Найти среднее значение из средних. Как вычислять среднее значение ряда чисел. Среднее значение по условию

В вычислении среднего значения теряется.

Среднее значение набора чисел равно сумме чисел S, деленной на количество этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

Обратите внимание

Если потребуется найти среднее геометрическое всего для двух чисел, то инженерный калькулятор вам не понадобится: извлечь корень второй степени (квадратный корень) из любого числа можно при помощи самого обычного калькулятора.

Полезный совет

В отличие от среднего арифметического, на геометрическое среднее не так сильно влияют большие отклонения и колебания между отдельными значениями в исследуемом наборе показателей.

Источники:

  • Онлайн-калькулятор, рассчитывающий среднее геометрическое
  • среднее геометрическое формула

Среднее значение - это одна из характеристик набора чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом наборе чисел. Среднее арифметическое значение - наиболее часто используемая разновидность средних.

Инструкция

Сложите все числа множества и разделите их на количество слагаемых, чтобы получить среднее арифметическое значение. В зависимости от конкретных условий вычисления иногда проще делить каждое из чисел на количество значений множества и суммировать результат.

Используйте, например, входящий в состава ОС Windows , если вычислить среднее арифметическое значение в уме не представляется возможным. Открыть его можно с помощью диалога запуска программ. Для этого нажмите «горячие клавиши» WIN + R или щелкните кнопку «Пуск» и выберите в главном меню команду «Выполнить». Затем напечатайте в поле ввода calc и нажмите на Enter либо щелкните кнопку «OK». Это же можно сделать через главное меню - раскройте его, перейдите в раздел «Все программы» и в секции «Стандартные» и выберите строку «Калькулятор».

Введите последовательно все числа множества, нажимая после каждого из них (кроме последнего) клавишу «Плюс» или щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже можно как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

Нажмите клавишу с косой (слэш) или щелкните этот в интерфейсе калькулятора после ввода последнего значения множества и напечатайте количество чисел в последовательности. Затем нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

Можно для этой же цели использовать табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если после ввода каждого числа вы будете нажимать Enter или клавишу со стрелкой вниз или вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

Щелкните следующую за последним введенным числом ячейку, если вам не достаточно только увидеть среднее арифметическое значение. Раскройте выпадающий с изображением греческой сигма (Σ) команд «Редактирование» на вкладке «Главная». Выберите в нем строку «Среднее » и редактор вставит нужную формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое - одна из мер центральной тенденции, широко используемая в математике и статистических расчетах. Найти среднее арифметическое число для нескольких значений очень просто, но у каждой задачи есть свои нюансы, знать которые для выполнения верных расчетов просто необходимо.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для всего исходного массива чисел. Другими словами, из некоторого множества чисел выбирается общее для всех элементов значение, математическое сравнение которого со всеми элементами носит приближенно равный характер. Среднее арифметическое число используется, преимущественно, при составлении финансовых и статистических отчетов или для расчетов результатов проведенных подобных опытов.

Как найти среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой μ (мю) или x (икс с чертой). Далее алгебраическую сумму следует разделить на количество чисел в массиве. В рассматриваемом примере чисел было пять, поэтому среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с отрицательными числами

Если в массиве присутствуют отрицательные числа, то нахождение среднего арифметического значения происходит по аналогичному алгоритму. Разница имеется только при рассчетах в среде программирования, или же если в задаче есть дополнительные условия. В этих случаях нахождение среднего арифметического чисел с разными знаками сводится к трем действиям:

1. Нахождение общего среднего арифметического числа стандартным методом;
2. Нахождение среднего арифметического отрицательным чисел.
3. Вычисление среднего арифметического положительных чисел.

Ответы каждого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по методу вычисления среднего арифметического целых чисел, но сокращение результата производится по требованиям задачи к точности ответа.

При работе с натуральными дробями их следует привести к общему знаменателю, который умножается на количество чисел в массиве. В числителе ответа будет сумма приведенных числителей исходных дробных элементов.

  • Инженерный калькулятор.

Инструкция

Учитывайте, что в общем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует количеству чисел. Например, если нужно найти среднее геометрическое пяти чисел, то из произведения нужно будет извлекать корень степени.

