезды классов О, В, ассоциации)
6 - Старая плоская подсистема (звезды класса А)
7 - Диск Галактики (звезды главной последовательности, Новые, красные гиганты, планетарные туманности)
8 - Промежуточная сферическая составляющая (старые звезды, долгопериодические переменные)
9 - Спиральные рукава (диффузные газопылевые туманности, молодые звезды классов О, В, А, F)
10 - Зоны концентрации ГМО вблизи ядра (9А) и в "молекулярном кольце" (9В)
11 - Древнейшая сферическая подсистема (гало) (шаровые скопления, короткопериодические цефеиды, субкарлики)
12 - Шаровые скопления
13 - Солнечная система
14 - Газовая корона Галактики.

Наша Галактика имеет перемычку – бар , из концов которого в 4 тысячах парсек от центра Галактики начинают закручиваться 3 спиральные рукава; вблизи одного из них - рукава (ветви) Ориона находится Солнечная система. Вторая - ветвь Персея - наблюдается в направлении от центра Галактики на расстоянии 1,5-2,4 кпк от Солнца. Третья - ветвь Стрельца находится в направлении центра Галактики в 1,2-1,8 кпк от Солнца.

Галактика обладает сложным дифференцированным характером вращения вокруг своей оси (рис. 68). Собственные скорости звезд в ядре достигает 1000-1500 км/с. Скорость обращения галактических рукавов ниже скорости движения отдельных звезд на том же расстоянии от центра Галактики.

Солнечная система располагается вблизи экваториальной плоскости Галактики в 34000 св. лет от ее центра (на расстоянии совпадения скорости вращения Галактики и движения ее спиральных рукавов). Из анализа собственных движений 300000 звезд по смещению линий в спектрах благодаря эффекту Доплера установлено, что Солнечная система перемещается относительно ближайших звезд со скоростью 20 км/с в направлении созвездия Геркулеса и вместе с ними вращается вокруг центра Галактики со скоростью 250 км/c в направление созвездий Лебедя и Цефея. Точка небесной сферы, в направлении которой движется Солнечная система, называется апексом.

Период обращения Солнечной системы вокруг центра Галактики составляет 195-220 миллионов лет. Средняя продолжительность галактического года (Т G )равна213 млн. лет.

Концентрация вещества межзвездной среды весьма неравномерна. Она резко возрастает в плоскости вращения Галактики и в слое толщиной 500 св. лет диаметром 100000 св. лет составляет 10 -21 кг/м 3 . Облака поглощающей звездный свет темной, плотной пылевой материи видны на фоне Млечного пути невооруженным глазом в созвездиях Лебедя, Змееносца, Щита, Стрельца. Наибольшую плотность она приобретает в направлении ядра Галактики. На расстоянии от 4 до 8 тысяч парсек от галактического центра располагается "молекулярное кольцо " Галактики - скопление ГМО массой до 3× 10 9 М¤ .

Разреженный нейтральный газ вдали от звезд прозрачен для оптического излучения. Изучению распределения и характеристик газа в межзвездной среде и ГМО способствует радиоизлучение молекулярного водорода (l = 0,21 м) и гидроксила ОН (l = 0,18 м) (рис. 69).

Турбулентная межзвездная плазма сконцентрирована в облаках, занимающих около 20% межзвездной среды. Вне спиральных рукавов редкие плазменные облака размерами менее 26 пк и плотностью электронов 0,1-0,3 частиц/см 3 обнаруживаются на расстояниях до ± 900 кпк от плоскости Галактики. Облака в спиральных рукавах (± 200 пк от плоскости Галактики) имеют размеры до 50 пк, электронную плотность 0,2-1,0 частиц/см 3 . В зонах звездообразования в плоскости Галактики электронная плотность облаков размерами 10-50 пк достигает 1-10 частиц/см 3 .

Относительный возраст и порядок образования звезд в Галактике определяются из анализа химического состава звездных областей - подсистем Галактики. Рождение звезд в Галактике на протяжении миллиардов лет уменьшает концентрацию межзвездного газа и замедляет темпов звездообразования до полного его прекращения из-за "нехватки сырья" на формирование звезд последующих поколений. В прошлом темп звездообразования был значительно выше. Сейчас во всей Галактике ежегодно в звезды превращается межзвездный газ массой от 4 М¤ до 10М¤ . Он должен возобновляться, иначе полностью исчерпался бы в первые 1-2 миллиарда лет жизни Галактики.

