Наследственно обусловленный полиморфизм. Генетический полиморфизм. Классификация. Генетический и мутационный груз и их биологическая сущность. Анализы на полиморфизм генов

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм х арактеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Большинство оценок частоты использует обнаружение патологических мутаций с явным влиянием на фенотип. Тем не менее существует масса непатогенных мутаций, считающихся относительно нейтральными; а некоторые могут даже быть полезными. В ходе эволюции устойчивый приток новых изменений нуклеотидов гарантировал высокую степень генетического разнообразия и индивидуальности.

Это распространяется на все области генетики человека и медицинской генетики . Генетическое разнообразие может проявляться в виде изменений в окраске хромосом, изменения числа копий сегментов ДНК, нуклеотидных замен в ДНК, изменений в белках или же как болезнь.

ДНК последовательности каждого участка хромосомы в высшей степени сходны у большинства людей в мире. Фактически произвольно выбранный сегмент ДНК человека размером около 1000 пар оснований содержит, в среднем, только одну пару, отличающуюся на двух гомологичных хромосомах, унаследованных от родителей (если предположить, что родители не родственники).

Эта почти в 2,5 раза больше, чем оценка доли гетерозиготных нуклеотидов для кодирующих белок областей генома (примерно 1 на 2500 пар оснований). Различие неудивительное, поскольку интуитивно понятно, что регионы, кодирующие белок, находятся под более жестким давлением отбора, и таким образом встречаемость мутаций в таких регионах в эволюции должна быть более низкой.

Когда вариант встречается настолько часто , что его обнаруживают более чем в 1% хромосом в общей популяции, его называют генетическим полиморфизмом. Аллели с частотами менее чем 1% принято называть редкими вариантами. Хотя много патологических мутаций, приводящих к генетическим болезням - редкие варианты, нет простой корреляции между частотой аллеля и его влиянием на здоровье. Много редких вариантов не имеют патогенных эффектов, тогда как некоторые варианты, достаточно частые, чтобы считаться полиморфизмами, предрасполагают к тяжелым болезням.

Существует много типов полиморфизма . Некоторые полиморфизмы - следствие вариантов, вызванных делециями, дупликациями, утроениями и так далее, сотен миллионов пар оснований ДНК, и не связаны с каким-либо известным патологическим фенотипом; другие изменения аналогичного размера оказываются редкими вариантами, явно вызывающими тяжелые болезни. Полиморфизмами могут оказаться изменения в одном или нескольких основаниях ДНК, расположенных между генами или в интронах, не связанные с функционированием генов и обнаруживаемые только прямым анализом ДНК.

Изменения последовательности нуклеотидов могут располагаться в кодирующей последовательности самого гена и приводить к образованию различных вариантов белков, в свою очередь вызывающих четко очерченные фенотипы. Изменения в регуляторных областях также могут быть важными в определении фенотипа, влияя на транскрипцию или стабильность мРНК.

Полиморфизм - ключевой элемент в исследовании и практическом использовании генетики человека. Способность различать унаследованные формы генов или других сегментов генома обеспечивают инструментальные средства, необходимые для широкого спектра приложений. Как показано в этой и последующих главах, генетические маркеры - мощное научно-исследовательское инструментальное средство картирования генов на конкретном регионе хромосомы при анализе сцепления или аллельной ассоциации.

Они уже широко используются в медицине - от пренатальной диагностики наследственных болезней до обнаружения гетерозиготного носительства, а также в банках крови и тканей для типиро-вания перед переливаниями и пересадками органов (см. далее в этой главе).

Полиморфизм - основа для развивающихся мероприятий по обеспечению основанной на геномике персонализированной медицины, когда медицинские мероприятия индивидуально подбирают на основе анализа полиморфных вариантов, увеличивающих или уменьшающих риск частых болезней взрослого возраста (например, заболевания коронарных сосудов сердца, опухолей и сахарного диабета), возникновения осложнений после хирургических вмешательств или влияющих на эффективность и безопасность конкретного лекарственного препарата. Наконец, анализ полиморфизма стал мощным новым средством в судебных приложениях, например, определении отцовства, определении останков жертв преступления или для сопоставления ДНК подозреваемого и преступника.

Полиморфизмы не являются непосредственной и обязательной причиной развития заболевания, но могут обуславливать больший или меньший риск его развития при действии различных внешних факторов.

Поэтому при наличии полиморфизмов информируют о повышенном риске развития заболевания при гетерозиготном или гомозиготном носительстве полиморфизма. Риск развития заболевания измеряют отношением шансов OR (odds ratio).
В Европе официально проводят клиническое генетическое тестирование мутаций в генах: FV(Leiden), F2 (протромбин), PAI-1, MTHFR.

Мутация Лейден 1691 G->A коагуляционного фактора V (F5)

Физиология и генетика. Коагуляционный фактор V или фактор V свертывания крови является белковым кофактором при образовании тромбина из протромбина. Полиморфизм G1691A Leiden (аминокислотная замена Arg (R) -> Gln (Q) в позиции 506, известная также как «мутация Лейден» или «Ляйден») является показателем риска развития венозных тромбозов. Это точечная (однонуклеотидная) мутация гена, кодирующего фактор V свертывания крови, придает устойчивость активной форме фактора V к расщепляющему действию специализированного регулирующего фермента, С-белка, что приводит к гиперкоагуляции. Соответственно, риск образования тромбов повышается. Распространенность мутации в популяциях европейского типа составляет 2-6%.

Риск тромбозов глубоких вен (TГВ): в 7 раз выше у гетерозиготных носителей Лейденской мутации гена F5 Arg506Gln и в 80 раз выше у гомозигот. Дополнительные факторы, влияющие на развитие ТГВ, можно разделить на 3 группы.

К первой группе факторов относится изменение гормонального статуса:

Использование пероральных контрацептивов дополнительно повышает риск развития ТГВ в 30 раз у гетерозигот, в 100 раз при гомозиготном носительстве.

Беременность - в 16 раз повышает риск ТГВ.

Гормонзаместительная терапия - в 2-4 раза увеличивает риски.

Ко второй группе факторов относятся повреждения сосудов:

Катетеризация центральных вен повышает риск ТГВ в 2-3 раза

Хирургические вмешательства - в 13 раз.

К третьей группе факторов относится обездвиженность: постельный режим и длительные авиа-перелёты. Здесь лишь отмечается увеличение риска, но статистика должна быть более полной:

Инфекционные и онкологические заболевания также повышают риск развития ТГВ. Риск развития ишемического инсульта у женщин в возрасте 18-49 лет при наличии Лейденской мутации возрастает в 2,6 раза, а на фоне приёма пероральных контрацептивов увеличивается в 11,2 раза.

Клинические данные. Наличие мутации Лейден повышает вероятность развития целого ряда осложнений беременности:

Выкидыш на ранних сроках (риск повышается в 3 раза),

Отставания развития плода,

Позднего токсикоза (гестоза),

Фетоплацентарной недостаточности.

Повышенная склонность к тромбообразованию может приводить к артериальным тромбоэмболиям, инфаркту миокарда и инсульту. Наличие мутации Лейден повышает риск первичных и рецидивирующих венозных тромбозов, по крайней мере, в 3-6 раз.

Приводимые ниже примеры иллюстрируют связь мутации с различными видами тромбозов и другими кардиоваскулярными заболеваниями.

