Сжатие информации. Коэффициент сжатия

Простейшая элементарная деформация.

Простейшей элементарной деформацией является относительное удлинение некоторого элемента:

(e)=(l 2 -l 1)/l 1
где
l 2 - длина элемента после деформации;
l 1 - исходная длина этого элемента.

Растяжение-сжатие.

Растяжение-сжатие - в сопротивлении материалов - вид продольной деформации стержня или бруса, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси (равнодействующая сил, воздействующих на него, нормальна поперечному сечению стержня и проходит через его центр масс).

Называется также одноосным или линейным напряжённым состоянием. Является одним из основных видов напряжённого состояния параллелепипеда. Может быть также двух- и трёх-осным. Вызывается как силами, приложенными к концам стержня, так и силами, распределёнными по объёму (силы инерции и тяготения).

Растяжение вызывает удлинение стержня (также возможен разрыв и остаточная деформация), сжатие вызывает укорочение стержня (возможна потеря устойчивости и возникновение продольного изгиба).

В поперечных сечениях бруса возникает один внутренний силовой фактор - нормальная сила. Если растягивающая или сжимающая сила параллельна продольной оси бруса, но не проходит через неё, то стержень испытывает т. н. внецентренное растяжение (сжатие). В этом случае за счёт эксцентриситета приложения нагрузки в стержне кроме растягивающих (сжимающих) напряжений возникают ещё и изгибные напряжения.

Напряжение вдоль оси прямо пропорционально растягивающей или сжимающей силе и обратно пропорционально площади поперечного сечения. При упругой деформации между напряжением и относительной деформацией определяется законом Гука, при этом поперечные относительные деформации выводятся из продольных путём умножения их на коэффициент Пуассона. Пластическая деформация, предшествующая разрушению части материала, описывается нелинейными законами.

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke ). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

В словесной форме закон звучит следующим образом:

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F - сила натяжения стержня, Δl - абсолютное удлинение (сжатие) стержня, а k называется коэффициентом упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня.


Модуль Юнга (модуль упругости) - коэффициент, характеризующий сопротивление материала растяжению/сжатию при упругой деформации. Назван в честь английского физика XIX века Томаса Юнга. В динамических задачах механики модуль Юнга рассматривается в более общем смысле - как функционал среды и процесса.

Модуль Юнга рассчитывается следующим образом:

  • E - модуль упругости, измеряемый в паскалях
  • F - сила в ньютонах,
  • S - площадь поверхности, по которой распределено действие силы,
  • l - длина деформируемого стержня,
  • x - модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l ).

Коэффициент Пуассона (обозначается как ν или μ) характеризует упругие свойства материала. При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого - 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

Известно,что величина растягивающей силы F и величина удлиненияΔℓ образцов из одного материала зависят от их размеров. Чтобы можно было сравнить результаты испытаний образцов различных размеров,изготовленных из одинаковых материалов,диаграмму растяжения перестраивают в координатахσ = F/Aи ε = Δℓ/ℓ , где А – первоначальная площадь сечения образцов; – первоначальная длина рабочей части образца.Эту диаграммуσ = f(ε) называют диаграммой напряжений или условной диаграммой растяжения,вид которой почти не зависит от абсолютных размеров используемых при испытании образцов, аопределяется свойствами материала .Типовая диаграмма напряжений при растяжении образцов из пластичных материалов(рис. 1, в) характеризуется следующими участками.Участок длиной ОА до некоторого напряженияσpr,называемого пределом пропорциональности ,представляет прямую линию.На этом участкесправедлив закон Гука и величина абсолютной деформацииΔℓпрямо пропорциональна растягивающему усилию F,а относительная деформацияε –напряжениюσ .

После достижения предела пропорциональностиσpr деформацииε растут не прямо пропорционально напряжениямσ , а быстрее. Начиная с некоторой точки В , лежащей уже на криволинейном участке диаграммы,замечено появление незначительных(0,05%) остаточных деформаций,до точки В деформации еще упругие.Точке В соответствуетпредел упругости материала σe– то наибольшее напряжение,до которого в материале появляются только упругие деформации .Предел упругости практически совпадает с пределом пропорциональности и эти величины обычно не разграничиваются.Например, для стали Ст3 предел пропорциональностиσpr ≈ 210 МПа, а предел упругости σe ≈ 220 МПа.

