Кислород: физические и химические свойства. Химические и физические свойства, применение и получение кислорода

Введение

Каждый день мы вдыхаем такой необходимый нам воздух. А вы никогда не задумывались о том, из чего, точнее из каких веществ, состоит воздух? Больше всего в нем азота (78%), далее идет кислород (21%) и инертные газы (1%). Хоть кислород и не составляет самую основную часть воздуха, но без него атмосфера была бы непригодной для жизни. Благодаря ему на Земле существует жизнь, ведь азот и вместе и по отдельности губительны для человека. Давайте рассмотрим свойства кислорода.

Физические свойства кислорода

В воздухе кислород просто так не различишь, так как в обычных условиях он является газом без вкуса, цвета и запаха. Но кислород можно искусственным путем перевести в другие агрегатные состояния. Так, при -183 о С он становится жидким, а при -219 о С твердеет. Но твердый и жидкий кислород может получить только человек, а в природе он существует лишь в газообразном состоянии. выглядит так (фото). А твердый похож на лед.

Физические свойства кислорода - это еще и строение молекулы простого вещества. Атомы кислорода образуют два таких вещества: кислород (О 2) и озон (О 3). Ниже показана модель молекулы кислорода.

Кислород. Химические свойства

Первое, с чего начинается химическая характеристика элемента - его положение в периодической системе Д. И. Менделеева. Итак, кислород находится во 2 периоде 6 группе главной подгруппе под номером 8. Его атомная масса - 16 а.е.м, он является неметаллом.

В неорганической химии его бинарные соединения с другими элементами объединили в отдельный - оксиды. Кислород может образовывать химические соединения как с металлами, так и с неметаллами.

Поговорим о его получении в лабораториях.

Химическим путем кислород можно получить с помощью разложения перманганата калия, пероксида водорода, бертолетовой соли, нитратов активных металлов и оксидов тяжелых металлов. Рассмотрим уравнения реакций при применении каждого из этих способов.

1. Электролиз воды:

Н 2 О 2 = Н 2 О + О 2

5. Разложение оксидов тяжелых металлов (например, оксида ртути):

2HgO = 2Hg + O 2

6. Разложение нитратов активных металлов (например, нитрата натрия):

2NaNO 3 = 2NaNO 2 + O 2

Применение кислорода

С химическими свойствами мы закончили. Теперь пора поговорить о применении кислорода в жизни человека. Он нужен для сжигания топлива в электрических и тепловых станциях. Его используют для получения стали из чугуна и металлолома, для сварки и резки металла. Кислород нужен для масок пожарных, для баллонов водолазов, применяется в черной и цветной металлурги и даже в изготовлении взрывчатых веществ. Также в пищевой промышленности кислород известен как пищевая добавка Е948. Кажется, нет отрасли, где бы он не использовался, но самую важную роль он играет в медицине. Там он так и называется - "кислород медицинский". Для того чтобы кислород был пригоден для использования, его предварительно сжимают. Физические свойства кислорода способствуют тому, что его можно сжать. В подобном виде он хранится внутри баллонов, похожих на такие.

Его используют в реанимации и на операциях в аппаратуре для поддержания жизненных процессов в организме больного пациента, а также при лечении некоторых болезней: декомпрессионной, патологий желудочно-кишечного тракта. С его помощью врачи каждый день спасают множество жизней. Химические и физические свойства кислорода способствуют тому, что его используют так широко.

Элементы, расположенные в главной подгруппе VI группы периодической системы элементов Д. И. Менделеева.

Распределение электронов по энергетическим уравнениям атомов элементов группы кислородаТаблица 13

Элемент

Заряд ядра

Энергетические уровни

Радиус атома Å

K

L

M

N

O

0,60

1,04

1,16

1,43

Рассмотрение атомных структур элементов главной подгруппы VI группы показывает, что все они имеют шестиэлектронную структуру внешнего слоя (табл. 13) и в связи с этим обладают сравнительно высокими значениями электроотрицательности. Наибольшей электроотрицательностью обладает , наименьшей - , что объясняется изменением величины атомного радиуса. Особое место кислорода в этой группе подчеркивается тем, что , и теллур могут непосредственно соединяться с кислородом, но не могут соединяться между собой.