Основным "поставщиком" межзвездного газа являются звезды, особенно на последних стадиях своей эволюции: голубые и красные гиганты и сверхгиганты, Новые и Сверхновые порождают в год около 1 М¤ межзвездного газа. Вероятно, Галактика притягивает газ из окружающего ее пространства (до 1,2-2 М¤ в год). Поэтому количество межзвездного газа в Галактике уменьшается очень медленно.

Заметно изменяется его химический состав. В звездах I поколения возрастом 12-15 миллиардов лет концентрация тяжелых элементов составляет около 0,1%.

Звезды II поколения главной последовательности возрастом 5-7 миллиардов лет содержат до 2 % тяжелых элементов.

В современных диффузных туманностях довольно много пыли, различных газов, тяжелых химических элементов и сложных молекулярных соединений. Молодые звезды классов О, В, А возрастом 0,1-3 млрд. лет в рассеянных скоплениях относятся к новому III поколению звезд. Они содержат около 3-4% тяжелых элементов.

В гало Галактики наблюдаются "высокоскоростные" облака атомарного водорода, перемещающиеся независимо от ее вращения. Одни облака, в составе которых около 0,1 % тяжелых химических элементов, состоят из вещества, притянутого Галактикой из окружающего пространства. Другие облака образованы выбросами вещества из галактического диска при вспышках Сверхновых в звездных скоплениях и других космических явлениях; их состав включает до 1% тяжелых химических элементов.


Рис. 70. Ежегодный баланс межзвездной среды в Галактике

Важной составляющей межзвездной среды Галактики являются космические лучи -потоки заряженных элементарных частиц с энергией до 10 21 эВ: протоны (91,7%), релятивистские электроны (0,92%), ядра атомов гелия (6,6%) и более тяжелых химических элементов (0,72%). Несмотря на низкую пространственную плотность космических лучей (у Земли – 1 частица/см 3× с), плотность их энергии сравнима с плотностью энергии суммарного электромагнитного излучения звезд, энергии теплового движения межзвездного газа и магнитного поля Галактики. Основным источником космических лучей являются вспышки Сверхновых.

Общее магнитное поле Галактики обладает индукцией около 10 -10 Тл. Силовые линии в основном параллельны галактической плоскости и изгибаются вдоль ее спиральных рукавов. Взаимодействуя с заряженными частицами космических лучей, магнитное поле Галактики искривляет траектории их движения вдоль силовых линий и тормозит релятивистские электроны, порождая нетепловое (синхротронное) излучение радиоволн с длиной волны более 1 м. Изучение "вариаций" – пространственно-временных изменений характеристик космических лучей под влиянием различных процессов в межзвездном пространстве и космических объектах позволяет исследовать электромагнитные поля отдельных протяженных космических объектов и всей Галактики в целом. Высокая энергия космических лучей делает их незаменимыми помощниками физиков при изучении строения вещества и взаимодействий элементарных частиц.

В заключение урока можно предложить ученикам задачи на повторение и закрепление материала о звездах и звездных системах (определение межзвездных расстояний, характеристик компонентов двойных систем и т.д.), а также задания упражнения 18:

Упражнение 18:

  1. Как выглядел бы Млечный Путь, если бы Земля находилась: а) в центре Галактики; б) на краю галактического диска, в 50000 св. лет от центра Галактики; в) в одном из шаровых скоплений сферической составляющей; г) на расстоянии 10000 св. лет над северным полюсом Галактики; д) для наблюдателя в Большом Магеллановом Облаке?
  2. Оцените массу Галактики, лежащую внутри области орбитального движения Солнечной системы вокруг центра Галактики, если масса Солнечной системы М ~ 1 М¤ , а период ее обращения (галактический год) составляет 213 миллионов лет.
  3. Составьте схему, на которой будут указаны все основные типы, классы и группы космических объектов и их систем, входящих в состав Галактики (рис. 71):


Рис. 71

4. В 1974 году по программе SETI к шаровому звездному скоплению М13 в созвездии Геркулеса (расстояние 24000 св. лет) было отправлено радиосообщение о земной цивилизации. Как вы думаете, дождутся ли и, если "да", то когда дождутся наши потомки ответа?

5. В спектрах трех далеких галактик наблюдается красное смещение, равное: z 1 = 0,1, z 2 = 0,5, z 3 = 3 длин волн спектральных линий. С какой лучевой скоростью движутся эти галактики? Определите расстояние до каждой из них, считая Н = 50км/с× Мпк.

6. Вычислите расстояние, линейные размеры и светимость квазара 3С48, если его угловой диаметр равен 0,56ќ , блеск 16,0 m , а линия l 0 = 2298× 10 -10 м ионизированного магния смещена в его спектре до положения l 1 = 3832× 10 -10 м.