На рисунке 2 приведена диаграмма напряжений при растяжении для данного материала.

Рисунок 2 – Диаграмма напряжений при растяжении

где - предел пропорциональности, - текучести, -прочности.

Сдвиг - в сопротивлении материалов - вид продольной деформации бруса, возникающий в том случае, если сила прикладывается касательно его поверхности (при этом нижняя часть бруска закреплена неподвижно).

Изгиб.

Изгиб - вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев. Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов. Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, называется косым.

Если при прямом или косом изгибе в поперечном сечении бруса действует только изгибающий момент, то соответственно имеется чистый прямой или чистый косой изгиб. Если в поперечном сечение действует также и поперечная сила, то имеется поперечный прямой или поперечный косой изгиб.

Часто термин «прямой» в названии прямого чистого и прямого поперечного изгиба не употребляют и их называют соответственно чистым изгибом и поперечным изгибом.

Принципы сжатия информации

В основе любого способа сжатия информации лежит модель источника информации, или, более конкретно, модель избыточности. Иными словами для сжатия информации используются некоторые сведения о том, какого рода информация сжимается - не обладая никакми сведениями об информации нельзя сделать ровным счётом никаких предположений, какое преобразование позволит уменьшить объём сообщения. Эта информация используется в процессе сжатия и разжатия. Модель избыточности может также строиться или параметризоваться на этапе сжатия. Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспецифичные алгоритмы, применяемые для работы с хорошо определёнными и неизменными характеристиками. Подавляющая часть же достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Любой метод сжатия информации включает в себя два преобразования обратных друг другу:

  • преобразование сжатия;
  • преобразование расжатия.

Преобразование сжатия обеспечивает получение сжатого сообщения из исходного. Разжатие же обеспечивает получение исходного сообщения (или его приближения) из сжатого.

Все методы сжатия делятся на два основных класса

  • без потерь,
  • с потерями.

Кардинальное различие между ними в том, что сжатие без потерь обеспечивает возможность точного восстановления исходного сообщения. Сжатие с потерями же позволяет получить только некоторое приближение исходного сообщения, то есть отличающееся от исходного, но в пределах некоторых заранее определённых погрешностей. Эти погрешности должны определяться другой моделью - моделью приёмника, определяющей, какие данные и с какой точностью представленные важны для получателя, а какие допустимо выбросить.

Характеристики алгоритмов сжатия и применимость

Коэффициент сжатия

Коэффициент сжатия - основная характеристика алгоритма сжатия, выражающая основное прикладное качество. Она определяется как отношение размера несжатых данных к сжатым, то есть:

k = S o /S c ,

где k - коэффициент сжатия, S o - размер несжатых данных, а S c - размер сжатых. Таким образом, чем выше коэффициент сжатия, тем алгоритм лучше. Следует отметить:

  • если k = 1, то алгоритм не производит сжатия, то есть получает выходное сообщение размером, равным входному;
  • если k < 1, то алгоритм порождает при сжатии сообщение большего размера, нежели несжатое, то есть, совершает «вредную» работу.

Ситуация с k < 1 вполне возможна при сжатии. Невозможно получить алгоритм сжатия без потерь, который при любых данных образовывал бы на выходе данные меньшей или равной длины. Обоснование этого факта заключается в том, что количество различных сообщений длиной n Шаблон:Е:бит составляет ровно 2 n . Тогда количество различных сообщений с длиной меньшей или равной n (при наличии хотя бы одного сообщения меньшей длины) будет меньше 2 n . Это значит, что невозможно однозначно сопоставить все исходные сообщения сжатым: либо некоторые исходные сообщения не будут иметь сжатого представления, либо нескольким исходным сообщениям будет соответствовать одно и то же сжатое, а значит их нельзя отличить.

Коэффициент сжатия может быть как постоянным коэффициентом (некоторые алгоритмы сжатия звука, изображения и т. п., например А-закон , μ-закон, ADPCM), так и переменным. Во втором случае он может быть определён либо для какого либо конкретного сообщения, либо оценён по некоторым критериям:

  • среднее (обычно по некоторому тестовому набора данных);
  • максимальное (случай наилучшего сжатия);
  • минимальное (случай наихудшего сжатия);

или каким либо другим. Коэффициент сжатия с потерями при этом сильно зависит от допустимой погрешности сжатия или его качества , которое обычно выступает как параметр алгоритма.