Элементы группы кислорода также принадлежат к числу р -элементов, так как у них достраивается р -оболочка. Для всех элементов семейства, кроме самого кислорода, валентными являются 6 электронов внешнего слоя.
В окислительно-восстановительных реакциях элементы группы кислорода часто проявляют окислительные свойства. Наиболее сильно окислительные свойства выражены у кислорода.
Для всех элементов главной подгруппы VI группы характерна отрицательная степень окисления -2. Однако для серы, селена и теллура наряду с этим возможны и положительные степени окисления (максимальная +6).
Молекула кислорода, как всякого простого газа, двухатомна, построена по типу ковалентной связи, образованной посредством двух электронных пар. Следовательно, кислород двухвалентен при образовании простого .
Сера - твердое вещество. В состав молекулы входит 8 атомов серы (S8), но они соединены в своеобразное кольцо, в котором каждый атом серы соединен лишь с двумя соседними атомами ковалентной связью

Таким образом, каждый атом серы, имея с двумя соседними атомами по одной общей электронной паре, сам по себе является двухвалентным. Сходные молекулы образуют селен (Se8) и теллур (Te8).

1. Составьте рассказ о группе кислорода по следующему плану: а) положение в периодической системе; б) заряды ядер и. число нейтронов в ядре; в) электронные конфигурации; г) структура кристаллической решетки; д) возможные степени окисления кислорода и всех остальных элементов этой группы.
2. В чем сходство и различие атомных структур и электронных конфигураций атомов элементов главных подгрупп VI и VII групп?
3. Сколько валентных электронов имеется у элементов главной подгруппы VI группы?
4. Как должны себя вести элементы главной подгруппы VI группы в окислительно-восстановительных реакциях?
5. Какой из элементов главной подгруппы VI группы является наиболее электроотрицательным?

При рассмотрении элементов главной подгруппы VI группы мы впервые встречаемся с явлением аллотропии. Один и тот же элемент в свободном состоянии может образовывать два или несколько простых веществ. Такое явление называется аллотропией, а сами называются аллотропными видоизменениями.

Запишите эту формулировку в тетрадь.

Например, элемент кислород способен образовывать два простых - кислород и озон.
Формула простого кислорода O2, формула простого вещества озона O3. Построены их молекулы по разному:


Кислород и озон - аллотропные видоизменения элемента кислорода.
Сера также может образовывать несколько аллотропных видоизменений (модификаций). Известна ромбическая (октаэдрическая), пластическая и моноклиническая сера. Селен и теллур также образуют несколько аллотропных видоизменений. Следует заметить, что явление аллотропии характерно для многих элементов. Различия в свойствах разных аллотропных видоизменений мы рассмотрим при изучении элементов.

6. В чем отличие структуры молекулы кислорода от структуры молекулы озона?

7. Какого типа связь в молекулах кислорода и озона?

Кислород. Физические свойства, физиологическое действие, значение кислорода в природе

Кислород - наиболее легкий элемент главной подгруппы VI группы. Атомный вес кислорода 15,994. 31,988. Атом кислорода имеет самый малый радиус из элементов этой подгруппы (0,6 Å). Электронная конфигурация атома кислорода: ls 2 2s 2 2p 4 .

Распределение электронов по орбиталям второго слоя указывает на , что кислород имеет на р-орбиталях два непарных электрона, которые могут быть легко использованы на образование химической связи между атомами. Характерная степень окисления кислорода.
Кислород представляет собой газ, не имеющий цвета и запаха. Он тяжелее воздуха, при температуре -183° превращается в жидкость голубого цвета, а при температуре -219° затвердевает.