В течение 8 лет в нескольких центрах проводилось исследование более 300 пациентов с венозной тромбоэмболией (ВТЭ), в ходе которого был установлен повышенный 3,7-кратный риск ВТЭ при наличии мутации Лейден. В другой работе пациенты с венозной тромбоэмболией исследовались в течение 68 месяцев. За это время 14% пациентов перенесли рецидив ВТЭ. Мутация Лейден фактора V приводит к четырехкратному увеличению риска повторного ВТЭ. Для пациентов с ВТЭ, имеющим мутацию Лейден, рекомендована более длительная антикоагуляционная терапия по сравнению с пациентами с нормальным фактором V.
Следует отметить, что риск развития венозных тромбозов значительно увеличивается (8-кратное увеличение), если пациент, кроме мутации Лейден фактора V, также имеет мутацию Т полиморфизма С677Т гена метилтетрагидрофолатредуктазы.

Одним из самых опасных осложнений гормональных контрацептивов являются тромбозы и тромбоэмболии. Многие женщины с такими осложнениями являются гетерозиготными носителями мутации Лейден (генотип G/A). На фоне приема гормональных контрацептивов риск тромбозов у них повышен в 6-9 раз. У женщин, использующих гормональные противозачаточные средства и имеющих гомозиготную мутацию Лейден (генотип A/A), риск развития тромбоза церебральных синусов (ТЦС) повышен более чем в 30 раз по сравнению с пациентками, не имеющих этой мутации.

Были обобщены конечные данные исследования «Women’s Health Initiative Estrogen Plus Progestin» о частоте венозных тромбозов на фоне заместительной гормонотерапии (ЗГТ). В исследовании приняли участие 16 608 женщин в постменопаузе в возрасте от 50 до 79 лет, наблюдавшихся с 1993 по 1998 гг. в течение 5 лет. Наличие мутации Лейден усиливало риск тромбозов при эстроген-гестагенной заместительной гормонотерапии почти в 7 раз по сравнению с женщинами без этой мутации. Присутствие других генетических мутаций (протромбин 20210А, метилентетрагидрофолатредуктаза С677Т, фактор XIII Val34Leu, PAI-1 4G/5G, фактор V HR2) не влияли на связь ЗГТ и риска венозных тромбозов. Анализ более десяти независимых исследований показал, что среди пациентов, перенесших инфаркт миокарда до 55 лет, распространенность мутации Лейден была заметно выше. Среднестатистический риск развития инфаркта миокарда увеличивается в 1,5 раза. Более того, мутация Лейден приводит к 2,8 - кратному повышению количества пациентов без выраженного коронарного стеноза, заболевших инфарктом миокарда.

Полиморфизм 20210 G->A протромбина

Физиология и генетика. Протромбин (коагуляционный фактор II или F2) является одним из главных компонентов системы свертываемости крови. В ходе ферментативного расщепления протромбина образуется тромбин. Данная реакция является первой стадией образования кровяных сгустков. Мутация гена протромбина G20210A характеризуется заменой нуклеотида гуанина (G) нуклеотидом аденин (A) в позиции 20210. Из-за увеличения экспрессии мутантного гена уровень протромбина может быть в полтора-два раза выше, чем в норме. Мутация наследуется по аутосомно-доминантному типу. Это означает, что тромбофилия возникает даже у гетерозиготного носителя измененного гена (G/A).

Тромбоэмболические заболевания (ТЭ) вызываются нарушениями в системе свертываемости крови. Эти нарушения приводят и к сердечно-сосудистым заболеваниям. Генотип G/A является показателем риска развития тромбозов и инфаркта миокарда. При возникновении тромбозов мутация 20210A часто встречается в сочетании с мутацией Лейден. Генотип G/A позиции 20210 гена протромбина является фактором риска тех же осложнений, которые связанны с мутацией Лейден.
Гетерозиготными носителями гена являются 2-3% представителей европейской расы.
Риск развития ТГВ у носителей мутантного аллеля (А) гена F2 повышен в 2,8 раз. Комбинация мутации протромбина с Лейденской мутацией дополнительно увеличивает риски.
Согласно рекомендациям для акушеров и гинекологов (Великобритания, 2000г.), клинический генетический анализ FV и протромбина 20210 уместен из-за разных рисков гомозигот и гетерозигот.

Различают очень высокую, высокую и среднюю степень риска венозных тромбозов у беременных:

- Высокая степень риска у женщин с индивидуальной и семейной историей тромбозов и гомозиготных по Лейденской мутации, мутации G20210A протромбина или комбинацией этих мутаций. Таким пациенткам показана антикоагуляционная терапия низкомолекулярными гепаринами с начала-середины второго триместра.

- Средняя степень риска у женщин с семейной историей тромбозов и гетерозиготных по Лейденской мутации или мутации G20210A.В этом случае антикоагуляционная терапия не показана.

Показания к анализу. Инфаркт миокарда, повышенный уровень протромбина крови, тромбоэмболические заболевания в анамнезе, преклонный возраст пациента, невынашивание беременности, фетоплацентарная недостаточность, внутриутробная гибель плода, токсикоз, задержка развития плода, отслойка плаценты, пациентам, готовящимся к большим полостным операциям (миома матки, кесарево сечение, кисты яичников и пр.), курение.

Клинические данные . В исследовании 500 пациентов с инфарктом миокарда и 500 здоровых доноров показано более чем пятикратное увеличение риска инфаркта миокарда у пациентов с генотипом 20210A моложе 51 года. Генетический анализ группы пациенток с первым инфарктом миокарда (возраст 18-44 лет) показал, что вариант 20210А встречается в четыре раза чаще в сравнении с группой здоровых, что соответствует увеличению риска инфаркта в 4 раза. Вероятность инфаркта была особенно высока при наличии других факторов риска сердечно-сосудистых заболеваний. Например, курение при наличии генотипа 20210А повышает риск инфаркта миокарда более чем в 40 раз. Мутация 20210А является значительным фактором риска раннего инфаркта миокарда.

При исследовании пациентов с семейным анамнезом венозного тромбоза и контрольной группы здоровых доноров обнаружено, что мутация 20210A приводит к трехкратному увеличению риска венозного тромбоза. Риск тромбоза увеличивается для всех возрастов и для обоих полов. В этом исследовании также была подтверждена прямая связь между наличием мутации 20210A и повышенным уровнем протромбина в крови.

В терапевтических стационарах, где преобладают больные с сердечно-сосудистыми заболеваниями, ТЭ в форме тромбоэмболии легочной артерии встречается в 15-30% случаев. Во многих случаях ТЭ являются непосредственной причиной смерти, особенно у послеоперационных больных и больных раком. Установлено, что среди больных раком при наличии ТЭ смертность увеличивается в несколько раз, при этом количество ТЭ превышает среднестатистические значения. Причины роста ТЭ у больных раком, возможно, следует искать в проводимой терапии, несогласованной с генетической предрасположенностью больного. Это касается не только больных раком. Согласно патологоанатомическим отчетам, у 60% больных, умерших в больницах общего профиля, обнаруживают признаки тромбоэмболических заболеваний.

Знание генотипических характеристик пациента позволит не только оценить риск развития угрожающих жизни состояний, но и правильно определить способы их профилактики и лечения, а также возможность применения тех или иных лекарственных препаратов.