Для нахождения среднего геометрического двух чисел используйте основное правило. Найдите их произведение, после чего извлеките из него квадратный корень, поскольку числа два, что соответствует степени корня. Например, для того чтобы найти среднее геометрическое чисел 16 и 4, найдите их произведение 16 4=64. Из получившегося числа извлеките квадратный корень √64=8. Это и будет искомая величина. Обратите внимание на то, что среднее арифметическое этих двух чисел больше и равно 10. Если корень не извлекается нацело, произведите округление результата до нужного порядка.

Чтобы найти среднее геометрическое более чем двух чисел, тоже используйте основное правило. Для этого найдите произведение всех чисел, для которых нужно найти среднее геометрическое. Из полученного произведения извлеките корень степени, равной количеству чисел. Например, чтобы найти среднее геометрическое чисел 2, 4 и 64, найдите их произведение. 2 4 64=512. Поскольку нужно найти результат среднего геометрического трех чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, поэтому воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка "x^y". Наберите число 512, нажмите кнопку "x^y", после чего наберите число 3 и нажмите кнопку "1/х", чтобы найти значение 1/3, нажмите кнопку "=". Получим результат возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

С помощью инженерного калькулятора можно найти среднее геометрическое другим способом. Найдите на клавиатуре кнопку log. После этого возьмите логарифм для каждого из чисел, найдите их сумму и поделите ее на количество чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Например, для того чтобы найти среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе набор операций. Наберите число 2, после чего нажмите кнопку log, нажмите кнопку "+", наберите число 4 и снова нажмите log и "+", наберите 64, нажмите log и "=". Результатом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число разделите на 3, поскольку это количество чисел, по которым ищется среднее геометрическое. Из результата возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В результате получится число 8, это и есть искомое среднее геометрическое.

В математике среднее арифметическое значение чисел (или просто среднее) — это сумма всех чисел в данном наборе, разделенная на их количество. Это наиболее обобщенное и распространенное понятие средней величины. Как вы уже поняли, чтобы найти нужно суммировать все данные вам числа, а полученный результат разделить на количество слагаемых.

Что такое среднее арифметическое?

Давайте рассмотрим пример.

Пример 1 . Даны числа: 6, 7, 11. Нужно найти их среднее значение.

Решение.

Для начала найдем сумму всех данных чисел.

Теперь разделим получившуюся сумму на количество слагаемых. Так как у нас слагаемых три, соответственно, мы будем делить на три.

Следовательно, среднее значение чисел 6, 7 и 11 — это 8. Почему именно 8? Да потому, что сумма 6, 7 и 11 будет такая же, как трех восьмерок. Это отлично видно на иллюстрации.

Среднее значение чем-то напоминает «выравнивание» ряда чисел. Как видите, кучки карандашей стали одного уровня.

Рассмотрим еще один пример, чтобы закрепить полученные знания.

Пример 2. Даны числа: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29. Нужно найти их среднее арифметическое значение.

Решение.

Находим сумму.

3 + 7 + 5 + 13 + 20 + 23 + 39 + 23 + 40 + 23 + 14 + 12 + 56 + 23 + 29 = 330

Делим на количество слагаемых (в этом случае — 15).

Следовательно, среднее значение данного ряда чисел равно 22.

Теперь рассмотрим отрицательные числа. Вспомним, как их суммировать. Например, у вас есть два числа 1 и -4. Найдем их сумму.

1 + (-4) = 1 - 4 = -3

Зная это, рассмотрим еще один пример.

Пример 3. Найти среднее значение ряда чисел: 3, -7, 5, 13, -2.

Решение.

Находим сумму чисел.

3 + (-7) + 5 + 13 + (-2) = 12

Так как слагаемых 5, разделим получившуюся сумму на 5.

Следовательно, среднее арифметическое значение чисел 3, -7, 5, 13, -2 равно 2,4.

В наше время технологического прогресса гораздо удобнее использовать для нахождения среднего значения компьютерные программы. Microsoft Office Excel — одна из них. Искать среднее значение в Excel быстро и просто. Тем более, эта программа входит в пакет программ от Microsoft Office. Рассмотрим краткую инструкцию, значение с помощью этой программы.