Плотность кислорода равна 1,43 г/л. Кислород плохо растворим в воде: в 100 объемах воды при 0° растворяются 3 объема кислорода. Поэтому кислород можно держать в газометре (рис. 34) - приборе для хранения газов, нерастворимых и малорастворимых в воде. Чаще всего в газометре хранят кислород.
Газометр состоит из двух главных частей: сосуда 1, служащего для хранения газа, и большой воронки 2 с краном и с длинной трубкой, доходящей почти до дна сосуда 1 и служащей для подачи воды в прибор. Сосуд 1 имеет три тубуса: в тубус 3 с притертой внутренней поверхностью вставляют, воронку 2 с краном, в тубус 4 вставляют газоотводную трубку, снабженную краном; тубус 5 внизу служит для выпуска воды из прибора при его зарядке и разрядке. В заряженном газометре сосуд 1 заполнен кислородом. На дне сосуда находится , в которую опущен конец трубки воронки 2.

Рис. 34.
1 - сосуд для хранения газа; 2 - воронка для подачи воды; 3 - тубус с притертой поверхностью; 4 - тубус для выведения газа; 5 - тубус для выпуска воды при зарядке аппарата.

Если нужно получить из газометра кислород, сначала открывают кран воронки, и слегка сжимает кислород, находящийся в газометре. Затем открывают кран на газоотводной трубке, через который выходит кислород, вытесняемый водой.

В промышленности кислород хранят в стальных баллонах в сжатом состоянии (рис. 35, а), или в жидком виде в кислородных «танках» (рис. 36).

Рис. 35. Кислородный баллон

Выпишите из текста названия приборов, предназначенных для хранения кислорода.
Кислород является наиболее распространенным элементом. Он составляет почти 50% веса всей земной коры (рис. 37). Человеческий организм содержит 65% кислорода, входящего в состав различных органических веществ, из которых построены ткани и органы. В воде около 89% кислорода. В атмосфере на кислород приходится 23% по весу и 21% по объему. Кислород входит в состав самых разнообразных горных пород (например, известняка, мела, мрамора CaCO3, песка SiO2), руд различных металлов (магнитного железняка Fe3O4, бурого железняка 2Fe2O3 · nH2O, красного железняка Fe2O3, боксита Аl2O3 · nН2O и т. д.). Кислород входит в состав большинства органических веществ.

Физиологическое значение кислорода огромно. Это единственный газ, который живые организмы могут использовать для дыхания. Отсутствие кислорода вызывает остановку жизненных процессов и гибель организма. Без кислорода человек может прожить всего несколько минут. При дыхании поглощается кислород, который принимает участие в окислительно-восстановительных процессах, происходящих в организме, а выделяются продукты окисления органических веществ - , двуокись углерода и другие вещества. Как наземные, так и водные живые организмы дышат кислородом: наземные - свободным кислородом атмосферы, а водные - кислородом, растворенным в воде.
В природе происходит своеобразный круговорот кислорода. Кислород из атмосферы поглощается животными, растениями, человеком, расходуется на процессы горения топлива, гниение и прочие окислительные процессы. Двуокись углерода и вода, образующиеся в процессе окисления, потребляются зелеными растениями, в которых с помощью хлорофилла листьев и солнечной энергии осуществляется процесс фотосинтеза, т. е. синтеза органических веществ из двуокиси углерода и воды, сопровождающегося выделением кислорода.
Для обеспечения кислородом одного человека нужны кроны двух больших деревьев. Зеленые растения поддерживают постоянный состав атмосферы.

8. Каково значение кислорода в жизни живых организмов?
9. Как пополняется запас кислорода в атмосфере?

Химические свойства кислорода

Свободный кислород, вступая в реакции с простыми и сложными веществами, ведет себя обычно как .

Рис. 37.