Допустимость потерь

Основным критерием различия между алгоритмами сжатия является описанное выше наличие или отсутствие потерь. В общем случае алгоритмы сжатия без потерь универсальны в том смысле, что их можно применять на данных любого типа, в то время как применение сжатия потерь должно быть обосновано. Некоторые виды данных не приемлят каких бы то ни было потерь:

  • символические данные, изменение которых неминуемо приводит к изменению их семантики: программы и их исходные тексты, двоичные массивы и т. п.;
  • жизненно важные данные, изменения в которых могут привести к критическим ошибкам: например, получаемые с медицинской измерительной техники или контрольных приборов летательных, космических аппаратов и т. п.
  • данные, многократно подвергаемые сжатию и расжатию: рабочие графические, звуковые, видеофайлы.

Однако сжатие с потерями позволяет добиться гораздо больших коэффициентов сжатия за счёт отбрасывания незначащей информации, которая плохо сжимается. Так, например алгоритм сжатия звука без потерь FLAC , позволяет в большинстве случаев сжать звук в 1,5-2,5 раза, в то время как алгоритм с потерями Vorbis , в зависимости от установленного параметра качетсва может сжать до 15 раз с сохранением приемлемого качества звучания.

Системные требования алгоритмов

Различные алгоритмы могут требовать различного количества ресурсов вычислительной системы, на которых исполняются:

  • оперативной памяти (под промежуточные данные);
  • постоянной памяти (под код программы и константы);
  • процессорного времени.

В целом, эти требования зависят от сложности и «интеллектуальности» алгоритма. По общей тенденции, чем лучше и универсальнее алгоритм, тем большие требования с машине он предъявляет. Однако в специфических случаях простые и компактные алгоритмы могут работать лучше. Системные требования определяют их потребительские качества: чем менее требователен алгоритм, тем на более простой, а следовательно, компактной, надёжной и дешёвой системе он может работать.

Так как алгоритмы сжатия и разжатия работают в паре, то имеет значение также соотношение системных требований к ним. Нередко можно усложнив один алгоритм можно значительно упростить другой. Таким образом мы можем иметь три варианта:

Алгоритм сжатия гораздо требовательнее к ресурсам, нежели алгоритм расжатия. Это наиболее распространённое соотношение, и оно применимо в основном в случаях, когда однократно сжатые данные будут использоваться многократно. В качетсве примера можно привести цифровые аудио и видеопроигрыватели. Алгоритмы сжатия и расжатия имеют примерно равные требования. Наиболее приемлемый вариант для линии связи, когда сжатие и расжатие происходит однократно на двух её концах. Например, это могут быть телефония. Алгоритм сжатия существенно менее требователен, чем алгоритм разжатия. Довольно экзотический случай. Может применяться в случаях, когда передатчиком является ультрапортативное устройство, где объём доступных ресурсов весьма критичен, например, космический аппарат или большая распределённая сеть датчиков, или это могут быть данные распаковка которых требуется в очень малом проценте случаев, например запись камер видеонаблюдения.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Сжатие информации" в других словарях:

    сжатие информации - уплотнение информации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы уплотнение информации EN information reduction …

    СЖАТИЕ ИНФОРМАЦИИ - (сжатие данных) представление информации (данных) меньшим числом битов по сравнению с первоначальным. Основано на устранении избыточности. Различают С. и. без потери информации и с потерей части информации, несущественной для решаемых задач. К… … Энциклопедический словарь по психологии и педагогике

    адаптивное сжатие информации без потерь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN adaptive lossless data compressionALDC … Справочник технического переводчика

    уплотнение/сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compaction … Справочник технического переводчика

    цифровое сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compression … Справочник технического переводчика

    Звук является простой волной, а цифровой сигнал является представлением этой волны. Это достигается запоминанием амплитуды аналогового сигнала множество раз в течение одной секунды. Например, в обыкновенном CD сигнал запоминается 44100 раз за… … Википедия

    Процесс, обеспечивающий уменьшение объема данных путем сокращения их избыточности. Сжатие данных связано с компактным расположением порций данных стандартного размера. Различают сжатия с потерей и без потери информации. По английски: Data… … Финансовый словарь

    сжатие цифровой картографической информации - Обработка цифровой картографической информации в целях уменьшения ее объема, в том числе исключения избыточности в пределах требуемой точности ее представления. [ГОСТ 28441 99] Тематики картография цифровая Обобщающие термины методы и технологии… … Справочник технического переводчика

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих - продольные силы N отрицательны (рис. 5).