7. Как влияет поглощение света межзвездной средой на определение расстояний и размеров далеких галактик?

8. Классическая картина мира XIX века оказалась достаточно уязвимой в области космологии Вселенной, благодаря необходимости объяснения 3 парадоксов: фотометрического, термодинамического и гравитационного. Вам предлагается объяснить эти парадоксы с точки зрения современной науки.

Фотометрический парадокс (Ж. Шезо, 1744 г.; Г. Ольберс, 1823 г.) сводился к объяснению вопроса "Почему ночью темно?".

Если Вселенная бесконечна, то звезд в ней бесчисленно много. При сравнительно равномерном распределении звезд в пространстве число звезд, находящихся на данном расстоянии, возрастает пропорционально квадрату расстояния до них. Поскольку блеск звезды ослабевает пропорционально квадрату расстояния до нее, то ослабление общего света звезд из-за их удаленности должно в точности компенсироваться возрастанием числа звезд, и вся небесная сфера должна равномерно и ярко светится.

Термодинамический парадокс (Клаузиус, 1850 г.), связан с противоречием второго начала термодинамики и концепции вечности Вселенной. Согласно необратимости тепловых процессов, все тела во Вселенной стремятся к тепловому равновесию. Если Вселенная существует бесконечно долго, то почему же тепловое равновесие в природе до сих пор не наступило, и тепловые процессы продолжаются до сих пор?

Гравитационный парадокс (Зеелингер, 1895 г.) основан на положениях бесконечности, однородности и изотропности Вселенной.

Мысленно выберем сферу радиуса R 0 так, чтобы ячейки неоднородности в распределении вещества внутри сферы были несущественны и средняя плотность была равна средней плотности Вселенной r . Пусть на поверхности сферы находится тело массой m , например, Галактика. Согласно теореме Гаусса о центрально-симметричном поле, сила тяготения со стороны вещества массой М , заключенного внутри сферы, будет действовать на тело так, как если бы все вещество было сосредоточено в одной точке, расположенной в центре сферы. При этом остальное вещество Вселенной никакого вклада в эту силу не вносит. При этом:

Выразим массу через среднюю плотность r : . Пусть Тогда - ускорение свободного падения тела к центру сферы зависит только от радиуса сферы R 0 . Поскольку радиус сферы и положение центра сферы выбраны произвольно, возникает неопределенность в действии силы на пробную массу m и направление ее движения.

9. Проделайте путешествие на воображаемой машине времени в прошлое и будущее нашей Метагалактики и сделайте рисунки того, что вы увидели бы: а) в момент Большого Взрыва; б) спустя 1 секунду после него; в) через 1 миллион лет; г) через миллиард лет; д) через 10 миллиардов лет после Большого Взрыва; е) спустя 100 миллиардов лет; ж) через 1000 миллиардов лет.

10. Что отличает космологические модели Вселенной от религиозного объяснения Вселенной?

Методика изучения материала на первых 3 уроках данной темы рассматривается в статье Е.Ю Степановой, Ю.А. Купрякова "Изучение вопросов о Галактике в теме "Строение Вселенной" .

В физико-математических классах и при работе с сильными учащимися можно воспользоватьсяидеями, содержащимися в статьеЛ.П. Суркова, Н.В. Лисина "Элементы проблемности при обучении астрономии в педагогическом институте". По мнению авторов, "Основа и источник астрономических знаний – наблюдения, которые и становятся основным способом создания проблемной ситуации (на основе собственных наблюдений, жизненных ситуаций, работы с фотографиями, рисунками и т.д., в т.ч. при знакомстве с наблюдательными результатами, имеющими якобы необъяснимый характер и приведшими в истории науки к постановке научной проблемы).

Существование различных подходов к выбору стратегии исследования реализуется в виде конкурирующих научных гипотез. Это позволяет использовать для придания лекции проблемного характера показ различных точек зрения и позиций ученых к решению определенной проблемы". В качестве примеров предлагаются: 1) дискуссия о природе активности квазаров и ядер галактик, где в качестве источника активности предлагались: многопульсарная модель, с многочисленными взрывами при столкновениях звезд; модель аккрецирующей сверхмассивной черной дыры; модель сверхмассивного вращающегося магнитоплазменного тела – магнитоида. 2) Возникновение спиральной структуры Галактики (волновая теория Линдблада, Лина и Шу, идея Герола и Сейдена, Яанисте и Саара, формирования ветвей при выбросе газа из центра галактик).