Степень окисления, которую он приобретает при этом, всегда -2. В непосредственное взаимодействие с кислородом вступают многие элементы, за исключением благородных металлов, элементов с близкими к кислороду значениями электроотрицательности () и инертных элементов.
В результате соединения кислорода с простыми и сложными веществами образуются . Многие горят в кислороде, хотя на воздухе либо не горят, либо горят очень слабо. сгорает в кислороде ярко-желтым пламенем; при этом образуется перекись натрия (рис. 38):
2Na + O2 =Na2O2,
Сера горит в кислороде ярко-голубым пламенем с образованием сернистого ангидрида:
S + O2 = SO2
Древесный уголь на воздухе едва тлеет, а в кислороде сильно раскаляется и сгорает с образованием двуокиси углерода (рис. 39):
С + O2 = СO2

Рис. 36.

Горит в кислороде белым, ослепительно ярким пламенем, причем образуется твердая белая пятиокись фосфора:
4Р + 5O2 = 2Р2O5
горит в кислороде, разбрасывая искры и образуя железную окалину (рис. 40).
Горят в кислороде и органические вещества, например метан СН4, входящий состав природного газа: СH4 + 2O2 = CO2 + 2H2O
Горение в чистом кислороде происходит гораздо интенсивнее, чем на воздухе, и позволяет получить Значительно более высокие температурь. Это явление используют для интенсификации ряда химических процессов и более эффективного сжигания топлива.
В процессе дыхания кислород, соединяясь с гемоглобином крови, образует оксигемоглобин, который, являясь весьма нестойким соединением, легко разлагается в тканях с образованием свободного кислорода, идущего на окисление. Гниение, также являются окислительными процессами, протекающими с участием кислорода.
Распознают чистый кислород, внося в сосуд, где предполагается его наличие, тлеющую лучинку. Она ярко вспыхивает - это и является качественной пробой на кислород.

10. Каким образом, имея в своем распоряжении лучинку, можно распознать находящиеся в разных сосудах кислород, двуокись углерода? 11. Какой объем кислорода пойдет на сжигание 2 кг каменного угля, содержащего в сечем составе 70% углерода, 5% водорода, 7% , кислорода, остальное- негорючие компоненты?

Рис. 38. Горение натрия Рис. 39. Горение угля Рис. 40. Горение железа в кислороде.

12. Хватит ли 10 л кислорода для сжигания 5 г фосфора?
13. 1 м3 газовой смеси, содержащей 40% окиси углерода, 20% азота, 30% водорода н 10% двуокиси углерода сожгли в кислороде. Какой объем кислорода был израсходован?
14. Можно ли сушить кислород, пропуская его через: а) серную кислоту, б) хлорид кальция, в) фосфорный ангидрид, г) металлический ?
15. Как освободить двуокись углерода от примеси кислорода и наоборот, как освободить кислород от примеси двуокиси углерода?
16. 20 л кислорода, содержащего примесь двуокиси углерода пропустили через 200 мл 0,1 н. раствора бария. В результате катион Ва 2+ был полностью осажден. Сколько двуокиси углерода (в процентах) содержал исходный кислород?

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3:
2КМnО4 = K2MnO4 + МnО2 + O2

2КСlO3 = 2КСl + O2
При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор - двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 - перманганат калия; 2 - кислород; 3 - вата; 4 - цилиндр - сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами.
Из перекиси водорода кислород получают также в присутствии катализатора - двуокиси марганца МnО2 по уравнению:
2Н2O2[МnО2] = 2Н2O + О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2?
18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора.
19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена?
20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли?

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления:
2KNO3 = 2KNO2 + О2
В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается (его температура кипения - 195,8°), а кислород остается (его температура кипения -183°). Этим способом кислород получается почти в чистом виде.
Иногда при наличии дешевой электроэнергии кислород получают электролизом воды:
Н2O ⇄ Н + + OН —
Н + + е — → Н 0
на катоде
2ОН — — е — → H2O + О; 2О = О2
на аноде

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции.
22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными? Дайте обоснованный ответ.
23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода?
24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению?

Кислород - самый распространенный элемент в природе. Он широко применяется в медицине, химии, промышленности и т. д. (рис. 42).

Рис. 42. Применение кислорода.