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме "Растяжение-сжатие" =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ - нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l 1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε " имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε " к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно . В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность , пластичность , хрупкость , упругость и твердость .

Прочность - способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l 0 и начальным постоянным поперечным сечением площади A 0 статически растягивается с обоих торцов силой F.

Диаграмма сжатия стержня имеет вид (рис. 10, а)

где Δl = l - l 0 абсолютное удлинение стержня; ε = Δl / l 0 - относительное продольное удлинение стержня; σ = F / A 0 - нормальное напряжение; E - модуль Юнга; σ п - предел пропорциональности; σ уп - предел упругости; σ т - предел текучести; σ в - предел прочности (временное сопротивление); ε ост - остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ 0,2 - напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки (зона местной текучести). При достижении напряжением предела текучести σ т глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σ пред - предельное напряжение (σ пред = σ т - для пластических материалов и σ пред = σ в - для хрупких материалов); [n] - коэффициент запаса прочности. Для пластических материалов [n] = = 1,2 … 2,5; для хрупких материалов [n] = = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

data compression ), упаковка данных, компрессия , сжимающее кодирование, кодирование источника - алгоритмическое преобразование данных, уменьшающее их объём.
  • Сжатие без потерь (англ. Lossless data compression ) - метод сжатия, при котором исходные данные можно полностью восстановить из упакованных данных.
  • Сжатие данных с потерями (англ. Lossy compression ) - метод сжатия, при котором распакованные данные отличаются от исходных, но отличия не являются существенными для их дальнейшего использования.
Физика
  • Растяжение-сжатие - вид продольной деформации стержня или бруса, возникающей при приложении к нему нагрузки по его продольной оси.
  • Сжатие (термодинамика) - уменьшение объёма газа при его охлаждении.
  • Компрессия газов - силовое воздействие на газообразное тело, приводящее к уменьшению занимаемого им объёма, а также к повышению давления и температуры. Компрессия осуществляется в компрессорах , а также при работе двигателя внутреннего сгорания и других устройств.

См. также

  • Сжимающее отображение - отображение метрического пространства в себя, которое равномерно уменьшает все расстояния.
  • Степень сжатия - техническая характеристика двигателя внутреннего сгорания.
  • Компрессор аудиосигнала - электронное устройство или компьютерная программа, используемая для уменьшения динамического диапазона звукового сигнала.
  • Декомпрессия (значения)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Сжатие" в других словарях:

    СЖАТИЕ, сжатия, ср. (книжн.). 1. Действие по гл. сжать1 в 1 и 3 знач. Сжатие воздуха. «В те дни, как постигал я первую любовь по сжатию руки, по отблеску очей…» Фет. 2. Состояние по гл. сжаться. Сжатие сердца. Сжатие в двигателе. Сжатие льдов.… … Толковый словарь Ушакова

    - (squeeze) 1. Методы контроля, используемые правительством в целях ограничения темпов инфляции. Сжатие доходов (выплат) (income (pay) squeeze) ограничивает рост заработной платы, сжатие кредита (credit squeeze) ограничивает те суммы, которые банки … Словарь бизнес-терминов

    - (squeeze) 1. Методы контроля, используемые правительством в целях ограничения темпов инфляции. Сжатие доходов (выплат) (income (pay) squeeze) ограничивает рост заработной платы, кредитное сжатие (credit squeeze) ограничивает те суммы, которые… … Финансовый словарь

    Стягивание, сокращение, свертывание, урезание, свертка, сплющивание, стискивание, архивирование, усадка, пожимание, контракция, коллапс, сдавление, сплющенность, сжатость, уплотнение, архивация, сдвигание, съеживание, спазм, прессовка, стеснение … Словарь синонимов