Термолабильный вариант A222V (677 С->Т) метилентетрагидрофолатредуктазы

Физиология и генетика. Метилентетрагидрофолатредуктаза (MTHFR) играет ключевую роль в метаболизме фолиевой кислоты. Фермент катализирует восстановление 5,10-метилентетрагидрофолата в 5-метилтетрагидрофолат. Последний является активной формой фолиевой кислоты необходимой для образования метионина из гомоцистеина и далее - S-аденозилметионина, играющего ключевую роль в процессе метилирования ДНК. Дефицит MTHFR способствует не только тератогенному (повреждающему плод), но и мутагенному (повреждающему ДНК) действию. При этом происходит инактивация многих клеточных генов, в том числе - онкогенов. В этом заключается одна из причин, по которой онкологи заинтересовались генетическими вариантами MTHFR. Аминокислота гомоцистеин является промежуточным продуктом процесса синтеза метионина. Нарушения фермента MTHFR приводят к избыточному накоплению гомоцистеина в плазме крови - гипергомоцистеинемии.

Ген MTHFR локализован на хромосоме 1р36.3. Известно около двух десятков мутаций этого гена, нарушающих функцию фермента. Наиболее изученной мутацией является вариант, в котором нуклеотид цитозин (C) в позиции 677 заменен тимидином (T), что приводит к замене аминокислотного остатка аланина на остаток валина (позиция 222) в сайте связывания фолата. Такой полиморфизм MTHR обозначается как мутация C677T. У лиц, гомозиготных по данной мутации (генотип Т/Т), отмечается термолабильность MTHFR и снижение активности фермента примерно до 35% от среднего значения. В целом по населению земного шара, мутация 677Т гена MTHFR распространена достаточно широко у представителей европейской (кавказской) расы. Были изучены частоты двух основных мутаций (С677Т и А1298С) среди представителей населения США. Показано наличие гомозиготы Т/Т у 10-16% европейцев и 10% лиц испанского происхождения, а гетерозиготными носителями этого гена были, соответственно, 56 и 52% обследованных лиц, т.е. наличие варианта 677Т (генотипы С/Т или Т/Т) наблюдалось в 62-72% случаев. Аналогичные результаты были получены в отношении европейских выборок населения. Полиморфизм C677T связан, по крайней мере, с четырьмя группами многофакторных заболеваний: сердечно-сосудистыми заболеваниями, дефектами развития плода, колоректальной аденомой и раком молочной железы и яичника.

Показания к анализу. Повышенный уровень гомоцистеина крови (гипергомоцистеинемия), сердечно-сосудистые заболевания (в частности, ишемическая болезнь сердца (ИБС) и инфаркт миокарда), атеросклероз, атеротромбоз. Антифосфолипидный синдром. Химиотерапия рака до или в процессе беременности. Семейная предрасположенность к осложнениям беременности, приводящим к врожденным порокам развития: дефектам нервной системы плода, анэнцефалии, деформации лицевого скелета (волчья пасть, заячья губа), пренатальная смерть плода. Полипоз кишечника, колоректальная аденома при употреблении алкоголя, рак прямой кишки. Семейная предрасположенность к онкологическим заболеваниям, наличие мутаций генов BRCA. Цервикальная дисплазия, особенно в сочетании с папилловирусными инфекциями.

Клинические данные . Дефекты в данном гене часто приводят к различным заболеваниям с широким спектром клинических симптомов: умственное и физическое отставание в развитии, пренатальная смерть или дефект плода, кардиоваскулярные и нейродегенеративные заболевания, диабет, рак и другие. У носителей гетерозигот С/Т во время беременности наблюдается дефицит фолиевой кислоты, что может приводить к дефектам развития нервной трубки у плода. Курение усиливает влияние мутации. У носителей двух аллелей Т/Т (гомозиготное состояние) особенно высок риск развития побочных эффектов при приеме лекарственных препаратов, используемых в химиотерапии рака.

Гипергомоцистеинемия (ГГ) является независимым фактором риска атеросклероза и атеротромбоза (независимым от гиперлипидемии, гипертензии, сахарного диабета и т.д.). Установлено, что 10% риска развития коронарного атеросклероза обусловлено повышением уровня гомоцистеина в плазме крови. При исследовании группы пациентов с ГГ и группы здоровых доноров гомозиготная форма 677T была найдена у 73% пациентов с ГГ и только у 10% здоровых доноров. Наличие гомозиготной формы 677T приводит к почти 10-кратному повышению риска ГГ. Пациенты с ГГ также имели пониженные уровни фолиевой кислоты и витамина В12, потребляли больше кофе и курили чаще, чем здоровые доноры. В норме уровень гомоцистеина равен 5-15 мкмоль/л, умеренно-повышенный уровень 15-30 мкмоль/л. При тяжелой форме ГГ возможно 40-кратное повышение уровня гомоцистеина. Исследователи приписывают причину возникновения тяжелых форм ГГ и другим мутациям и факторам - гомозиготная мутация гена Cb S, самыми частыми считают I278T и G307S, хотя частота их проявления в разных странах сильно варьирует, намного реже причинами тяжелой ГГ являются Т/Т генотип MTHFR, дефицит метионинсинтетазы и нарушенная активность метионинсинтетазы из-за генетических нарушений метаболизма витамина В12. Коррекцию ГГ можно провести поступлением кофакторов, необходимых для метаболизма гомоцистеина (фолиевая кислота, витамины В12, В1 и В6 (особенности терапии ГГ витаминами). У носителей Т/Т генотипа MTHFR при оптимальном потреблении фолата уровень гомоцистеина повышен умеренно (до 50%). Хотя известно, что при тяжелой форме ГГ комбинация 2,5 мг фолиевой кислоты, 25 мг витамина В6 и 250 мкг витамина В12 в день снижает прогрессирование атеросклероза (измерялась бляшка в сонной артерии), нужно еще подтвердить, предупреждает ли гомоцистеин-снижающая терапия значимые сосудистые осложнения у лиц с умеренной ГГ.

О важности проблемы ГГ говорит тот факт, что Министерство здравоохранения США в 1992 году рекомендовало женщинам, которые могут забеременеть, принимать 400 мкг фолиевой кислоты в день. Администрация по контролю пищевых продуктов и лекарственных препаратов в США требует обогащать крупы фолиевой кислотой в концентрациях, которые могут дать дополнительно 100 мкг в день. Однако, дневная доза фолиевой кислоты, необходимая для максимального снижения уровня гомоцистеина, равна 400 мкг, то есть могут быть оправданы и более высокие дозы добавок фолиевой кислоты в пищу.