Летчики на больших высотах, люди, работающие в атмосфере вредных газов, занятые на подземных и подводных работах, пользуются кислородными приборами (рис. 43).

В тех случаях, когда затруднено вследствие того или иного заболевания, человеку дают дышать чистым кислородом из кислородной подушки или помещают его в кислородную палатку.
В настоящее время для интенсификации металлургических процессов широко применяют воздух, обогащенный кислородом, или чистый кислород. Кислородно-водородная и кислородно-ацетиленовая горелки применяются для сварки и резки металлов. Пропитывая жидким кислородом горючие вещества: древесные опилки, угольный порошок и пр., получают взрывчатые смеси, называемые оксиликвитами.

■ 25. Начертите таблицу в тетради и заполните её.

Озон О3

Как уже говорилось, элемент кислород может образовывать еще одно аллотропное видоизменение - озон О3. Озон кипит при -111°, а затвердевает при -250°. В газообразном состоянии он голубого цвета, в жидком - синего. озона в воде гораздо выше, чем кислорода: в 100 объемах воды растворяется 45 объемов озона.

Озон отличается от кислорода тем, что его молекула состоит из трех, а не двух атомов. В связи с этим молекула кислорода намного более стойкая, чем молекула озона. Озон легко распадается по уравнению:
О3 = О2 + [O]

Выделение атомарного кислорода при распаде озона делает его гораздо более сильным окислителем, чем кислород. Озон имеет запах-свежести («озон» в переводе значит «пахучий»). В природе он образуется под действием тихого электрического разряда и в сосновых лесах. Больным с заболеванием легких рекомендуется больше бывать в сосновых лесах. Однако продолжительное пребывание в атмосфере, сильно обогащенной озоном, может оказать отравляющее действие на организм. Отравление сопровождается головокружением, тошнотой, кровотечением из носа. При хрони-ческих отравлениях могут возникнуть сердечные заболевания.
В лаборатории озон получают из кислорода в озонаторах (рис. 44). В стеклянную трубку 1, обмотанную сна- ружи проволокой 2, пропускают кислород. Внутри трубки проходит проволока 3. Обе эти проволоки: соединены с полюсами источника тока, создающего на указанных электродах высокое напряжение. Между электродами происходит тихий электрический разряд, благодаря чему из кислорода образуется озон.

Рис 44; Озонатор. 1 - стеклянный баллон; 2 - наружная обмотка; 3 -проволока внутри трубки; 4 - раствор йодида калия с крахмалом

3О2 = 2О3
Озон является очень сильным окислителем. Он значительно энергичнее, чем кислород, вступает в реакции и вообще намного активнее кислорода. Например, в отличие от кислорода он может вытеснить из йодистого водорода или йодистых солей:
2KI + О3 + Н2О = 2КОН + I2 + O2

Озона в атмосфере очень мало (около одной миллионной доли процента), но он играет существенную, роль в поглощении ультрафиолетовых солнечных лучей, по-этому они попадают на землю в меньшем количестве и не оказывают губительного действия на живые организмы.
Применяется озон в небольшом количестве главным образом для кондиционирования воздуха, а также в химии.

■ 26. Что такое аллотропные видоизменения?
27. Почему йодкрахмальная бумага синеет под действием озона? Дайте обоснованный ответ.
28. Почему молекула кислорода значительно устойчивее молекулы озона? Обоснуйте свой ответ с точки зрения внутримолекулярной структуры.

ОПРЕДЕЛЕНИЕ

Кислород – элемент второго периода VIA группы Периодической системы химических элементов Д.И. Менделеева, с атомным номером 8. Символ – О.

Атомная масса – 16 а.е.м. Молекула кислорода двухатомна и имеет формулу – О 2

Кислород относится к семейству p-элементов. Электронная конфигурация атома кислорода 1s 2 2s 2 2p 4 . В своих соединениях кислород способен проявлять несколько степеней окисления: «-2», «-1» (в пероксидах), «+2» (F 2 O). Для кислорода характерно проявление явления аллотропии – существования в виде нескольких простых веществ – аллотропных модификаций. Аллотропные модификации кислорода – кислород O 2 и озон O 3 .