Для того чтобы посчитать среднее значение ряда чисел, необходимо использовать функцию AVERAGE. Синтаксис для этой функции:
= Average (argument1, argument2, ... argument255)
где argument1, argument2, ... argument255 — это либо числа, либо ссылки на ячейки (под ячейками подразумеваются диапазоны и массивы).

Чтобы было более понятно, опробуем полученные знания.

  1. Введите числа 11, 12, 13, 14, 15, 16 в ячейки С1 - С6.
  2. Выделите ячейку С7, нажав на нее. В этой ячейке у нас будет отображаться среднее значение.
  3. Щелкните на вкладке «Формулы».
  4. Выберите More Functions > Statistical для того, чтобы открыть
  5. Выберите AVERAGE. После этого должно открыться диалоговое окно.
  6. Выделите и перетащите туда ячейки С1-С6, чтобы задать диапазон в диалоговом окне.
  7. Подтвердите свои действия клавишей «ОК».
  8. Если вы все сделали правильно, в ячейке С7 у вас должен появиться ответ - 13,7. При нажатии на ячейку C7 функция (= Average (C1: C6)) будет отображаться в строке формул.

Очень удобно использовать эту функцию для ведения учета, накладных или когда вам просто нужно найти среднее значение из очень длинного ряда чисел. Поэтому ее часто используют в офисах и крупных компаниях. Это позволяет сохранять порядок в записях и дает возможность быстро посчитать что-либо (например, средний доход за месяц). Также с помощью Excel можно найти среднее значение функции.

Для того чтобы найти среднее значение в Excel (при том неважно числовое, текстовое, процентное или другое значение) существует много функций. И каждая из них обладает своими особенностями и преимуществами. Ведь в данной задаче могут быть поставлены определенные условия.

Например, средние значения ряда чисел в Excel считают с помощью статистических функций. Можно также вручную ввести собственную формулу. Рассмотрим различные варианты.

Как найти среднее арифметическое чисел?

Чтобы найти среднее арифметическое, необходимо сложить все числа в наборе и разделить сумму на количество. Например, оценки школьника по информатике: 3, 4, 3, 5, 5. Что выходит за четверть: 4. Мы нашли среднее арифметическое по формуле: =(3+4+3+5+5)/5.

Как это быстро сделать с помощью функций Excel? Возьмем для примера ряд случайных чисел в строке:

Или: сделаем активной ячейку и просто вручную впишем формулу: =СРЗНАЧ(A1:A8).

Теперь посмотрим, что еще умеет функция СРЗНАЧ.


Найдем среднее арифметическое двух первых и трех последних чисел. Формула: =СРЗНАЧ(A1:B1;F1:H1). Результат:



Среднее значение по условию

Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Функция: =СРЗНАЧЕСЛИ(A1:A8;">=10")


Результат использования функции СРЗНАЧЕСЛИ по условию ">=10":

Третий аргумент – «Диапазон усреднения» - опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку.

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово "столы"). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно.

Как посчитать средневзвешенную цену в Excel?

Как мы узнали средневзвешенную цену?

Формула: =СУММПРОИЗВ(C2:C12;B2:B12)/СУММ(C2:C12).


С помощью формулы СУММПРОИЗВ мы узнаем общую выручку после реализации всего количества товара. А функция СУММ - сумирует количесвто товара. Поделив общую выручку от реализации товара на общее количество единиц товара, мы нашли средневзвешенную цену. Этот показатель учитывает «вес» каждой цены. Ее долю в общей массе значений.

Среднее квадратическое отклонение: формула в Excel

Различают среднеквадратическое отклонение по генеральной совокупности и по выборке. В первом случае это корень из генеральной дисперсии. Во втором – из выборочной дисперсии.

Для расчета этого статистического показателя составляется формула дисперсии. Из нее извлекается корень. Но в Excel существует готовая функция для нахождения среднеквадратического отклонения.