Изложение темы "Строение Галактики" также целесообразно построить в историческом плане. Ставится задача мысленно пройти путь ученых. Вначале проводятся наблюдения (демонстрации, посещение планетария). Задается задание: на основании сопоставления числа звезд на отдельных участках неба и различия звезд по блеску попытаться представить картину окружающего мира с учетом упрощающих факторов (как Гершель). На лекции подводится итог этому заданию и ставится вопрос "Что и как должно измениться в представленной картине, если предположения Гершеля неверны?". Затем, сопровождаемые демонстрациями, рассматриваются современные методы и результаты исследования Галактики.

Первый вариант "позволяет рассмотреть в исторической последовательности ряд задач, стоящих на пути исследователей и тем самым использовать преимущества, которые дает проблемный метод обучения: начать формирование сведений о структуре и размерах Галактики на основе изучения распределения звезд, постепенно дополняя и углубляя материал информацией о других объектах", предварительно ознакомив учеников с видимым распределением звезд по небу и со структурой Млечного Пути.

- - контрольные работы - задача

См. также: Все публикации на ту же тему >>
Галактики бывают трех типов: спиралевидные, эллиптические и неправильной формы. У спиралевидных галактик хорошо выражен диск, рукава и гало. В центре находится плотное скопление звезд и межзвездного вещества, а в самом центре – чёрная дыра. Рукава в спиралевидных галактиках отходят от их центра и закручены вправо или влево в зависимости от вращения ядра и чёрной дыры (точнее, сверхплотного тела) в его центре. В центре галактического диска находится сферическое уплотнение, называемое балджем. Число ветвей (рукавов) может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В галактиках в гало входят звезды и очень разреженное газообразное вещество, не входящее в спирали и в диск. Мы живем в спиральной галактике, которая называется Млечный Путь, и в ясную погоду наша Галактика хорошо видна на ночном небе в виде широкой беловатой полосы, пересекающей небосвод. Нам наша Галактика видна в профиль. Шаровые скопления в центре галактик практически не зависят от положения диска галактики. Рукава галактик содержат сравнительно малую часть всех звезд, но зато в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа астрономы считают молодыми, поэтому спиральные ветви галактик можно считать местом образования звезд.

Фотография спиральной галактики " Цевочное колесо" (M101, NGC 5457), получена орбитальным телескопом Хаббл, запущенным NASA в 1990 г. Спиральные галактики похожи на громадные вихри или водовороты в пространстве Метагалактики. Вращаясь, они движутся в Метагалактике подобно циклонам, движущимся в атмосфере Земли.

Эллиптические галактики часто встречаются в плотных скоплениях спиралевидных галактик. Они имеют форму эллипсоида или шара, причем шаровидные обычно бывают больше элипсоидных. Скорость вращения эллипсоидных галактик меньше, чем у спиралевидных, потому диск у них не сформирован. Такие галактики обычно насыщены шаровидными скоплениями звезд. Эллиптические галактики, как считают астрономы, состоят из старых звёзд и практически полностью лишены газа. В их старости я, однако, сильно сомневаюсь. Почему? Расскажу об этом позже. Галактики неправильной формы обычно имеют небольшую массу и объем, в них входит немного звезд. Как правило, они являются спутниками спиралевидных галактик. В них обычно очень мало шаровых скоплений звезд. Примерами таких галактик являются спутники Млечного Пути – Большое и Малое Магеллановы облака. Но среди неправильных галактик встречаются и малые эллиптические галактики. В центре почти каждой галактики находится очень массивное тело – чёрная дыра – с такой мощной гравитацией, что его плотность равна или больше плотности ядер атомов. По сути, каждая чёрная дыра – это в пространстве небольшое, а по массе просто чудовищное, бешено вращающееся ядро. Название "чёрная дыра" явно неудачное, так как никакая это не дыра, а очень плотное тело с мощной гравитацией – такой, что даже легкие фотоны не могут из него вырваться. И когда чёрная дыра накапливает в себе чересчур большую массу и кинетическую энергию вращения, в ней нарушается равновесие массы и кинетической энергии, и тогда она исторгает из себя фрагменты, которые (самые массивные) становятся малыми чёрными дырами второго порядка, фрагменты поменьше – будущими звездами, когда соберут на себя большие водородные атмосферы из галактических облаков, а фрагменты мелкие станут планетами, когда собранного водорода не хватит для начала термоядерного синтеза. Думаю, что галактики образуются из массивных чёрных дыр, мало того, в галактиках совершается космический круговорот вещества и энергии. В начале чёрная дыра поглощает вещество, рассеянное в Метагалактике: в это время, благодаря своей гравитации, она действует как "пылегазосос". Вокруг чёрной дыры концентрируется водород, рассеянный в Метагалактике, при этом образуется шарообразное скопление газа и пыли. Вращение чёрной дыры увлекает газ и пыль, отчего шарообразное облако сплющивается, в нем образуются центральное ядро и рукава. Накопив критическую массу, чёрная дыра в центре газо-пылевого облака начинает выбрасывать фрагменты (фрагментоиды) , которые отрываются от нее с большим ускорением, достаточным, чтобы быть выброшенными на круговую орбиту вокруг центральной чёрноё дыры. На орбите, взаимодействуя с газо-пылевыми облаками, эти фрагментоиды гравитационно захватывают газ и пыль. Крупные фрагментоиды становятся звездами. Чёрные дыры своей гравитацией затягивают в себя космическую пыль и газ, которые, падая на такие дыры, сильно раскаляются и излучают в рентгеновском диапазоне. Когда вещества вокруг чёрной дыры становится мало, ее свечение резко уменьшается. Поэтому в некоторых галактиках в центре видно яркое свечение, а в других нет. Чёрные дыры подобны космическим «убийцам»: их гравитация притягивает даже фотоны и радио волны, отчего сама чёрная дыра не излучает и выглядит как абсолютно чёрное тело.