Патогенез врожденных дефектов нервной трубки включает в себя, в частности, генетические и диетические факторы. При исследовании 40 детей Южной Италии с врожденным дефектом нервной трубки и здоровых доноров было показано, что генотип 677С в гомозиготном состоянии (С/С) приводит к двукратному повышению риска развития дефектов, в то время как мутантная гомозигота Т/Т соответствует почти десятикратному снижению риска. При исследовании выборки населения Ирландии (395 больных и 848 здоровых) было установлено, что встречаемость варианта T повышена у пациентов с врожденным дефектом нервной трубки. Трудно сказать связаны ли эти противоположные результаты исследований с популяционными изменениями или не учтены другие факторы риска. Поэтому пока нельзя определить является ли вариант Т защитным или, наоборот, патогенным фактором для данного заболевания. Повышение частоты генотипа 677T было отмечено не только при позднем токсикозе (гестозе), но и при других осложнениях беременности (отслойке плаценты, задержке роста плода, пренатальной смерти плода). Сочетание мутации 677T с другими факторами риска приводит к повышению вероятности раннего выкидыша. При исследовании связи между мутацией 677T и сердечно-сосудистыми заболеваниями обнаружено, что гомозиготная мутация 677T встречается гораздо чаще у пациентов с кардиоваскулярными заболеваниями, чем у здоровых доноров. У молодых пациентов, имевших ишемию артерий, гомозигота Т/Т встречается в 1,2 раза чаще.

Статистический анализ 40 независимых исследований (мета-анализ) пациентов с ИБС, обобщающий данные о 11162 пациентах и 12758 здоровых доноров, показал увеличение риска развития ИБС в 1,16 раза при наличии гомозиготы Т/Т. Невысокая степень риска связана с гетерогенностью анализируемых выборок населения. При исследовании гомогенных выборок населения (индивидуальные исследования, а не мета-анализ) оценки степени риска значительно выше. Так, разница в частотах встречаемости гомозигот Т/Т у пациентов и у здоровых доноров соответствовала 3-х кратному повышению риска кардиоваскулярных заболеваний в раннем возрасте. Наличие мутации 677Т в гене MTHFR у больных с антифосфолипидным синдромом коррелирует с рецидивирующим течением тромбозов.

Выявлена определенная, хотя и сложная, взаимосвязь между вариантами MTHFR и развитием предраковых и раковых состояний колоректальной области. Проводилось исследование значительной группы больных с полипозом толстого кишечника. Определялись уровни фолата в эритроцитах, наряду с оценкой С/Т генотипа МТHFR. Ранее полученные результаты показывали связь между пониженным содержанием фолата и риском развития аденоматоза. Многофакторный анализ показал, что курение, фолатный статус и генотип MTHFR являются существенными компонентами высокого риска аденоматоза. Этот риск оказался весьма велик у лиц с низким уровнем фолата и носительством аллеля 677Т в гомо- или гетерозиготной форме. Эти данные показали сильное взаимодействие диетических и генных факторов в развитии предраковых состояний.

Сходные предположения выдвинуты учеными, которые обследовали большой контингент больных раком толстого кишечника и показали значительную связь между риском развития ракового заболевания, возрастом больных, возрастным дефицитом фолата и Т/Т генотипом MTHFR. Исследование 379 пациентов с колоректальной аденомой и 726 здоровых доноров показало, что мужчины-носители Т/T генотипа, употребляющие много алкоголя, имели в 3,5 раза более высокий риск заболевания аденомой. Однако некоторые исследователи считают, что без употребления алкоголя, как одного из факторов риска, мутация 677T является защитным фактором.

Так, исследование пациентов с проксимальным колоректальным раком показало, что наличие у пациента гомозиготы Т/T приводит к 2,8-кратному понижению риска развития колоректального рака. Эти выводы требуют проверки для других популяций. Скорее всего, значимость малоактивного мутантного MTHFR можно считать усугубляющей на фоне остальных перечисленных факторов риска, поскольку этот генный дефект может снижать стабильность генома из-за гипометилирования ДНК. Полиморфизм С677T влияет на эффективность химиотерапии рака. Фторурацил широко используется для химиотерапии колоректального рака. Вероятность положительной динамики в ответ на химиотерапию колоректальной аденокарциномы при наличии у пациента 677T генотипа увеличивалась почти в три раза. Результаты позволяют предположить, что генотипирование по полиморфизму С677T позволит разработать более эффективные курсы химиотерапии. Однако исследование небольших выборок (до 50) больных раком груди показало, что при наличии гомозиготы Т/Т риск развития побочных эффектов при применении метотрексата (антиметаболита, действие которого связано с ингибированием активности фермента MTHFR) увеличивается в десятки раз.

Имеются немногочисленные исследования генотипа MTHFR при онкогинекологических заболеваниях. Изучался полиморфизм С677Т гена MTHFR в большой группе еврейских женщин, заболевших раком молочной железы и яичника, включая и наследственные формы, связанные с мутациями генов BRCA. При таком неблагоприятном генетическом фоне наличие у больных Т/Т генотипа оказалось существенным фактором отягощения заболевания. Частота Т/Т генотипа была в 2 раза выше (33% против 17%, Р=0,0026) среди женщин с двусторонним раком молочной железы и раком яичника, по сравнению с основной группой больных. Женщины с гетерозиготным генотипом С/Т имели двойной онкологический риск, а у больных с гомозиготным генотипом Т/Т риск был повышен втрое по сравнению с контрольной группой. В то же время, пониженное потребление фолатов в диете повышало генетический риск до пятикратного значения по сравнению с контролем. Авторы также подтвердили тот факт, что заражение HPV (вирус папилломы) у больных является важнейшим фактором риска развития цервикальной дисплазии. В то же время подчеркивается особое значение сочетания HPV-инфекции с Т/Т вариантом MTHFR.

Полиморфизм Arg353Gln (10976 G->A) коагуляционного фактора VII (F7)

Физиология и генетика. В активном состоянии фактор VII взаимодействует с фактором III, что приводит к активации факторов IX и X системы свертывания крови, то есть коагуляционный фактор VII участвует в образовании кровяного сгустка. Вариант 353Gln (10976A) приводит к понижению производительности (экспрессии) гена фактора VII и является защитным фактором в развитии тромбозов и инфаркта миокарда. Распространенность данного варианта в европейских популяциях составляет 10-20%.

Показания к анализу. Риск инфаркта миокарда и фатального исхода при инфаркте миокарда, уровень коагуляционного фактора VII в крови, тромбоэмболические заболевания в анамнезе.

Клинические данные. Высокий уровень коагуляционного фактора VII в крови связывают с повышенным риском смерти при инфаркте миокарда . Приведенные данные о клинической значимости мутации подтверждаются исследованиями в других европейских популяциях. В частности, наличие варианта 10976A соответствовало пониженному риску фатального исхода при инфаркте миокарда.

При исследовании пациентов со стенозом коронарных артерий и инфарктом миокарда обнаружено, что наличие мутации 10976A приводит к понижению уровня фактора VII в крови на 30% и 2-х кратному понижению риска инфаркта миокарда даже при наличии заметного коронарного атеросклероза.

В группе пациентов, не имевших инфаркта миокарда, наблюдалась повышенная встречаемость гетеро- и гомозиготных генотипов 10976A, соответственно G/A и G/G.

Полиморфизм - -455 G->A фибриногена

Физиология и генетика. При повреждении кровеносных сосудов фибриноген переходит в фибрин - основной компонент кровяных сгустков (тромбов). Мутация -455А бета фибриногена (FGB) сопровождается повышенной производительностью (экспрессией) гена, что приводит к повышенному уровню фибриногена в крови и увеличивает вероятность образования тромбов. Распространенность данного варианта в европейских популяциях составляет 5-10%.

Показания к анализу . Повышенный уровень фибриногена плазмы крови, повышенное давление крови, тромбоэмболические заболевания в анамнезе, инсульт.

