Симметрия пространства. I. Организационный момент. Стремление к совершенству

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

. Правильные многогранники.

Определение . Выпуклый многогранник называется правильным , если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.

Достаточно легко доказать, что правильных многогранников существует всего 5: правильный тетраэдр, правильный гексаэдр, правильный октаэдр, правильный икосаэдр, правильный додекаэдр. Этот поразительный факт дал повод древним мыслителям соотнести правильные многогранники и первоэлементы бытия.

Есть много интересных приложений теории многогранников. Одним из выдающихся результатов в данной области является теорема Эйлера , справедливая не только для правильных, но и для всех выпуклых многогранников.

Теорема : для выпуклых многогранников справедливо соотношение: Г + В – Р = 2 , где В – число вершин, Г – число граней, Р – число ребер.

Название многогранника

Количество граней (Г)

Количество вершин (В)

Количество рёбер (Р)

Первоэлемент бытия

тетраэдр

гексаэдр

икосаэдр

додекаэдр

Вселенная

четырехугольная пирамида

n – угольная пирамида

треугольная призма

n – угольная призма

Правильные многогранники обладают многими интересными свойствами. Одним из самых поразительных свойств является их двойственность: если соединить отрезками центры граней правильного гексаэдра (куба), то получится правильный октаэдр; и, наоборот, если соединить отрезками центры граней правильного октаэдра, то получится куб. Аналогично, двойственны правильные икосаэдр и додекаэдр. Правильный тетраэдр двойственен сам себе, т.е. если соединить отрезками центры граней правильного тетраэдра, то снова получится правильный тетраэдр.

. Симметрия в пространстве.

Определение . Точки А и В называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АВ . Точка О считается симметричной самой себе.

Определение . Точки А и В называются симметричными относительно прямой а (ось симметрии), если прямая а АВ и перпендикулярна этому отрезку. Каждая точка прямой а

Определение . Точки А и В называются симметричными относительно плоскости β (плоскости симметрии), если плоскость β проходит через середину отрезка АВ и перпендикулярна этому отрезку. Каждая точка плоскости β считается симметричной самой себе.

Определение . Точка (прямая, плоскость) называются центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры.

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Центр, ось и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

Пример . Правильный тетраэдр:

– не имеет центра симметрии;

– имеет три оси симметрии – прямые, проходящие через середины двух противоположных рёбер;

Имеет шесть плоскостей симметрии – плоскости, проходящие через ребро перпендикулярно противоположному (скрещивающемуся с первым) ребру тетраэдра.

Вопросы и задачи

    Сколько центров симметрии имеет:

а) параллелепипед;

б) правильная треугольная призма;

в) двугранный угол;

г) отрезок;

    Сколько осей симметрии имеет:

а) отрезок;

б) правильный треугольник;

    Сколько плоскостей симметрии имеет:

а) правильная четырёхугольная призма, отличная от куба;

б) правильная четырёхугольная пирамида;

в) правильная треугольная пирамида;

    Сколько и каких элементов симметрии имеют правильные многогранники:

а) правильный тетраэдр;

б) правильный гексаэдр;

в) правильный октаэдр;

г) правильный икосаэдр;

д) правильный додекаэдр?

Слайд 2

Форма урока:Урок – семинар, решение проблемного вопроса

Цели урока: Актуализировать личностное осмысление учащимися учебного материала «Движения в пространстве» Содействовать сознательному пониманию прикладного значения темы, развитию умения видеть в окружающей действительности изучаемые виды движений Развивать познавательный интерес к построению образов объектов при различных видах движений Способствовать грамотному усвоению темы, отработке практических навыков

Слайд 3

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.Г. Вейль.

Слайд 4

Движение пространства - это отображение пространства на себя, сохраняющее расстояние между точками.

Слайд 5

Центральная симметрия

  • Слайд 6

    Центральная симметрия – отображение пространства на себе, при котором любая точка М переходит в симметричную ей точку М1 относительно данного центра О.

    Слайд 7

    Слайд 8

    Слайд 9

    Фигуры, обладающие Центральной симметрией

  • Слайд 10

    Ст. метро Сокол

  • Слайд 11

    Ст. метро Римская

  • Слайд 12

    Павильон Культура, ВВЦ

  • Слайд 13

  • Слайд 14

    Осевая симметрия

  • Слайд 15

    Осевой симметрией с осью а называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей точку М1 относительно оси а. Осевая симметрия – это движение. а Осевая симметрия M M1

    Слайд 16

    Х y Z О M(x;y;z) M1(x1;y1;z1) Докажем, что осевая симметрия является движением. Для этого введем прямоугольную систему координат Oxyzтак, чтобы ось Oz совпала с осью симметрии, и установим связь между координатами двух точек M(x;y;z) и M1(x1;y1 ;z1) симметричных относительно оси Oz. Если точка М не лежит на оси Oz, то ось Oz: 1) проходит через середину отрезка MM1 и 2) перпендикулярна к нему. Из первого условия по формулам для координат середины отрезка получаем (x+x1)/2=0 и (y+y1)/2=0, откуда x1=-x и y1=-z. Второе условие означает, что аппликаты точек M и M1 равны: z1=z. Доказательство

    Слайд 17

    Доказательство

    Рассмотрим теперь любые две точки A(x1;y1;z1) и B(x2;y2;z2) и докажем, что расстояние между симметричными им точками A1 и B1 равно AB. Точки A1 и B1 имеют координаты A1(-x1;-y1;-z1) и B1(-x1;-y1;-z1) По формуле расстояния между двумя точками находим: AB=\/(x2-x1)²+(y2-y1)²+(z2-z1), A1B1=\/(-x2+x1)²+(-y2+y1)²+(-z2+z1). Из этих соотношений ясно, что AB=A1B1, что и требовалось доказать.