Но, вероятно, периодически гравитационное равновесие внутри чёрных дыр нарушается, и они начинают извергать сгустки сверхплотного вещества, обладающие сильной гравитацией, под воздействием которой эти сгустки принимают шарообразную форму и начинают притягивать пыль и газ из окружающего пространства. Из захваченного вещества на этих телах формируются твердые, жидкие и газообразные оболочки. Чем массивнее был извергнутый чёрной дырой сгусток сверхплотного вещества (фрагментоид ), тем больше он соберет на себя пыли и газа из окружающего пространства (если, конечно, это вещество в окружающем пространстве имеется).

Немного истории исследований

Изучению галактик астрофизика обязана А. Робертсу, Г.Д. Кёртису, Э. Хабблу, Х. Шелли и многим другим. Интересную морфологическую классификацию галактик предложил Эдвин Хаббл в 1926 г. и усовершенствовал ее в 1936 г. Эта классификация называется "Камертон Хаббла". До самой смерти в 1953г. Хаббл улучшал свою систему, а после его смерти это делал А. Сендидж, который в 1961 г. внес существенные новшества в систему Хаббла. Сендидж выделил группу спиральных галактик с рукавами, начинающимися на внешнем краю кольца, и спиральных галактик, у которых спиральные рукава начинаются сразу от ядра. Особое место в классификации занимают спиральные галактики с клочковатой структурой и слабо выраженным ядром. За созвездиями Скульптор и Печь Х. Шелли в 1938 г. открыл карликовые эллиптические галактики с очень низкой яркостью.