Среднеквадратическое отклонение имеет привязку к масштабу исходных данных. Для образного представления о вариации анализируемого диапазона этого недостаточно. Чтобы получить относительный уровень разброса данных, рассчитывается коэффициент вариации:

среднеквадратическое отклонение / среднее арифметическое значение

Формула в Excel выглядит следующим образом:

СТАНДОТКЛОНП (диапазон значений) / СРЗНАЧ (диапазон значений).

Коэффициент вариации считается в процентах. Поэтому в ячейке устанавливаем процентный формат.

Роль математики в развитии естественных наук сегодня трудно переоценить. Ее методы все глубже проникают в трудно формализуемые области знаний, обогащая последние интерпретациями и, как результат, стимулируют в них появление новых идей. Сейчас уже сложно согласиться с мнением, что использование математики, например, в биологических науках, ограничивается лишь методической ее частью и связана исключительно с обработкой данных.

Рассмотрим наиболее часто используемую в прикладных исследованиях статистическую величину - среднее значение - и дадим ей геометрическую интерпретацию.

Среднее значение и дисперсия

Понятия среднего и дисперсии возникли из нужд практики численно характеризовать набор измерений, объединенных по тому или иному принципу в группу. Для "средней величины" при этом отводится роль числа, характеризующего набор имеющихся значений в целом. Выбор такого значения - определение средней величины - очевидно, может быть реализовано множеством способов, в зависимости от требуемых свойств вводимой величины. В частности, если имеется множество измерений некоторого физического параметра (например, длины какого-либо объекта), выполненных прибором, имеющем определенную погрешность инструментальных измерений, среднее значение может быть определено как число, лежащее на минимальном суммарном "расстоянии" от всех остальных чисел. Тогда, искомое среднее значение (обозначим его \(m\)) - число досталяющее минимум функции \(Q_1(a)=|x_1-a|+|x_2-a|+\ldots+|x_n-a|\), где \(x_1,\ldots,x_n\) - набор значений, для которого вычисляется среднее. Тем не менее, определенное таким образом среднее обладает рядом особенностей. Во-первых, в случае выборки, состоящей из двух значений (или даже любого четного их числа), функция \(Q_1(a)\) имеет не один минимум (см. рис. слева, на котором дано определение среднего арифметического (\(a^{\ast}\)) и медианы (\(m\)) (по оси ординат масштабы для каждого из графиков разные)) и, следовательно, возникает вопрос какое из них должно быть выбрано в качестве определения среднего. Другим нежелательным следствием прямого использования расстояния между числами является недиффиренцируемость расстояния (функции модуля числа), вносящее определенные математические трудности, в частности, затрудняющее поиск минимума функции \(Q_1(a)\). Поскольку квадрат расстояния обладает теми же прикладными качествами, что и исходное расстояние (точнее, возрастает, убывает и обращается в нуль одновременно с расстоянием), среднее значение можно определить как число, сумма квадратов расстояний от которого до остальных чисел минимальна. Квадрат расстояния между числами - функция гладкая (не имеет углов; строгое определение гладкости функции можно найти в (Фихтенгольц, 2001)), и задача об определении среднего значения в этом случае может быть решена средствами классического математического анализа. Ее решение - хорошо известное среднее арифметическое. Таким образом, среднее арифметическое совокупности величин \(\{x_1,\ldots, x_n\}\) доставляет минимальное (убедиться в этом можно воспользовавшись сначала необходимыми, а потом достаточными условиями локального экстремума функции (Фихтенгольц, 2001): \(\dfrac{dQ_2}{da}=0\)(приводит к уравнению для среднего арифметического) и \(\dfrac{d^2Q_2}{da^2}>0\) (подтверждает, что среднее арифметическое - минимум \(Q_2(a)\)) значение функции \(Q_2(a)=\sum\limits_i(x_i-a)^2\).

Графики функций \(Q_1(a)\) и \(Q_2(a)\) приведенные на рисунке для определенного набора значений \(\{x_1,x_2,x_3,x_4\}\). Из представленной иллюстрации видно, что минимальное значение функции \(Q_1(a)\)достигается для любой точки из интервала \(\), и, таким образом, имеет
место отмеченная выше неопределенность в выборе среднего. В этом случае в качестве среднего (по соглашению) может быть выбрана середина интервала, на котором достигается минимум функции \(Q_1(a)\). Это значение называется медианой выборки (на рисунке). В случае нечетного числа элементов выборки (при условии, что все элементы различны) такой ситуации не возникает, и медиана определяется однозначно. Среднее арифметическое (\(a^{\ast}\)) вне зависимости от четности или повторяемости элементов выборки определяется однозначно, что следует из вида функции \(Q_2(a)\) и условий локального минимума (Фихтенгольц, 2003).

