Числовой коэффициент выражения: определение, примеры. Свойства коэффициента корреляции


В математических описаниях используется термин «числовой коэффициент », в частности, при работе с буквенными выражениями и выражениями с переменными удобно использовать понятие числового коэффициента выражения. В этой статье мы дадим определение числового коэффициента выражения и разберем примеры его нахождения.

Навигация по странице.

Определение числового коэффициента, примеры

В учебнике Н. Я. Виленкина математика для 6 классов дается следующее определение числового коэффициента выражения .

Определение.

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

К слову, числовой коэффициент часто называют просто коэффициентом.

Озвученное определение позволяет привести примеры числовых коэффициентов выражений . Для начала рассмотрим произведение числа 3 и буквы a вида 3·a . Число 3 - это числовой коэффициент этого выражения по определению. Другой пример: в произведении x·y·0,2·x·x·z единственным числовым множителем является 0,2 , она и является числовым коэффициентом этого выражения.

А теперь приведем контр пример. Число 3 не является числовым коэффициентом выражения 3·x+y , так как исходное выражение не является произведением. Зато это число 3 является числовым коэффициентом первого из слагаемых в исходном выражении.

А в произведении 5·a·2·b·3·c содержится не одно, а три числа. Для определения числового коэффициента этого выражения, его нужно преобразовать в произведение, содержащее единственный числовой множитель. Как это делается, мы разберемся в следующем пункте этой статьи, в этом заключается процесс .

Стоит отметить, что произведения одинаковых букв могут быть записаны в виде , поэтому определение числового коэффициента подходит и для выражений со степенями. Например, выражение 5·x 3 ·y·z 2 по сути является выражением вида 5·x·x·x·y·z·z , его коэффициентом по определению является число 5 .

Также нужно остановиться на числовых коэффициентах 1 и −1 . Их особенность заключается в том, что они почти никогда не записываются в явном виде. Если выражение представляет собой произведение нескольких букв (без числового множителя) и передним стоит знак плюс, или нет никакого знака, то числовым коэффициентом такого выражения считается число 1 . Если перед произведением нескольких букв стоит знак минус, то коэффициентом такого выражения считается число −1 . Например, числовой коэффициент выражения a·b равен единице (так как a·b можно записать как 1·a·b ), а числовой коэффициент выражения −x равен минус единице (так как −x тождественно равен выражению (−1)·x ).

В дальнейшем определение числового коэффициента расширяется с произведения числа и нескольких букв на произведение одного числа и нескольких буквенных выражений. Так, например, в произведении число −5 можно считать числовым коэффициентом. Аналогично, число 3 есть коэффициент выражения 3·(1+1/x)·x , а - коэффициент выражения .

Нахождение числового коэффициента выражения

Когда выражение представляет собой произведение с одним числовым множителем, этот множитель и является числовым коэффициентом. Когда выражение имеет другой вид, то нахождение его числового коэффициента подразумевает предварительное выполнение некоторых тождественных преобразований , с помощью которых исходное выражение приводится к произведению с одним числовым множителем.

Пример.

Найдите числовой коэффициент выражения −4·x·(−2) .

Решение.

Сгруппируем множители , являющиеся числами, после чего выполним их умножение: −4·x·(−2)=((−4)·(−2))·x=8·x . Теперь отчетливо виден искомый коэффициент, он равен 8 .

«Числовой коэффициент », или просто «коэффициент » - термин, который подразумевает под собой одно и то же математическое понятие. Усвоить, в чем смысл термина, очень просто, а найти числовой коэффициент на конкретном примере еще легче. Но для начала разберемся с официальным определением.

Что называют математическим числовым коэффициентом?

Согласно учебнику математики, если выражение состоит из одного числа и нескольких буквенных обозначений, умноженных друг на друга, то данное число и будет коэффициентом всего выражения. При этом количество букв не имеет значения - число может быть умножено на одну букву, на две или сразу на пять, оно все равно остается коэффициентом.

Например, рассмотрим следующие выражения:

  • 5*a. В этом примере присутствует одно число - «5» и одна буква «а», и они перемножены друг на друга. Соответственно, число «5» будет коэффициентом всего выражения.
  • 7*b*c. Здесь мы видим выражение из одного числа и сразу двух буквенных обозначений. Но поскольку перемножение между ними сохраняется, то число «7» также остается коэффициентом.
  • 6*9*a*b. В данном случае мы видим два буквенных обозначения - и целых два числа. Однако ситуации это не меняет, ведь принцип перемножения по-прежнему присутствует. Чтобы узнать коэффициент, нужно просто взять произведение «6» и «9», то есть «54», и переписать выражение как 54*a*b. Число «54» будет коэффициентом выражения.