  • 5.Суточное вращение небесной сферы на разных широтах исвязанные с ним явления. Суточное движение Солнца. Смена сезонов и тепловыепояса.
  • 6.Основные формулы сферической тригонометрии.Параллактический треугольник и преобразование координат.
  • 7.Звёздное, истинное и среднее солнечное время. Связьвремён. Уравнение времени.
  • 8.Системы счёта времени: местное, поясное, всемирное, декретное и эфемеридное время.
  • 9.Календарь. Типы календарей. История современного календаря. Юлианские дни.
  • 10.Рефракция.
  • 11.Суточная и годичная аберрация.
  • 12.Суточный,годичный и вековой параллакс светил.
  • 13.Определениерасстояний в астрономии, линейных размеров тел солнечной системы.
  • 14.Собственноедвижение звёзд.
  • 15.Лунно-солнечная и планетарная прецессия; нутация.
  • 16. Неравномерность вращения Земли; движение полюсов Земли. Служба широты.
  • 17.Измерение времени. Поправка часов и ход часов. Служба времени.
  • 18. Методы определения географической долготы местности.
  • 19. Методы определения географической широты местности.
  • 20.Методы определения координат и положений звёзд ( и ).
  • 21. Вычисление моментов времени и азимутов восхода и захода светил.
  • 24.ЗаконыКеплера. Третий (уточнённый) закон Кеплера.
  • 26.Задача трех и более тел. Частный случай зачачи трех тел(точки либрации Лагранжа)
  • 27.Понятиео возмущающей силе. Устойчивость Солнечной системы.
  • 1. Понятие о возмущающей силе.
  • 28.ОрбитаЛуны.
  • 29. Приливы и отливы
  • 30.Движение космических аппаратов. Три космические скорости.
  • 31.ФазыЛуны.
  • 32.Солнечныеи лунные затмения. Условия наступления затмения. Сарос.
  • 33.ЛибрацииЛуны.
  • 34.Спектрэлектромагнитного излучения, исследуемый в астрофизике. Прозрачность атмосферыЗемли.
  • 35.Механизмы излучения космических тел в разных диапазонах спектра. Виды спектра: линейчатыйспектр, непрерывный спектр, рекомбинационное излучение.
  • 36 Астрофотометрия. Звёздная величина (визуальная и фотографическая).
  • 37 Свойства излучения и основы спектрального анализа: законы Планка, Рэлея-Джинса, Стефана-Больцмана, Вина.
  • 38 Доплеровское смещение. Закон Доплера.
  • 39 Методы определения температуры. Виды понятий температуры.
  • 40.Методы и основные результаты изучения формы Земли. Геоид.
  • 41 Внутреннее строение Земли.
  • 42.Атмосфера Земли
  • 43.Магнитосфера Земли
  • 44.Общие сведения о Солнечной системе и её исследований
  • 45.Физический характер Луны
  • 46.Планеты земной группы
  • 47.Планеты гиганты –их спутники
  • 48.Малые планеты-астероиды
  • 50. Основные физические характеристики Солнца.
  • 51. Спектр и химический состав Солнца. Солнечная постоянная.
  • 52. Внутреннее строение Солнца
  • 53. Фотосфера. Хромосфера. Корона. Грануляция и конвективная зона Зодиакальный свет и противосияние.
  • 54 Активные образования в солнечной атмосфере. Центры солнечной активности.
  • 55. Эволюция Солнца
  • 57.Абсолютная звёздная величина и светимость звёзд.
  • 58.Диаграмма спектр-светимость Герцшпрунга-Рессела
  • 59. Зависимость радиус - светимость - масса
  • 60. Модели строения звёзд. Строение вырожден звёзд (бел карлики и нейтрон звёзды). Чёрн.Дыры.
  • 61. Основные этапы эволюции звезд. Планетарные туманности.
  • 62. Кратные и переменные звёзды (кратные, визуально-двойные, спектрально-двойные звёзды, невидимые спутники звёзд, затменно-двойные звёзды). Особенности строения тесных двойных систем.
  • 64. Методы определения расстояний до звёзд. Конецформыначалоформы
  • 65.Распределение звёзд в Галактике. Скопления. Общее строение Галактики.
  • 66. Пространственное перемещение звёзд. Вращение Галактики.
  • 68. Классификация галактик.
  • 69.Определение расстояний до галактик. Закон Хаббла. Красное смещение в спектрах галактик.
  • 65.Распределение звёзд в Галактике. Скопления. Общее строение Галактики.

    конецформыначалоформыЗнание расстояний до звезд позволяет подойти к изучению их распределения в пространстве, а следовательно, и структуры Галактики. Для того чтобы охарактеризовать количество звезд в различных частях Галактики, вводят понятие звездной плотности, аналогичное понятию концентрации молекул. Звездной плотностью называется количество звезд, находящихся в единице объема пространства. За единицу объема обычно принимают 1 кубический парсек. В окрестностях Солнца звездная плотность составляет около 0,12 звезды на кубический парсек, иными словами, на каждую звезду в среднем приходится объем свыше 8 пс 3 ; среднее же расстояние между звездами - около 2 пс.Чтобы узнать, как меняется звездная плотность в различных направлениях, подсчитывают число звезд на единице площади (например, на 1 квадратном градусе) в различных участках неба.

    Первое, что бросается в глаза при таких подсчетах, необычайно сильное увеличение концентрации звезд по мере приближения к полосе Млечного Пути, средняя линия которого образует на небе большой круг. Наоборот, по мере приближения к полюсу этого круга концентрация звезд быстро уменьшается. Этот факт уже в конце XVIII в. позволил В.Гершелю сделать правильный вывод о том, что наша звездная система имеет сплющенную форму, причем Солнце должно находиться недалеко от плоскости симметрии этого образования.конецформыначалоформы Все звезды с видимой звездной величиной, меньшей или равной т, проектирующиеся на некоторую область неба, находятся внутри шарового сектора, радиус которого определяется по формуле

    lg r m =1 + 0,2 (m ѕ M)

    конецформыначалоформыЧтобы охарактеризовать, сколько в данной области пространства содержится звезд различных светимостей, вводят функцию светимости j (М), которая показывает, какая доля от общего числа звезд имеет данное значение абсолютной звездной величины, скажем, от M до М + 1.