Клинические данные . Повышенная склонность к тромбообразованию может приводить к тромбозам и кардиоваскулярным заболеваниям. Уровень фибриногена в крови определяется рядом факторов, среди которых прием лекарственных препаратов, курение, прием алкоголя и вес тела. Однако и генотипам G и A соответствует заметная разница в уровнях фибриногена крови (10-30% по различным исследованиям).

В исследовании группы здоровых доноров было установлено, что мутация -455А приводит к повышенному содержанию фибриногена в крови. В крупномасштабном исследовании EUROSTROKE было установлено, что риск инсульта (ишемического или геморрагического) повышается в 2-3 раза при увеличении содержания фибриногена крови. Риск дополнительно увеличивается при повышенном систолическом давлении (>160 мм рт. ст.). Эти данные подтверждаются исследованиями неевропейских популяций.

При повышенном давлении крови наличие генотипа -455А повышает риск развития ишемического инсульта.

Пациенты с инсультом, имеющие генотип -455А, характеризуются многоочаговостью поражений: могут иметь три или более лакунарных инфаркта церебральных сосудов, в среднем риск инсульта увеличивается в 2,6 раза.

При повышенном давлении крови у пациентов с мутацией риск многоочагового инсульта повышается более чем в 4 раза (, Финляндия).

Полиморфизм - IIeMet (66 a-g) Мутация редуктазы метионинсинтетазы

Физиология и генетика. Ген MTRR кодирует фермент метионин-синтазу редуктазу (МСР), участвующий в большом количестве биохимических реакций, связанных с переносом метильной группы. Одной из функций МСР является обратное превращение гомоцистеина в метионин. В качестве кофактора в этой реакции принимает участие витамин В12 (кобаламин).

Полиморфизм I22M A->G связан с аминокислотной заменой в молекуле фермента МСР. В результате этой замены функциональная активность фермента снижается, что приводит к повышению риска нарушений развития плода - дефектов невральной трубки. Влияние полиморфизма усугубляется дефицитом витамина В12. При сочетании полиморфизма I22M A->G гена MTRR с полиморфизмом 677C-> T в гене MTHFR риск увеличивается.

Полиморфизм I22M A->G гена MTRR также усиливает гипергомоцистеинемию, вызываемую полиморфизмом 677C-> T в гене MTHFR. Полиморфизм A66G (Ile22Met) в гене MTRR как в гетерозиготном (AG), так и в гомозиготном (GG) вариантах значительно повышает концентрацию гомоцистеина только при одновременном сочетании с генотипом MTHFR 677TT.

Полиморфизм MTRR 66 A-G увеличивает риск рождения ребенка с синдромом Дауна в 2,57 раз. Сочетание полиморфизмов в генах MTHFR и MTRR повышает этот риск до 4,08%.

Полиморфизм - 675 5G/4G Мутация ингибитора активатора плазминогена (PAI) 1

Физиология и генетика . Этот белок (известный также как SERPINE1 и PAI-1) один из основных компонентов тромболитической плазминоген-плазминовой системы. PAI-1 ингибирует тканевой и урокиназный активаторы плазминогена. Соответственно, PAI-1 играет важную роль в предопределении расположенности к кардиоваскулярным заболеваниям. Гомозиготный вариант 4G полиморфизма -675 4G/5G является фактором риска развития тромбозов и инфаркта миокарда. Распространенность гомозиготной формы данного варианта в европеиоидных популяциях составляет 5-8%. Ген PAI-1 отличается от всех известных генов человека максимальной реакцией на стрессовые воздействия. Связь мутантного аллеля 4G с повышенным риском ТГВ анализировали во многих исследованиях, но их результаты носят противоречивый характер.

По данным российских исследователей (Ст.-Петербург) риск развития церебральных тромбозов возрастал у лиц с семейной историей сердечно-сосудистых заболеваний при наличии 4G аллеля в 6 раз. Показана ассоциация носительства полиморфизма 4G с привычным невынашиванием беременности.

Клинические аспекты . Вариант 4G приводит к повышенной экспрессии гена и, следовательно, к повышенному уровню PAI-1 в крови. Следовательно, тромболитическая система заторможена и риск тромбообразования возрастает.

В исследовании больших выборок населения (357 пациентов и 281 здоровых доноров) было установлено что вариант 4G/4G повышает риск развития тромбозов в среднем в 1.7 раза. Повышение риска было гораздо выше для подгрупп пациентов с тромбозом портальной вены и тромбозом внутренних органов. Однако, не было установлено статистически значимых корреляций для подгрупп пациентов с глубоким тромбозом вен, церебральным или ретинальным тромбозами. Вариант 4G был ассоциирован с повышенным риском инфаркта миокарда. При наличии варианта 4G в PAI-1 и L33P в гене ITGB3 среднестатистический риска развития инфаркта миокарда повышался в 4.5-раза, у мужчин риск повышался в 6 раз при наличии этих двух вариантов.

Исследование 1179 здоровых доноров и их близких родственников показало вариант 4G ассоциирован с наличием семейной истории коронарной болезни артерий и/или сердца. В этом исследовании большой выборки население среднестатистическое повышение риска при наличии гомозигот составило 1.6 раза. Варианты полиморфизма 4G/5G особенно заметно коррелируют со средними уровнями PAI-1 в крови при наличии ожирения. Было высказано предположение что влияние варианта 4G связано скорее с центральным а не с периферальным ожирением. Так как пациенты с центральным ожирением в особенности подвержены риску кардиоваскулярных заболеваний, влияние полиморфизма на уровень PAI-1 крови может приводить к дополнительному увеличению риска.

Показания к анализу полиморфизма. Тромбоз портальной вены, тромбоз внутренних органов, инфаркт миокарда, семейная история инфаркта миокарда, коронарная болезнь артерий/сердца, уровень PAI-1 крови, ожирение.

Каждый человек уникален, и эта уникальность возможна благодаря индивидуальному сочетанию генов (генотипу). Общий набор генов у всех людей одинаков, он определяет характерные признаки с точки зрения всего вида. Неповторимые отличия каждого организма возникают благодаря различным комбинациям элементов ДНК.

Клетки ДНК, расположенные на одинаковых участках хромосомы (локусах) и предусматривающие разные состояния одного и того же признака, являются полиморфными (polys - многий и morphe - вид, форма, образ). Их двойственная природа обусловлена разными аллелями, или, по-другому, формами.

Разные аллели возникают вследствие мутации, то есть спонтанного или направленного под воздействием провоцирующих факторов изменения структуры ДНК. Полиморфизм генов определяет индивидуальные различия в развитии физических или психических признаков человека, но кроме этого, он обуславливает предрасположенность к тем или иным заболеваниям.

В тех случаях, когда мутации определяют не наличие самой патологии, а только предрасположенность к ней, она может развиться только под воздействием определенных внешних или внутренних факторов. В частности, генетическая тромбофилия может начать развиваться из-за беременности или воздействия заболеваний сердечно-сосудистой системы – мерцательной аритмии, артериальной гипертензии, варикозного расширения вен и т. д.

Даже под воздействием провоцирующих факторов тромбофилия развивается не у всех склонных к этому людей, все зависит от индивидуальных особенностей организма.