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона. Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.

Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li + O 2 = 2Li 2 O;

2Na + O 2 = Na 2 O 2 ;

K + O 2 = KO 2 ;

2Ca + O 2 = 2CaO;

4Al + 3O 2 = 2Al 2 O 3 ;

2Cu + O 2 = 2CuO;

3Fe + 2O 2 = Fe 3 O 4 .

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000С в электрической дуге, в природе – при грозовом разряде). Например:

4P + 5O 2 = 2P 2 O 5 ;

С + O 2 = СО 2 ;

2Н 2 + O 2 = 2Н 2 О;

N 2 + O 2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O (t);

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (t);

4NH 3 + 5O 2 = 4NO + 6H 2 O (t, kat);

2PH 3 + 4O 2 = 2H 3 PO 4 (t);

SiH 4 + 2O 2 = SiO 2 + 2H 2 O;

4FeS 2 +11O 2 = 2Fe 2 O 3 +8 SO 2 (t).

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO + O 2 = 2CO 2 (t);

2SO 2 + O 2 = 2SO 3 (t, V 2 O 5);

2NO + O 2 = 2NO 2 ;

4FeO + O 2 = 2Fe 2 O 3 (t).

Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH 4 + 2O 2 = CO 2 +H 2 O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:

Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20С растворяется 3 л кислорода. Жидкий кислород голубого цвета, обладает парамагнитными свойствами (втягивается в магнитное поле).

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 +3 O 2

2KNO 3 = 2KNO 2 + O 2

2KClO 3 = 2KCl +3 O 2

Примеры решения задач

ПРИМЕР 1

Задание При разложении 95 г оксида ртути (II) образовалось 4,48 л кислорода (н.у.). Вычислите долю разложившегося оксида ртути (II) (в мас. %).
Решение Запишем уравнение реакции разложения оксида ртути (II):

2HgO = 2Hg + O 2 .

Зная объем выделившегося кислорода, найдем его количество вещества:

моль.

Согласно уравнению реакции n(HgO):n(O 2) = 2:1, следовательно,

n(HgO) = 2×n(O 2) = 0,4 моль.

Вычислим массу разложившегося оксида. Количество вещества связано с массой вещества соотношением:

Молярная масса (молекулярная масса одного моль) оксида ртути (II), рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 217 г/моль. Тогда масса оксида ртути (II) равна:

m (HgO) = n (HgO) ×M (HgO) = 0,4×217 = 86,8 г.

Определим массовую долю разложившегося оксида:

Кислород (О) стоит в 1 периоде, VI группе, в главной подгруппе. р-элемент. Электронная конфигурация 1s2 2s22p4 . Число электронов на внешнем уровне – 6. Кислород может принять 2 электрона и в редких случаях отдать. Валентность кислорода 2, степень окисления -2.

Физические свойства: кислород ( О2) – бесцветный газ, без запаха и вкуса; в воде малорастворим, немного тяжелее воздуха. При -183 °C и 101,325 Па кислород сжижается, приобретая голубоватый цвет. Строение молекулы: молекула кислорода двухатомна, в обычных условиях прочная, обладает магнитными свойствами. Связь в молекуле ковалентная неполярная. Кислород имеет аллотропную модификацию – озон (О3) – более сильный окислитель, чем кислород.

Химические свойства: до завершения энергетического уровня кислороду нужно 2 электрона, которые он принимает проявляя степень окисления -2, но в соединении со фтором кислород ОF2 -2 и О2F2 -1. Благодаря химической активности кислород взаимодействует почти со всеми простыми веществами. С металлами образует оксиды и пероксиды:

Кислород не реагирует только с платиной. При повышенных и высоких температурах реагирует со многими неметаллами:

Непосредственно кислород не взаимодействует с галогенами. Кислород реагирует со многими сложными веществами:

Кислороду характерны реакции горения:

В кислороде горят многие органические вещества:

При окислении кислородом уксусного альдегида получают уксусную кислоту:

Получение: в лаборатории: 1) электролизом водного раствора щелочи: при этом на катоде выделяется водород, а на аноде – кислород; 2) разложением бертолетовой соли при нагревании: 2КСlО3?2КСl + 3О2?; 3) очень чистый кислород получают: 2КМnO4?К2МnO4 + МnО2 + О2?.