    конецформыначалоформыСкопления галактик - гравитационно-связанные системы галактик , одни из самых больших структур во вселенной . Размеры скоплений галактик могут достигать 10 8 световых лет .

    Скопления условно разделяются на два вида:

    регулярные - скопления правильной сферической формы, в которых преобладают эллиптические и линзовидные галактики , с чётко выраженной центральной частью. В центрах таких скоплений расположены гигантские эллиптические галактики. Пример регулярного скопления - скопление Волос Вероники .

    иррегулярные - скопления без определённой формы, по количеству галактик уступающие регулярным. В скоплениях этого вида преобладают спиральные галактики . Пример - скопление Девы .

    Массы скоплений варьируются от 10 13 до 10 15 масс Солнца .

    Строение галактики

    Распределение звезд в Галактике имеет две ярко выраженные особенности: во-первых, очень высокая концентрация звезд в галактической плоскости, и во-вторых, большая концентрация в центре Галактики. Так, если в окрестностях Солнца, в диске, одна звезда приходится на 16 кубических парсеков, то в центре Галактики в одном кубическом парсеке находится 10 000 звезд. В плоскости Галактики помимо повышенной концентрации звезд наблюдается также повышенная концентрация пыли и газа.

    Размеры Галактики: – диаметр диска Галактики около 30 кпк (100 000 световых лет), – толщина – около 1000 световых лет.

    Солнце расположено очень далеко от ядра Галактики – на расстоянии 8 кпк (около 26 000 световых лет).

    Центр Галактики находится в созвездии Стрельца в направлении на? = 17h46,1m, ? = –28°51′.

    Галактика состоит из диска, гало и короны. Центральная, наиболее компактная область Галактики называется ядром. В ядре высокая концентрация звезд: в каждом кубическом парсеке находятся тысячи звезд. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной. В центре Галактики предполагается существование массивной черной дыры. В кольцевой области галактического диска (3–7 кпк) сосредоточено почти все молекулярное вещество межзвездной среды; там находится наибольшее количество пульсаров, остатков сверхновых и источников инфракрасного излучения. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи.

    Галактика содержит две основных подсистемы (два компонента), вложенные одна в другую и гравитационно-связанные друг с другом. Первая называется сферической – гало, ее звезды концентрируются к центру галактики, а плотность вещества, высокая в центре галактики, довольно быстро падает с удалением от него. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж. Вторая подсистема – это массивный звездный диск. Он представляет собой как бы две сложенные краями тарелки. В диске концентрация звезд значительно больше, чем в гало. Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики. В звездном диске между спиральными рукавами расположено Солнце.

    Звезды галактического диска были названы населением I типа, звезды гало – населением II типа. К диску, плоской составляющей Галактики, относятся звезды ранних спектральных классов О и В, звезды рассеянных скоплений, темные пылевые туманности. Гало, наоборот, составляют объекты, возникшие на ранних стадиях эволюции Галактики: звезды шаровых скоплений, звезды типа RR Лиры. Звезды плоской составляющей по сравнению со звездами сферической составляющей отличаются большим содержанием тяжелых элементов. Возраст населения сферической составляющей превышает 12 миллиардов лет. Его обычно принимают за возраст самой Галактики.

    По сравнению с гало диск вращается заметно быстрее. Скорость вращения диска не одинакова на различных расстояниях от центра. Масса диска оценивается в 150 миллиардов М. В диске находятся спиральные ветви (рукава). Молодые звезды и очаги звездообразования расположены, в основном, вдоль рукавов.

    Диск и окружающее его гало погружены в корону. В настоящее время считают, что размеры короны Галактики в 10 раз больше, чем размеры диска.

    Общая астрономия. Строение Галактики

    Одним из самых примечательных объектов звездного неба является Млечный Путь . Древние греки называли его galaxias , т.е. молочный круг . Уже первые наблюдения в телескоп, проведенные Галилеем, показали, что Млечный Путь – это скопление очень далеких и слабых звезд.

    В начале ХХ века стало очевидным, что почти все видимое вещество во Вселенной сосредоточено в гигантских звёздно-газовых островах с характерным размером от нескольких килопарсеков до нескольких десятков килопарсек (1 килопарсек = 1000 парсек ~ 3∙10 3 световых лет ~ 3∙10 19 м). Солнце вместе с окружающими его звёздами также входит в состав спиральной галактики, всегда обозначаемой с заглавной буквы: Галактика. Когда мы говорим о Солнце, как об объекте Солнечной системы, мы тоже пишем его с большой буквы.