Необходимо напомнить, что последнее правило распространяется и на выражения, где числовые обозначения стоят не друг рядом с другом, а разделены буквами. Например, 2*c*4*a - мы можем смело переписывать данное выражение в виде 2*4*с*а, потому что при умножении не имеет значения, в каком порядке стоят множители. И таким образом, коэффициент по-прежнему находится легко и просто - это будет число «8».

Не стоит теряться, если в задаче предлагается найти коэффициент для буквенного выражения без чисел - например, y*z. В данном случае всегда используется число «1» - поскольку выражение из примера можно записать в виде 1*y*z. Коэффициент находится в выражениях и с положительными, и с отрицательными множителями.

В каких случаях найти коэффициент для всего выражения нельзя?

Общий коэффициент не может быть найден, если предусмотрены другие действия, помимо умножения. Например, если взять 3*с + а, то число «3» будет коэффициентом лишь для одного из слагаемых, но никак не для всего выражения.

Коэффициент пропорциональности (линейный коэффициент пропорциональности) равен отношению двух соответствующих сторон подобных фигур. Подобные фигуры – это фигуры одинаковой формы, но разных размеров. Коэффициент пропорциональности используется для решения основных геометрических задач. Коэффициент пропорциональности можно использовать для вычисления длин неизвестных сторон. С другой стороны, по соответствующим сторонам можно вычислить коэффициент пропорциональности. Такие вычисления связаны с операцией умножения или с упрощением дробей.

Шаги

Вычисление коэффициента пропорциональности подобных фигур

    Убедитесь, что фигуры подобны. У таких фигур все углы равны, а стороны соотносятся в некой пропорции. Подобные фигуры имеют одинаковую форму, но одна фигура больше другой.

    • В задаче должно быть сказано, что фигуры подобны, или что у них равные углы, или что стороны пропорциональны, или что одна фигура пропорциональна другой.
  1. Найдите соответствующие стороны обеих фигур. Возможно, понадобится повернуть или зеркально отразить одну из фигур, чтобы выровнять обе фигуры и определить соответствующие стороны. Как правило, в задачах даются длины соответствующих сторон; в противном случае измерьте их. Если не знать значений хотя бы пары соответствующих сторон, нельзя найти коэффициент пропорциональности.

    • Например, дан треугольник, основание которого равно 15 см, и подобный треугольник с основанием, равным 10 см.
  2. Запишите отношение. У каждой пары подобных фигур есть два коэффициента пропорциональности: один используется при увеличении размера, а другой – при уменьшении. Если размер меньшей фигуры увеличивается до размера большей фигуры, используйте отношение: коэффициент пропорциональности = (сторона большей фигуры)/(сторона меньшей фигуры). Если размер большей фигуры уменьшается до размера меньшей фигуры, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).

    • Например, если треугольник с основанием 15 см уменьшается до треугольника с основанием 10 см, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).
      Подставив соответствующие значения, вы получите: коэффициент пропорциональности = .
  3. Упростите отношение. Упрощенное отношение (дробь) является коэффициентом пропорциональности. При уменьшении размера коэффициент пропорциональности представляет собой правильную дробь. При увеличении размера коэффициент пропорциональности представляет собой целое число или неправильную дробь, которую можно преобразовать в десятичную дробь.

    • Например, отношение 10 15 {\displaystyle {\frac {10}{15}}} упрощается до . Таким образом, коэффициент пропорциональности двух треугольников с основаниями 15 см и 10 см равен 2 3 {\displaystyle {\frac {2}{3}}} .

    Вычисление сторон по коэффициенту пропорциональности

    1. Найдите значения сторон фигуры. Значения сторон одной из подобных фигур будут даны; в противном случае измерьте их. Если стороны одной из подобных фигур неизвестны, нельзя вычислить стороны второй фигуры.

      • Например, дан прямоугольный треугольник, катеты которого равны 4 см и 3 см, а гипотенуза равна 5 см.
    2. Выясните, будет ли подобная фигура больше или меньше данной. Если больше, стороны будут больше, а коэффициент пропорциональности представляет собой целое число, неправильную или десятичную дробь. Если подобная фигура меньше данной, стороны будут меньше, а коэффициент пропорциональности представляет собой правильную дробь.

      • Например, если коэффициент пропорциональности равен 2, подобная фигура больше данной.
    3. Умножьте значение одной стороны на коэффициент пропорциональности. Коэффициент пропорциональности должен быть дан. Если умножить сторону на коэффициент пропорциональности, можно найти значение соответствующей стороны подобной фигуры.

      • Например, если гипотенуза прямоугольного треугольника равна 5 см, а коэффициент пропорциональности равен 2, гипотенуза подобного треугольника вычисляется так: 5 × 2 = 10 {\displaystyle 5\times 2=10} . Таким образом, гипотенуза подобного треугольника равна 10 см.
    4. Найдите значения остальных сторон подобной фигуры. Для этого умножьте известные значения сторон на коэффициент пропорциональности. Вы получите значения соответствующих сторон подобной фигуры.