Нахождение в природе: кислород составляет 47,2 % массы земной коры. В свободном состоянии он содержится в атмосферном воздухе – 21 %. Входит в состав многих природных минералов, огромное его количество содержится в организмах растений и животных. Природный кислород состоит из 3 изотопов: О(16), О(17), О(18).

Применение: используется в химической, металлургической промышленности, в медицине.

24. Озон и его свойства

В твердом состоянии у кислорода зафиксировано три модификации: ?-, ?– и?– модификации. Озон ( О3) – одна из аллотропных модификаций кислорода. Строение молекулы: озон имеет нелинейное строение молекулы с углом между атомами 117°. Молекула озона обладает некоторой полярностью (несмотря на атомы одного рода, образующих молекулу озона), диамагнитна, так как не имеет неспаренных электронов.

Физические свойства: озон – синий газ, имеющий характерный запах; молекулярная масса = 48, температура плавления (твердого) = 192,7 °C, температура кипения = 111,9 °C. Жидкий и твердый озон взрывчат, токсичен, хорошо растворим в воде: при 0 °C в 100 объемах воды растворяется до 49 объемов озона.

Химические свойства: озон – сильный окислитель, он окисляет все металлы, в том числе золото – Au и платину – Pt (и металлы платиновой группы). Озон воздействует на блестящую серебряную пластинку, которая мгновенно покрывается черным пероксидом серебра – Аg2О2; бумага, смоченная скипидаром, воспламеняется, сернистые соединения металлов окисляются до солей серной кислоты; многие красящие вещества обесцвечиваются; разрушает органические вещества – при этом молекула озона отщепляет один атом кислорода, и озон превращается в обыкновенный кислород. Атакже большинство неметаллов, переводит низшие оксиды в высшие, а сульфиды их металлов – в их сульфаты:

Йодид калия озон окисляет до молекулярного йода:

Но с пероксидом водорода Н2О2 озон выступает в качестве восстановителя:

В химическом отношении молекулы озона неустойчивы – озон способен самопроизвольно распадаться на молекулярный кислород:

Получение: получают озон в озонаторах путем пропускания через кислород или воздух электрические искры. Образование озона из кислорода:

Озон может образовываться при окислении влажного фосфора, смолистых веществ. Определитель озона: чтобы опознать в воздухе наличие озона, необходимо в воздух погрузить бумажку, пропитанную раствором йодида калия и крахмальным клейстером – если бумажка приобрела синюю окраску, значит, в воздухе присутствует озон. Нахождение в природе: в атмосфере озон образуется во время электрических разрядов. Применение: будучи сильным окислителем озон уничтожает различного рода бактерии, поэтому широко применяется в целях очищения воды и дезинфекции воздуха, используется как белящее средство.

Кислоро́д - элемент главной подгруппы шестой группы, второго периода периодической системы химических элементов , с атомным номером 8. Обозначается символом O (лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.
Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).
2HgO (t) → 2Hg + O 2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.
Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.
Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.
Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.
Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:
2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

Также используют реакцию каталитического разложения пероксида водорода Н 2 О 2:
2Н 2 О 2 → 2Н 2 О + О 2

Катализатором является диоксид марганца (MnO 2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода).
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:
2KClO 3 → 2KCl + 3O 2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей.

Физические свойства

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.
1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O 2 в 1 объёме Ag при 961 °C). Является парамагнетиком.
При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.
Жидкий кислород (темп. кипения −182,98 °C) - это бледно-голубая жидкость.
Твёрдый кислород (темп. плавления −218,79 °C) - синие кристаллы.