    Слайд 18

    Применение

    Осевая симметрия встречается очень часто. Ее можно увидеть как в природе: листья растений или цветы, тело животных насекомых и даже человека, так и в творении самого человека: здания, автомобили, техника и многое другое.

    Слайд 19

    Слайд 20

    Применение осевой симметрии в жизни

    Архитектурные строения

    Слайд 21

    Снежинки и тело человека

    Слайд 22

    Эйфелева Башня сова

    Слайд 23

    Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку которую я вижу в зеркале, нельзя поставить на место настоящей руки. Эммануил Кант.Зеркальная симметрия

    Слайд 24

    Отображение объемной фигуры, при котором каждой ее точкесоответствует точка, симметричная ей относительно данной плоскости,называется отражением объемной фигуры в этой плоскости (или зеркальнойсимметрией).

    Слайд 25

    Теорема 1. Отражение в плоскости сохраняет расстояния и, стало быть,является движением.Теорема 2. Движение, при котором все точки некоторой плоскостинеподвижны, является отражением в этой плоскости или тождественнымотображением.Зеркальная симметрия задается указанием одной пары соответствующихточек, не лежащих в плоскости симметрии: плоскость симметрии проходитчерез середину отрезка, соединяющего эти точки, перпендикулярно к нему.

    Слайд 26

    Докажем, что зеркальная симметрия – это движениеДля этого введем прямоугольную систему координат Оxyz так, чтобы плоскость Оxy совпала с плоскостью симметрии, и установим связь между координатами двух точек М(x; y; z) и М1(x1;y1;z1), симметричных относительно плоскости Оxy.

    Слайд 27

    Если точка М не лежит в плоскости Оxy, то эта плоскость: 1) проходит через середину отрезка ММ1 и 2) перпендикулярна к нему. Из первого условия по формуле координат середины отрезка получаем (z+z1)/2=0, откуда z1=-z. Второе условие означает, что отрезок ММ1 параллелен оси Оz, и. следовательно, х1=х, у1=у. М лежит в плоскости Oxy. Рассмотрим теперь две точки А (х1;у1;z1) и В (х2;у2;z2) и докажем, что расстояние между симметричными им точками А1(х1;у1;-z1) и В (х2;у2;-z2). По формуле расстояния между двумя точками находим: АВ= корень квадратный из (х2-х1)2+(у2-у1)2+(z2-z1)2, А1В1=корень квадратный из (х2-х1)2+(у2-у1)2+(-z2-z1)2. Из этих соотношений ясно, что и требовалось доказать.

    Слайд 28

    Симметрия относительно плоскости (зеркальная симметрия) пространства есть движение, а значит, обладает всеми свойствами движений: переводит прямую в прямую, плоскость --- в плоскость. Кроме того, это преобразование пространства, совпадающее со своим обратным: композиция двух симметрий относительно одной и той же плоскости есть тождественное преобразование. При симметрии относительно плоскости все точки этой плоскости, и только они, остаются на месте (неподвижные точки преобразования). Прямые, лежащие в плоскости симметрии и перпендикулярные ей, переходят в себя. Плоскости, перпендикулярные плоскости симметрии также переходят в себя. Симметрия относительно плоскости является движением второго рода (меняет ориентацию тетраэдра).

    Слайд 29

    Шар симметричен относительно любой оси, проходящей через его центр.

  • Слайд 30

    Прямой круговой цилиндр симметричен относительно любой плоскости, проходящей через его ось.

    Слайд 31

    Правильная n-угольная пирамида при четном n симметрична относительно любой плоскости, проходящей через ее высоту и наибольшую диагональ основания.

    Слайд 32

    Обычно считают,что наблюдаемый в зеркале двойник является точной копией самого объекта. В действительности это не совсем так. Зеркало не просто копирует объект, а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. В сравнении с самим объектом его зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала.Этот эффект хорошо виден на одном рисунке и фактически незаметен на другом.

    Слайд 33

    Предположим,что одна половина объекта является зеркальным двойником по отношению к другой его половине. Такой объект называют зеркально симметричным.Он преобразуется сам в себя при отражении в соответствующей зеркальной плоскости. Эту плоскость называют плоскостью симметрии.

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    СИММЕТРИЯ В ПРОСТРАНСТВЕ А А 1 О Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1 . Точка О считается симметричной самой себе.

    СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. Лист, снежинка, бабочка – примеры осевой симметрии. А 1 А а

    СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А 1 называются симметричными относительно плоскости (плоскость симметрии), если эта плоскость проходит через середину отрезка АА 1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе. А А 1

    Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. А 1 А О А 1 А О

    С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, многие здания симметричны относительно плоскости, например главное здание Московского государственного университета, некоторые виды деталей имеют ось симметрии. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии. В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

    ПРАВИЛЬНЫЕ МНОГОГРАННИКИ


    По теме: методические разработки, презентации и конспекты

    Методическое обоснование урока. Использование знаний из физики, астрономии, МХК, биологии на уроке геометрии при обобщении систематизации сведений по теме: «Симметрия в пространстве. Правил...