Общее определение средней величины было дано французским математиком О. Коши (1789–1857), который называл средним значением величин \(\{x_1,\ldots, x_n\}\) любую их функцию \(f(x_1,\ldots,x_n)\), результат действия которой лежит между максимальным и минимальным значениями ее аргументов. Более определенная, аксиоматическая характеристика среднего была дана А.Н.Колмогоровым (1908–1987), который на базе введенных четырех аксиом указал конкретный вид выражения для функции \(f(x_1,\ldots,x_n)\). Среднее по А.Н. Колмогорову имеет вид:$$
f(x_1,\ldots,x_n)=\varphi^{-1}\left(\sum\limits_{i=1}^n\varphi(x_i)\right),
$$
где \(\varphi(x)\) - строго неубывающая или невозрастающая непрерывная функция, \(\varphi^{-1}(x)\) - обратная функция к \(\varphi(x)\), т.е. для любого \(x\) справедливо \(\varphi^{-1}(\varphi(x))=x\).

Таким образом, среднее арифметическое и медиана удовлетворяют аксиоматике Коши, однако медиана не является средней величиной по Колмогорову. Причина тому нарушение аксиомы непрерывности среднего от выборочных значений.

На практике распространены задачи, когда требуется численно охарактеризовать разброс выборочных значений, что, например, важно для оценки инструментальных погрешностей прибора по набору однородных измерений какого-либо физического параметра, при объективной оценке ширины ареала обитания вида в факторном пространстве по эмпирическому материалу и др. Как и в случае определения среднего значения эта задача может быть решена множеством способов. Первостепенный шаг в ее решении - определение опорного значения (не обязательно принадлежащего выборке), относительно которого будет вычисляться мера разброса.

Внимательный читатель может заметить, что можно ввести меру разброса не привязываясь к какому-либо опорному значению, например, положив в качестве разброса расстояние между максимальным и минимальным элементами выборки: \(s=x_{\max}-x_{\min}\). Однако и в этом, и в любом другом случае, опорное значение может быть введено искусственно: \(s=(x_{\max}-r)+(r-x_{\min})\), где выражения в скобках - суть расстояния от \(x_{\min}\) и \(x_{\max}\) до произвольной опорной точки \(r\). Поэтому в дальнейших построениях будем полагать существование такой опорной точки.

Возвращаясь к определению средней величины заметим, что значения функций \(Q_1(a)\) и \(Q_2(a)\) могут рассматриваться как разбросы выборочных значений относительно точки \(a\), измеряемые суммой расстояний и квадратов расстояний соответственно. Учитывая, что \(Q_1(m)\) и \(Q_2(a^{\ast})\) определяются однозначно, то они могут быть приняты в качестве мер разброса. Опорными значениями в этом случае будут \(m\) и \(a^{\ast}\). Значение \(Q_1(m)\) в расчетах практически не используется, что связано прежде всего с нежелательными свойствами модуля, отмеченными выше. Величина \(\sigma^2=\dfrac{Q_2(a^{\ast})}{n}=\dfrac{1}{n}\sum\limits_{i=1}^n(x_i-a^{\ast})^2\) хорошо известная выборочная дисперсия. Таким образом, \(\sigma^2\) - нормированная на \(n\) величина суммы квадратов уклонений выборочных значений относительно своего среднего; существуют и другие подходы к определению \(\sigma^2\): это значение можно рассматривать, как среднее арифметическое для производной от $\{x_1,\ldots.\,x_n\}$ выборки \(\{(x_1-a^{\ast})^2,\ldots.\,(x_n-a^{\ast})^2\}\), все элементы которой заведомо неотрицательны и характеризуют разброс относительно среднего арифметического \(a^{\ast}\), можно также мыслить \(\sigma^2\) и \(a^{\ast}\) как результат минимизации \(\hat Q_2(a)=\dfrac{1}{n}Q_2(a)\), в этом случае минимум \(\hat Q_2(a)\) достигается также при \(a=a^{\ast}\), а \(\sigma^2=\hat Q_2(a^{\ast})\).