      • Например, если основание прямоугольного треугольника равно 4 см, а коэффициент пропорциональности равен 2, основание подобного треугольника вычисляется так: 4 × 2 = 8 {\displaystyle 4\times 2=8} . Таким образом, основание подобного треугольника равно 8 см. Если катет прямоугольного треугольника равен 3 см, а коэффициент пропорциональности равен 2, катет подобного треугольника вычисляется так: 3 × 2 = 6 {\displaystyle 3\times 2=6} . Таким образом, катет подобного треугольника равен 6 см.

    Примеры решения задач

    1. Задача 1. Найдите коэффициент пропорциональности следующих подобных фигур: прямоугольник с шириной 6 см и прямоугольник с шириной 54 см.

      • Запишите отношение на основе двух значений ширины. При увеличении размера отношение запишется так: коэффициент пропорциональности = . При уменьшении размера отношение запишется так: коэффициент пропорциональности = .
      • Упростите отношение. Отношение 54 6 {\displaystyle {\frac {54}{6}}} упрощается до 9 1 = 9 {\displaystyle {\frac {9}{1}}=9} . Отношение 6 54 {\displaystyle {\frac {6}{54}}} упрощается до . Таким образом, коэффициент пропорциональности двух прямоугольников равен 9 {\displaystyle 9} или 1 9 {\displaystyle {\frac {1}{9}}} .
    2. Задача 2. Сторона неправильного многоугольника равна 14 см. Сторона подобного многоугольника равна 8 см. Найдите коэффициент пропорциональности.

Всем привет!

Вступив в сообщество ставок на спорт, не нашел никаких статей по теории ставок, хотя сам ставил и знаю, что теоретического материала в беттинге не меньше, чем в покере. Поэтому хочу разместить здесь несколько постов о математических и аналитических основах ставок на спорт. Надеюсь, кому-нибудь пригодится.

Начать хотелось бы с того, чего начинает каждый игрок: с линии букмекера. Первый вопрос, который возник у меня, когда я впервые взял в руки распечатанную линию: Как букмекер определяет всю эту массу коэффициентов?

Букмекерские конторы работают исключительно с целью извлечения прибыли. И, вопреки широко распространенному мнению, прибыль букмекера зависит не от количества проигранных ставок, а от правильно выставленных коэффициентов. Что значит "правильно"? Это значит, что при любом, даже самом неожиданном исходе события, букмекер должен остаться с прибылью.

Рассмотрим, как формируются коэффициенты. Сначала аналитики определяют шансы команд. Делается это многими способами, которые можно поделить на две группы: аналитические и эвристические. Аналитические - это в основном статистика и математика (теория вероятностей), эвристические - это экспертные оценки. Тем или иным образом комбинируя полученные результаты, выводятся вероятности исходов события. Допустим, в результате деятельности аналитиков и экспертов получены следующие вероятности исходов:

Это "чистые шансы", но эти коэффициенты никогда не будут в линии, потому что букмекер в этом случае не получит прибыли. В линии коэффициенты на эти события будут выглядеть примерно так:

То есть из каждой поставленной всеми игроками в сумме сто тысяч рублей, 75 000 было поставлено на победу 1, 15 000 на ничью и 10 000 - на победу 2. Большинство игроков чаще всего ставит на заведомых фаворитов, составляя на основе таких исходов большую часть экпрессов. Что же получит букмекер с каждой вложенной игроками сотни тысяч долларов в случае различных исходов?

Видно, что в случае победы фаворита, которая случается чаще всего, букмекер понесет убытки. Это совершенно недопустимо для бизнеса, и букмекер обязан исключить даже теоретическую возможность возникновения подобной ситуации.

Для этого он должен искусственно занизить коэффициент на фаворита. Букмекер заранее не знает, как в точности распределятся ставки, но знает наверняка, что игроки будут "грузить" на фаворита, поэтому для страховки завышает вероятность победы фаворита.

В реальности ни реальные шансы, ни распределение средств игроками точно рассчитать невозможно, всегда существует некоторая погрешность. Поэтому букмекеры стараются изначально занизить коэффициенты на фаворита, чтобы гарантировать себе прибыль, т.е. определяют шансы команд и добавляют к рассчитанной вероятности победы фаворита 10-20%. А по мере поступления ставок, в зависимости от их реального текущего распределения, варьируют коэффициентами, чтобы прибыль была наибольшей.

Вывод: основной принцип, которым руководствуется букмекер - распределение финансов между двумя или более группами игроков таким образом, чтобы выплачивать выигрыши за счет средств проигравших, оставляя определенный процент себе. Очень часто полученные таким образом коэффициенты не имеют ничего общего с вероятностями тех или иных событий. Поэтому нужно иметь собственную систему оценки спортивных событий.

Спасибо за внимание!

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.