    См. Растяжение сжатие … Большой Энциклопедический словарь

    - (Compression) процесс, происходящий в цилиндре двигателя и заключающийся в сжатии горючей смеси в карбюраторных и газовых нефтяных двигателях или воздуха в дизелях, нефтяных двигателях и компрессорах. С. в двигателе предшествует воспламенению… … Морской словарь

    СЖАТИЕ, уменьшение объема вещества путем принудительного вмещения его в малое по объему пространство (например, при компрессии газа) или ограничения расширения нагреваемого вещества (как при приготовлении пищи в скороварке). Этот процесс… … Научно-технический энциклопедический словарь

    СЖАТЬ 1, сожму, сожмёшь; сжатый; сов. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (см. РАСТЯЖЕНИЕ) . Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    сжатие - уплотнение — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом Синонимы уплотнение EN compression … Справочник технического переводчика

    Сжатие - – уменьшение длины тела призматической или цилиндрической формы, вызываемое силой, направленной вдоль его продольной оси. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург 2002] Рубрика термина: Общие термины Рубрики… … Энциклопедия терминов, определений и пояснений строительных материалов

Книги

  • Сжатие при смешении нормальных жидкостей , Е.В. Бирон. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1912 года (издательство "Санкт-петербург"…

Любое вещество под воздействием внешнего давления может сжиматься, то ест в той или иной степени изменят свой объем. Так, газы при увеличении давления могу очень существенно уменьшать свой объем. Жидкость подвержена изменению объема при изменении внешнего давления в меньшей степени. Еще меньше сжимаемость у твердых тел. Сжимаемость отражает зависимость физических свойств вещества от расстояний между его молекулами (атомами). Сжимаемость характеризуют при помощи коэффициента сжатия (Тоже самое: коэффициент сжимаемости, коэффициент всестороннего сжатия, коэффициент объемного упругого расширения).

ОПРЕДЕЛЕНИЕ

Коэффициент сжатия — это физическая величина, равная относительному изменению объема, деленному на изменение давления, которое вызывает изменение объема вещества.

Встречаются различные обозначения коэффициента сжатия, чаще всего это буквы или . В виде формулы коэффициент сжатия запишем как:

где знак минус отражает тот факт, что увеличение давления ведет к уменьшению объема и наоборот. В дифференциальной форме коэффициент определяют как:

Объем связан с плотностью вещества, поэтому для процессов изменения давления при постоянной массе, можно записать:

Величина коэффициента сжатия зависит от природы вещества, его температуры и давления. Помимо всего выше сказанного коэффициент сжатия зависит от вида процесса, в котором происходит изменение давления. Так, в изотермическом процессе коэффициент сжатия отличается от коэффициента сжатия в адиабатном процессе. Изотермический коэффициент сжатия определяют как:

где — частная производная при T=const.

Адиабатический коэффициент сжатия можно найти как:

где — частная производная при постоянной энтропии (S). Для твердых веществ коэффициент сжимаемости изотермический и адиабатический различается очень мало и этим различием часто пренебрегают.

Между адиабатическим и изотермическим коэффициентами сжимаемости существует связь, которая отражается уравнением:

где и — теплоемкости при постоянном объеме и давлении.

Единицы измерения коэффициента сжатия

Основной единицей измерения коэффициента сжимаемости в системе СИ является:

Примеры решения задач

ПРИМЕР 1




Образовательный журнал для школьников, воспитателей и учителей
2024 © chalt-1school.ru

Задание Пусть куб из твердого вещества со стороной равной испытывает всестороннее давление. Сторона куба при этом уменьшается на . Выразите коэффициент сжатия куба, если оказываемое на него давление изменяется по отношению к начальному на
Решение Сделаем рисунок.


В соответствии с определением коэффициента сжатия запишем:

Так как изменение стороны куба, вызванное давлением равно , то объем куба после сжатия () можно представить как:

Следовательно, относительное изменение объема запишем как:

Величина мала, поэтому считаем, что равны нулю, тогда можно положить, что:

Подставим относительное изменение объема из (1.4) в формулу (1.1), имеем:

Ответ