    Расположение Солнца в нашей Галактике довольно неудачное для изучения этой системы как целого: мы находимся вблизи плоскости звёздного диска, и с Земли сложно выявить структуру Галактики. К тому же, в области, где расположено Солнце, довольно много межзвёздного вещества, поглощающего свет и делающего звездный диск почти непрозрачным для видимого света в некоторых направлениях, особенно в направлении ее ядра. Поэтому исследования других галактик играют громадную роль в понимании природы нашей Галактики. Галактика представляет собой сложную звёздную систему, состоящую из множества разнообразных объектов, которые находятся между собой в определенной взаимосвязи. Масса Галактики оценивается в 200 миллиардов (2∙10 11) масс Солнца, но только два миллиарда звезд (2∙10 9) доступно наблюдениям.

    Распределение звёзд в Галактике имеет две ярко выраженные особенности: во-первых, очень высокая концентрация звёзд в галактической плоскости, и во-вторых, большая концентрация в центре Галактики. Так, если в окрестностях Солнца, в диске, одна звёзда приходится на 16 кубических парсеков, то в центре Галактики в одном кубическом парсеке находится 10 000 звезд. В плоскости Галактики помимо повышенной концентрации звёзд наблюдается также повышенная концентрация пыли и газа.

    Размеры Галактики: - диаметр диска Галактики около 30 кпк (100 000 световых лет), - толщина - около 1000 световых лет.

    Солнце расположено очень далеко от ядра Галактики - на расстоянии 8 кпк (около 26 000 световых лет). Галактика состоит из диска, гало, балджа и короны.


    Галактика содержит две основных подсистемы (два компонента), вложенные одна в другую и гравитационно-связанные друг с другом.

    Первая называется сферической - гало , ее звезды концентрируются к центру галактики, а плотность вещества, высокая в центре галактики, довольно быстро падает с удалением от него. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж . (английское слово bulge переводится как вздутие ). В балдже (3-7 кпк) сосредоточено почти все молекулярное вещество межзвездной среды; там находится наибольшее количество пульсаров, остатков сверхновых и источников инфракрасного излучения. Центральная, наиболее компактная область Галактики называется ядром . В ядре высокая концентрация звезд: в каждом кубическом парсеке находятся тысячи звезд. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной. В центре Галактики предполагается существование массивной черной дыры. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Центр Галактики находится в созвездии Стрельца в направлении на α = 17h46,1m, δ = –28°51". Вторая подсистема - это массивный звездный диск . Он представляет собой как бы две сложенные краями тарелки. В диске концентрация звезд значительно больше, чем в гало. Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики. В звездном диске между спиральными рукавами расположено Солнце.

    Звёзды галактического диска были названы населением I типа, звёзды гало - населением II типа. К диску, плоской составляющей Галактики, относятся звёзды ранних спектральных классов О и В, звёзды рассеянных скоплений, тёмные пылевые туманности, облака газа и пыли. Солнце относится к звездному населению I типа.

    Гало, наоборот, составляют объекты, возникшие на ранних стадиях эволюции Галактики: звёзды шаровых скоплений, звёзды типа RR Лиры. Звёзды плоской составляющей по сравнению со звёздами сферической составляющей отличаются большим содержанием тяжелых элементов. Возраст населения сферической составляющей превышает 12 миллиардов лет. Его обычно принимают за возраст самой Галактики. По сравнению с гало диск вращается заметно быстрее. Масса диска оценивается в 150 миллиардов М Солнца. В диске находятся спиральные ветви (рукава). Молодые звёзды и очаги звёздообразования расположены, в основном, вдоль рукавов. Диск и окружающее его гало погружены в корону .

    В настоящее время считают, что размеры короны Галактики в 10 раз больше, чем размеры диска. Дальнейшие исследования показали, что в нашей Галактике имеется перемычка (бар).

    Астрономы убедились в существовании спиральных рукавов полвека назад по тому же излучению атомарного водорода на волне 21 сантиметр.

    Иллюстрация слева. Солнце расположено между рукавами Киля-Стрельца и Персея. Иллюстрация справа. Строение нашей Галактики в разрезе.

    Слева вид нашей Галактики в видимом диапазоне (цифровая панорама их трёх тысяч изображений звёздного неба), если посмотреть на всё небо сразу. Аксел Мелингер. Проект Панорама Млечного пути 2.0. Рисунок справа. Наблюдения радиоизлучения водорода. Наблюдения Энглмайера. Красным наложен узор спиральных рукавов. Отчётливо видно, что у нашей Галактики есть бар (перемычка), от которой отходят два рукава. Во внешней части видны 4 рукава.