У большинства пациентов с предрасположенностью к образованию тромбов эта особенность является именно врожденной, то есть приобретенной еще во время внутриутробного развития. В этом случае есть два варианта возникновения полиморфизма. Во-первых, он может возникнуть в результате объединения разных аллелей отца и матери в одном гене, во-вторых, полиморфный ген может быть полностью унаследован от одного из родителей.

У каждого человека может быть множество полиморфных генов, но не все из них могут привести к возникновению тромбофилии. Некоторые из них обуславливают вполне безобидные отличия конкретного человека от других, другие дают начало генетическим заболеваниям. На возникновение тромбофилии может повлиять всего несколько генов, которые относятся к системе свертывания крови.

Полиморфизм протромбина

Протромбин (коагуляционный фактор II или F2) – это одна из главных составляющих свертывающей системы. Это сложная белковая структура, которая предшествует тромбину – главному ферменту гемостаза (свертывания), который непосредственно участвует в формировании тромбов. При проведении анализа на полиморфизм протромбина можно получить следующие результаты:

  1. Протромбиновое время. Это значение, выраженное в секундах, которое соответствует показателю времени свертываемости крови. В норме протроибированное время должно находиться в диапазоне 9-12,6 секунд.
  2. Протромбиновый индекс. Это показатель, вычисляемый, как отношение протромбинового времени пациента к нормативному значению для конкретного возраста и пола в процентах. Нормальным считается протромбиновый индекс в пределах от 77 до 120%.
  3. Протромбин по Квику. Это наиболее современный и точный анализ на полиморфизм протромбина. Результат исследования рассчитывается в виде соотношения активности плазмы пациента и нормативного значения контрольной плазмы в процентах. Нормальным показателем считается 78-142%.

На возникновение предрасположенности к тромбозам влияет повышенный протромбиновый индекс, который может превышать норму в 1,5-2 раза. Возникающая мутация наследуется по аутосомно-доминантному типу, то есть даже если ген второго родителя будет нормальным, ребенок унаследует полиморфизм, который может привести или не привести к тромбофилии.

Мутация Лейден

Полиморфизм лейденского фактора (фактора V) коагуляционной системы является одним из наиболее опасных в плане риска развития тромбоза. Этот компонент процесса свертывания, или, по-другому, проакцелерин, является белком, синтезирующимся в печени. Он представляет собой кофактор, то есть вспомогательный элемент, который участвует в преобразовании протромбина в тромбин.

Мутация Лейден встречается у 5% всего населения планеты, а конкретно у пациентов, страдающих от тромбоза, эта особенность встречается в 20-40%. При этом если оба родители обладали полиморфным геном проакцелерина, то риск развития тромбофилии у ребенка составляет 80%, если же явление встречалось только у отца или у матери, вероятность 7%.

Риск развития тромбофилии при мутации лейденского фактора повышается при наличии следующих провоцирующих факторов:

  • хирургические вмешательства, особенно на органах малого таза;
  • период после операции или травмы, предполагающий длительное статическое положение;
  • злокачественные опухоли;
  • избыточный вес;
  • хронические заболевания сердечно-сосудистой системы;
  • прием лекарств из некоторых фармакологических групп;
  • прием оральных контрацептивов (противозачаточных таблеток) и других гормональных средств;
  • беременность, роды и послеродовой период;
  • частые длительные переезды и перелеты;
  • частая катетеризация вен;
  • обезвоживание.

У большинства людей с наличием лишь одного мутировавшего гена проакцелерина при нормальной второй аллели за всю жизнь не возникает ни одного случая тромбоза. Если же полиморфный ген представлен сразу двумя измененными аллелями, то без регулярных профилактических мир предотвратить влияние тромбофилии практически невозможно.

Полиморфизм фактора VII

Фактор VII или F7 (проконвертин) – это элемент свертывающей системы крови, который участвует в раннем этапе формирования тромба. Совместно с некоторыми другими факторами гемостаза он способствует активации фактора X, который, в свою очередь, переводит протромбин из пассивного состояния в активное и способствует образованию тромбина.

Проконвертин синтезируется в печени под воздействием витамина K.

В отличие от полиморфизма других генов, мутация фактора VII при тромбофилии оказывает положительное влияние. Изменение в первичной структуре проконвертина способствует снижению его ферментной активности, то есть он будет в меньше степени влиять на активацию преобразования протромбина в тромбин.

Полиморфизм гена фактора VII гемостаза влияет не только на снижение риска развития тромбоза, но также на уменьшение вероятности возникновения невынашивания беременности, то есть выкидыша. Также под воздействием мутации снижается риск инфаркта миокарда, а если он все же случается, то вероятность летального исхода так же уменьшается. Однако вместе с тем повышается риск кровотечений.

Полиморфизм фибриногена

Фибриноген (фактор I, F1) – это специфический белок, который находится в крови в растворенном виде и при кровотечении является основой для формирования кровяного сгустка. Под влиянием тромбина этот компонент преобразуется в фибрин, который под воздействием ферментов преобразуется непосредственно в тромб.

Фибриноген называют F1, поскольку он был обнаружен учеными самым первым.

Полиморфизм фибриногена значительно повышает вероятность образования тромба, однако в большинстве случаев это происходит под влиянием внешних негативных факторов. К ним относятся воспалительные, инфекционные и аутоиммунные патологии. Также могут повлиять следующие провокаторы:

  • сахарный диабет;
  • избыточный вес;
  • злокачественные новообразования;
  • острый инфаркт миокарда;
  • травмы кожи;
  • курение;
  • гепатиты;
  • туберкулез.

Следует также учитывать, что при сдаче анализов на повышение уровня фибриногена может повлиять стресс, предшествующая интенсивная физическая нагрузка, повышенный уровень холестерина, прием оральных контрацептивов и т. д. Не рекомендуется проводить исследование при простудных заболеваниях.

Анализы на полиморфизм генов

Полиморфизм генов диагностируется с помощью специфического анализа крови, сдаваемой из вены утром натощак. Проходить такое обследование можно в клинических диагностических центрах или частных больница, поскольку в государственных поликлиниках такую услугу не предоставляют. Стоит подготовиться к тому, что каждый анализ может стоить от 1,5 до 4 тысяч рублей, а их может понадобиться несколько.

Назначение на каждый анализ дает лечащий врач по результатам общего исследования крови. Направить на обследование может любой специалист – терапевт, хирург, флеболог и т. д., но расшифровывать результаты должен только гематолог. Не стоит пытаться сделать заключение самостоятельно.

Нередко анализ на полиморфизм генов назначается во время беременности, поскольку тромбофилия в период вынашивания ребенка может привести к непоправимым последствиям. К ним относится задержка внутриутробного развития плода, замирание беременности, выкидыш и преждевременные роды. Несмотря на это, каждая женщина с таким диагнозом может родить здорового ребенка без применения кесарева сечения, если будет полностью придерживаться рекомендаций врача.




Генетическая вариабельность, ограниченная одним видом (Homo sapiens в нашем случае), получила название генетического полиморфизма (ГП).

Геномы всех людей, за исключением однояйцевых близнецов, различны.