Введенные числовые характеристики самодостаточны, они не требуют накаких дополнительных ограничений на элементы выборки. Даже вне вероятностного аппарата на их основе могут быть решены некоторые задачи, например, задача о выявлении эффективности действия какого-либо удобрения на урожайность культуры. В этом случае, если у экспериментатора имеются две выборки, представляющие урожайность культуры, выращенной в условиях воздействия удобрения и в естественных условиях, то при различии средних значений у двух выборок могут быть сделаны первоначальные выводы относительно эффективности или неэффективности удобрения. Однако к полученным таким образом выводам следует относиться с известной осторожностью (вообще говоря, как и ко всем выводам, сделанным при помощи математической статистики), особенно в тех случаях, когда различия в средних значениях невелики и подвержены сильным флюктуациям при дальнейшем добавлении к выборкам новых элементов. Более определенная схема исследований возможна на базе представлений теории вероятностей, когда каждое измерение урожайности предполагается случайной величиной. В этом случае первую (полученную при использовании удобрения) выборку представляют одинаково распределенные случайные величины, имеющие одно распределение, а вторую (полученную в естественных условиях) - некоторое другое распределение. При достаточно общих условиях в теории вероятностей доказывается утверждение (центральная предельная теорема) о том, что распределение суммы независимых одинаково распределенных случайных величин имеет вполне определенное расределение, не зависимо от того, какое распределением имели случайные величины, образующие сумму. Поскольку среднее арифметическое - сумма случайных величин, оно в свою очередь также является случайной величиной и, более того, имеет вполне определеный закон распределения. Это позволяет строить выводы о различии средних двух выборок (в прикладной интерпретации - выводы об эффективности применения удобрения), давая им вероятностную характеристику. Более подробная информация по данному вопросу может быть найдена в (Гмурман, 2004). Изложенный вероятностный подход к решению задачи является общепринятым, однако и при его использовании есть свои тонкости (Алимов, 1980), связанные с адекватностью вероятностных моделей в конкретных задачых. Так в работе (Чайковский, 2004; с. 25), указывается что "почти всякий текст, даже очень длинный, обладает тем свойством, что около половины слов встречается в нем всего однажды, так что частоту его ввести всерьез нельзя; да и у часто употребляемых слов частоты могут варьировать, даже в пределах одного автора и тематики, так сильно, что о вероятности (если понимать ее как устойчивую частоту) говорить нет смысла"; там же (с. 62) указывается тот факт, что знаменитый эксперимент К. Пирсона, показавший поразительную сходимость частоты выпадения "герба" при 24000-ом подбрасывании монеты (частота оказалась равной 0.5005), вероятнее всего, - вовремя прерванный эксперимент (Тутубалин, 1992; с. 119): "... сначала Пирсон бросил монету 6000 раз, но результат ему не понравился. Тогда он бросил ее еще 6000 раз и опять не понравилось. Пришлось бросить монету еще 12000 раз, и результат (всех бросаний) оказался замечательным". Подробности, посвященные адекватности моделей теории вероятностей и обсуждению принципиальных вопросов примененимости методов математической статистики можно найти в работах (Алимов, 1980; Чайковский, 2004; Тутубалин, 1992).

Литература

  1. Колмогоров А.Н. Избранные труды. Математика и механика. 1985. С. 136-138
  2. Фихтенгольц Г.М. Курс математического анализа. 2003. Т. 1. 680 с.
  3. Гмурман В.Е. Теория вероятностей и математическая статистика. 2004. 404 с.
  4. Алимов Ю.И. Альтернатива методу математической статистики. 1980. 64 с.
  5. Чайковский Ю.В. О природе случаности. 2004. 280 с.
  6. Тутубалин В.Н. Теория вероятностей и случайных процессов. 1992. 400 с.
Please enable JavaScript to view the