Выраженные популяционные, этнические и, главное, индивидуальные различия геномов как в их смысловой части (экзоны), так и в их некодирующих последовательностях (межгенные промежутки, интроны и прочее) обусловлены различными мутациями, приводящими к ГП. Последний обычно определяют как менделевский признак, встречающийся в популяции по крайней мере в 2 вариантах с частотой не менее 1 % для каждого . Изучение ГП является основной задачей быстро набирающей силы программы «Генетическое разнообразие человека» (см. табл. 1.1).

ГП может быть качественным, когда происходят замены нуклеотидов, либо количественным, когда в ДНК варьирует число нуклеотидных повторов различной протяженности. Тот и другой виды ГП встречаются как в смысловых (белок-кодирующих), так и во внегенных последовательностях молекулы ДНК.

Качественный ГП - представлен преимущественно однонуклеотидными заменами, так называемыми single nucleotide polymorphism (SNP) . Это самый частый ГП. Уже первое сравнительное изучение геномов у представителей разных рас и этнических групп показало не только глубокое генетическое родство всех людей (сходство геномов - 99,9 %), но и позволило получить ценную информацию о происхождении человека, маршрутах его расселения по планете, о путях этногенеза. Решение многих проблем геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением .

Количественный ГП - представлен вариациями числа тандемных повторов (STR - Short Tandem Repeats) в виде 1-2 нуклеотидов (микросателлитная ДНК) либо 3-4 и более нуклеотидов на коровую (повторяющуюся) единицу. Это так называемая минисателлитная ДНК. Наконец, повторы ДНК могут иметь большую протяженность и вариабельную по нуклеотидному составу внутреннюю структуру - так называемые VNTR (Variable Number Tandem Repeats).

Как правило, количественный ГП касается внесмысловых некодирующих (кодовых) участков генома. Исключение составляют только тринуклеотидные повторы. Чаще это CAG (citosine-adenine- guanine) - триплет, кодирующий глютаминовую кислоту. Они могут встречаться и в кодирующих последовательностях ряда структурных генов. В частности, такие ГП характерны для генов «болезней экспансии» (см. главу 3). В этих случаях по достижении определенной копий- ности тринуклеотидного (полинуклеотидного) повтора ГП перестают быть функционально нейтральными и проявляют себя как особый тип так называемых «динамических мутаций» . Последние особенно характерны для большой группы нейродегенеративных заболеваний (хорея Гентингтона, болезнь Кеннеди, спиноцеребеллярная атаксия и др.). Характерными клиническими особенностями таких заболеваний являются: поздняя манифестация, эффект антиципации (усиления тяжести заболевания в последующих поколениях), отсутствие эффективных методов лечения (см. главу 3).

Все люди, населяющие сегодня нашу планету, действительно являются генетически братьями и сестрами. Более того, межиндивидуальная вариабельность даже при секвенировании генов представителей белой, желтой и черной рас не превысила 0,1 % и обусловлена, главным образом, однонуклеотидными заменами, ОНЗ - SNP (Single Nucleotide Polymorphisms). Такие замены весьма многочисленны и встречаются через каждые 250-400 п. о. Их общее число в геноме оценивается в 10-13 миллионов (табл. 1.2). Предполагается, что около половины всех SNP (5 млн) приходится на смысловую (экспрессирующуюся) часть генома. Именно эти замены, как оказалось, особенно важны для молекулярной диагностики наследственных болезней. Им принадлежит основная роль в ГП человека .

На сегодняшний день хорошо известно, что полиморфизм характерен практически для всех генов человека. Более того, установлено, что он имеет выраженную этническую и популяционную специфику. Эта особенность позволяет широко использовать полиморфные генные маркеры в этнических и популяционных исследованиях . Полиморфизм, затрагивающий смысловые части генов, нередко приводит к замене аминокислот и к появлению белков с новыми функциональными свойствами. Существенное влияние на экспрессионную активность генов могут оказывать замены или повторы нуклеотидов в регуляторных (промоторных) областях генов. Наследуемые полиморфные изменения генов играют решающую роль в определении уникального биохимического профиля каждого человека, в оценке его наследственной предрасположенности к различным частым мультифакторным (мультифакториальным) заболеваниям. Изучение медицинских аспектов ГП составляет концептуальную и методическую основу предиктивной (предсказательной) медицины (см. 1.2.5).

Как показали исследования последних лет, однонуклеотидные замены (SNP) и короткие тандемные моно-, ди- и тринуклеотидные повторы являются доминирующими, но отнюдь не единственными вариантами полиморфизма в геноме человека. Недавно появилось сообщение о том, что около 12 % всех генов человека присутствуют более, чем в двух копиях. Следовательно, реальные различия между геномами разных людей, скорее всего, существенно превышают ранее постулируемые 0,1 % . Исходя из этого, в настоящее время считается, что близость неродственных геномов составляет не 99,9 %, как считалось ранее, а примерно равна около 99 0%. Особенно удивительным оказался факт, что варьировать в геноме могут не только число копий отдельных генов, но даже целые фрагменты хромосом размерами 0,65-1,3 Мегабаз (1 Мгб = 10 6 п. о.). В последние годы при помощи метода сравнительной геномной гибридизации на чипах, содержащих ДНК-зонды, соответствующие всему геному человека, получены удивительные данные, доказывающие полиморфизм индивидуальных геномов по большим (5-20 Мгб) фрагментам ДНК. Данный полиморфизм получил название Copy Number Variation «варьирование числа копий», его вклад в патологию человека в настоящее время активно исследуется .

Согласно современным данным, количественный полиморфизм в геноме человека представлен значительно шире, чем считалось ранее; основным качественным вариантом полиморфизма являются однонуклеотидные замены - ОНЗ (SNP).

1.2.З.1. Международный проект «Гаплоидный геном»(НарМар)

Решающая роль в изучении геномного полиморфизма принадлежит международному проекту по изучению гаплоидного генома человека - «Г аплоидная карта» - HapMap.

Проект начат по инициативе Института по изучению генома человека (США) в 2002 г. Исполнителями проекта стали 200 исследователей из 6 стран (США, Великобритания, Канада, Япония, Китай, Нигерия), образовавших Научный Консорциум. Цель проекта - получить генетическую карту следующего поколения, основу которой должно составлять распределение однонуклеотидных замен (SNP) в гаплоидном наборе всех 23 хромосом человека .

Суть проекта сводится к тому, что при анализе распределения уже известных SNP (ОНЗ) у индивидов нескольких поколений соседние или близко расположенные в ДНК одной хромосомы SNP наследуются блоками. Такой блок SNP представляет собой гаплотип - аллельный набор нескольких локусов, расположенных на одной хромосоме (отсюда и название проекта НарМар). При этом каждый из картированных SNP выступает как самостоятельный молекулярный маркер. Для создания общегеномной карты SNPs важно, однако, чтобы между двумя соседними SNP генетическое сцепление было высокодостоверным. По сцеплению таких SNP-маркеров с исследованным признаком (болезнью, симптомом) определяются наиболее вероятные места локализации генов-кандидатов, мутации (полиморфизм) которых ассоциированы с тем или иным мультифакторным заболеванием. Обычно для картирования выбирают несколько SNP, тесно сцепленных с уже известным менделирующим признаком. Такие хорошо охарактеризованные ОНЗ с частотой редких аллелей не менее 5 % получили название маркерных SNP (tagSNP). Предполагается, что в конечном счете из примерно 10 миллионов ОНЗ, присутствующих в геноме каждого человека, в процессе выполнения проекта будут отобраны только около 500 000 tagSNP.

Но и этого числа вполне достаточно, чтобы перекрыть картой ОНЗ весь геном человека. Естественно, что постепенное насыщение генома такими точечными молекулярными маркерами, удобными для общегеномного анализа, открывает большие перспективы для картирования многих еще не известных генов, аллельные варианты которых ассоциированы (сцеплены) с различными тяжелыми болезнями .

Первый этап НарМар проекта стоимостью 138 млн долларов завершился в октябре 2005 года. Проведено генотипирование свыше миллиона ОНЗ (1 007 329) у 270 представителей 4 популяций (90 американцев европейского происхождения, 90 нигерийцев, 45 китайцев и 45 японцев). Итогом работы явилась гаплоидная карта SNP, содержащая информацию о распределении и частотах маркерных SNP в изученных популяциях .

В результате выполнения второго этапа проекта HapMap, который завершился в декабре 2006 года, та же выборка индивидов (269 человек) была прогенотипирована еще по 4 600 000 SNP. На сегодняшний день генетическая карта следующего поколения (НарМар) уже содержит информацию более чем о 5,5 млн ОНЗ. В своем окончательном варианте, который, учитывая все возрастающую скорость картирования SNP, станет доступен уже в ближайшем будущем, будет информация о 9 000 000 SNP гаплоидного набора. Благодаря НарМар, которая включает не только SNP уже картированных генов с известными фенотипами, но и SNP еще не идентифицированных генов, ученые получают в руки мощный универсальный навигатор, необходимый для углубленного анализа генома каждого индивида, для быстрого и эффективного картирования генов, аллельные варианты которых предрасполагают к различным мультифакториальным заболеваниям, для проведения широкомасштабных исследований по популяционной генетике человека, фармакогенетике и индивидуальной медицине.

По словам Фрэнсиса Коллинза, директора Национального института по изучению генома человека (США): «Уже при обсуждении программы «Геном человека» 20 лет назад я мечтал о времени, когда геномный подход станет инструментом для диагностики, лечения и предупреждения тяжелых распространенных болезней, страдающие которыми больные переполняют наши больницы, клиники и кабинеты врачей. Успехи

НарМар проекта позволяют сделать серьезный шаг навстречу этой мечте уже сегодня» (http://www.the-scientist.com/2006/2/1/46/1/).

Действительно, с помощью техники НарМар удалось достаточно быстро картировать ген, ответственный за дистрофию сетчатки (macular degeneration), идентифицировать главный ген и несколько генных маркеров болезни сердца, определить участки хромосом и найти гены, ассоциированные с остеопорозом, бронхиальной астмой, диабетом первого и второго типов, а также с раком простаты . С помощью технологии НарМар можно не только вести полногеномный скрининг, но изучать отдельные части генома (фрагменты хромосом) и даже кандидатные гены. Совмещение технологии Нар- Мар с возможностями высокоразрешающих гибридизационных ДНК- чипов и специальной компьютерной программы сделало доступным общегеномный скрининг ассоциаций и совершило реальный переворот в предиктивной медицине в плане эффективной идентификации генов предрасположенности к различным МФЗ (см. гл. 8 и 9).

Учитывая, что генетический полиморфизм отнюдь не исчерпывается ОНЗ, а молекулярные вариации генома значительно более многообразны, ученые и издатели научного журнала Human Mutation Ричард Коттон (Австралия) и Хейг Казазьян (США) выступили с инициативой проекта Human Variom Project, цель которого - создание универсального банка данных, включающего в себя информацию не только по мутациям, приводящим к различным моногенным заболеваниям, но и к полиморфизму, предрасполагающему к мультифакторным болезням - http://www.humanvariomeproject.org/index.php?p = News . Учитывая достаточную условность границ между «полиморфизмом» и «мутациями», создание такой универсальной библиотеки вариаций генома можно только приветствовать.

К сожалению, приходится констатировать, что, если в случае проекта «Геном человека» в России еще предпринимались некоторые попытки участия в совместных исследованиях, то при выполнении международного проекта НарМар отечественные ученые практически не были задействованы. Соответственно, воспользоваться технологией общегеномного скрининга SNP в России при отсутствии необходимого аппаратурного и программного обеспечения, весьма проблематично Между тем, учитывая популяционные особенности генетического полиморфизма, внедрение в России технологии GWAS швершенно необходимо (см. гл. 9).

С глубоким сожалением приходится констатировать, что уже существующий колоссальный разрыв между отечественной и передовой мировой наукой в области изучения генома человека после завершения программы НарМар будет только стремительно увеличиваться.

1.2.З.2. Новые проекты по изучению генома человека

Проект НарМар далеко не единственный, хотя и наиболее продвинутый в исследованиях структурно-функциональной организации генома человека в наше время. Другой международный проект - ENCODE «Энциклопедия ДНК элементов», инициированный Национальным институтом исследования генома человека, США (НИИГЧ) (National Institute of Human Genome Research - NIHGR). Его цель - точная идентификация и картирование всех белок-синтезирующих генов и функционально значимых элементов генома человека. В качестве пилотных исследований проект предполагает многократно просеквенировать и детально изучить фрагмент генома размером до 1 % общей длины ДНК. Наиболее вероятным кандидатом является участок генома размером около 30 Мегабаз (млн п. о.) в коротком плече хромосомы 6. Именно там расположен очень сложный в структурно-функциональном отношении локус HLA, ответственный за синтез антигенов гистосовместимости. Планируется просеквенировать область HLA у 100 пациентов с аутоиммунными заболеваниями (системная красная волчанка, диабет 1 типа, рассеянный склероз, бронхиальная астма и др.) и у 100 соматически здоровых доноров, чтобы понять молекулярную природу генных особенностей при этих патологиях. Аналогичным образом предполагается провести идентификацию генов-кандидатов в локусах, обнаруживающих неслучайную ассоциацию с частыми тяжелыми заболеваниями мультифакторной природы. Результаты проекта ENCODE частично уже опубликованы, однако, HLA локус в него не включен .

Еще один проект - NIHGR «Химическая геномика» - ставит своей целью создание общедоступной библиотеки химических веществ, преимущественно органических соединений, удобных для изучения главных метаболических путей организма, непосредственно взаимодействующих с геномом и перспективных для создания новых лекарственных препаратов.

Проект Genome to Life «Геном для жизни» обращает основное внимание на особенности метаболизма и организацию геномов одноклеточных организмов, патогенных для человека. Предполагается, что итогом его выполнения будут компьютеризированные модели реакции микробов на внешние воздействия. Исследования будут сосредоточены на четырех основных направлениях: белки бактерий, регуляторные механизмы работы генов, микробные ассоциации (симбиоз), взаимодействие с организмом человека (www.genomestolife.org).

Наконец, главной организацией по финансированию научных проектов Великобритании Wellcome Trust создан Консорциум по геномике трехмерной структуры белков (Structural Genomic Consortium). Его цель - на основе данных по изучению генома человека повысить эффективность поиска и синтеза новых лекарств направленного действия.

Непосредственное отношение к предиктивной медицине и фармакогенетике имеет и разрабатываемый в США и в странах Западной Европы проект «Геном и окружающая среда» (Environmental Genome Project). Некоторые подробности данного проекта будут рассмотрены в следующей главе.