Как называется мост на тросах. Мост Хамбер, Великобритания. Подвесной мост на Марс

Подписаться на сайт

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Современная архитектура способна поразить не только своей красотой, но и грандиозностью замысла. Особое место в ней занимают подвесные мосты. Эти конструкции обеспечивают соединение в труднодоступных местах, и могут простираться на несколько километров. Самый длинный подвесной мост в мире расположен между японскими островами Хонсю и Авадзи. Он проходит через пролив Акаси.

Мост Акаси- Кайке – длиннейший подвесной мост на планете

Соединение между японскими островами Хонсю и Авадзи было довольно проблематичным. До 1998 года сообщение между островами обеспечивалось паромами. Но из-за частых штормов, бурь и мощнейших течений переправы паромами представляли серьезную опасность и нередко приводили к жертвам. Самая серьезная катастрофа здесь произошла в 1955 году: на дне пролива оказались сразу два парома, а количество жертв исчислялось сотнями. Чтобы сделать соединение между островами безопасным, было решено начать строительство огромного висячего моста.


Возведение Акаси-Кайке стартовало в 1988 году и закончилось через десять лет. Для начала потребовалось соорудить громадные пилоны, основание которых располагалось на дне пролива. Для этого проекта была создана марка бетона, не растворяющегося в воде в момент заливки. Небольшие задержки в сооружении моста возникли из-за землетрясения, случившегося в 1995 году. Но после месячного перерыва работы возобновились.

Сегодня подвесной мост позволяет пересекать пролив в полной безопасности. Он сконструирован так, что может выдерживать сильнейшие бури и землетрясения, противостоять течениям и штормам. Конструкция просто поражает своими размерами:

  • полная длина Акаси-Кайке – 3911 м;
  • пилоны возвышаются над поверхностью на 298 м;
  • длина основного пролета – 1991 м;
  • протяженность использованных в строительстве тросов – 200 км.

Мост Сихоумэнь

Второй по длине висячий мост находится в Китае. Его строительство на архипелаге Чжоушань было инициировано провинцией Чжэцзян. После создания проекта в 2004 году началось возведение конструкции. После 5 лет упорного труда мост был сдан в эксплуатацию. Его общая длина составляет 2600 метров, а основного пролета – 1 650м. Пилоны, удерживающие мост, возвышаются над поверхностью на 233 м. Каждый из них закреплен 12 сваями, диаметр которых составляет 2,8 м.


Сегодня благодаря мосту Сихоумень можно в считанные минуты добраться от о. Цзиньтан до о. Цэцзы. Скорость движения по конструкции ограничена: ехать можно со скоростью до 80 км/ч.

Поражает своими размерами подвесной мост Большой Бельт. Он располагается в Дании и лидирует по длине между подобными конструкциями Европы. Большой Бельт обеспечивает автотранспортное соединение между островами Фюн и Зеландия. Возведение моста стартовало в 1988 году и длилось около 10 лет. Общая протяженность моста составляет 6 790 м, а длина основного пролета – 1 624 м. Пилоны, расположенные в проливе, имеют высоту 233 м. Это пустотелые конструкции, стены которых сделаны из железобетона.


Значение моста Большой Бельт трудно переоценить, он не только соединяет острова Дании, но и значительно сокращает путь от континентальной Европы до Скандинавии.

В 2016 году в Турции завершилось строительство подвесного моста, который по длине занял четвертое место среди подобных конструкций. Он проходит над Измитским заливом и является продолжением автомагистрали, соединяющей крупнейшие города Гебзе и Бурсу. Общая длина конструкции составляет 2 682 м, а протяженность основного пролета 1 550 м. Начало строительства моста датируется 2013 годом. Несмотря на сложность конструкции, строителям удалось справиться с работой всего за 3 года.


Мост Ли Сунсин

Пятый по длине подвесной мост находится в республике Корея. Он обеспечивает соединение между городами Йосу и Кванъян, расположенными в Южной части Корейского полуострова. Длина всей конструкции равняется 2 260м, а основной пролет имеет протяженность в 1 545 м. Строительство моста началось в 2007 году, а уже через пять лет конструкция была сдана в эксплуатацию.


Мост Жуньян

В провинции Китая Цзянсу находится шестой по длине висячий мост, проходящий над рекой Янцзы. Благодаря конструкции было налажено соединение между крупными городами Китая Янчжоу и Чжэньцзян. Возведение конструкции длилось более 4,5 лет. Первые автомобили поехали по мосту в 2005 году. Длина всей конструкции равняется 3 566 м, а основного пролета – 1 490 м.


Седьмое место в категории длиннейших висячих мостов на планете занимает Четвертый Нанкинский мост. Его сооружение позволило обеспечить соединение между районами китайского мегаполиса Нанкин. Основной пролет конструкции проходит над рекой Янцзы и имеет длину 1 418 м. Общая протяженность моста – 5 437 м. Благодаря мосту, сданному в эксплуатацию в 2012 году, упростилась транспортная развязка города Нанкин.


Мост Хамбер

Одно из лидирующих мест досталось Мосту Хамбер. Он расположен в Англии и проходит над эстуарием Хамбер, в честь которого был назван. Он обеспечивает соединение между Восточным Йоркширом и Северным Линкольнширом. Мост Хамбер начал функционировать в 1981 году, и более 16 лет был лидером среди подобных конструкций. Его общая длина ровняется 2 220 м, а протяженность основного пролета – 1 410 м.


В Турции в 2016 году после трехлетнего строительства начал функционировать мост, который входит в десятку самых длинных висячих мостов мира. Он проходит над проливом Босфор недалеко от Стамбула. Часть конструкции поддерживается с помощью винтов, а часть удерживается в подвешенном состоянии тросами. Протяженность всего моста составляет 2 164 м, а основного пролета – 1 408 м. Конструкция является рекордсменом по ширине – 58,4 м.


Чтобы обеспечить трафик между скоростными дорогами Китая, через реку Янцзы был проложен мост Цзянъинь. Строительство его началось в 1995 году и продолжалось около 4 лет. Длина всего моста – 3 071 м, а основного пролета – 1 384 м. Основанием центрального пролета является единая стальная пластина, вес которой превышает 500 тон.

В висячих металлических мостах главными несущими элемен­тами служат кабели или ванты, работающие на растяжение.

Кабели изготавливают из крученых проволочных канатов, а при особо больших пролетах - из мощного пучка параллельных про­волок. Кабель, имеющий в пролете (по фасаду моста) криволиней­ное очертание, проходит над вершинами пилонов и в виде оттяжек закрепляется концами в устоях. К. кабелю с помощью подвесов подвешивают балки жесткости с конструкцией проезжей части моста. В вантовых мостах балки жесткости поддерживаются пря­молинейными наклонными оттяжками, закрепленными.на пилонах. Эти наклонные элементы из стальных крученых проволочных канатов или параллельных высокопрочных проволок называют ван­тами. Бывают также мосты с Байтовыми фермами, образо­ванными из прямолинейных отрезков стальных канатов, соединен­ных между собой в узлах. Схема и геометрические размеры вантовой фермы должны быть выбраны так, чтобы при любых воздей­ствиях расчетных нагрузок все ее элементы работали только на растяжение.

Крученые канаты для кабелей и вантов висячих мостов делают из стальной холоднотянутой оцинкованной проволоки с пределом прочности 1500-1800 МПа. Благодаря высокой прочности сталь­ных проволочных канатов вес висячих мостов получается наимень­шим, что дает возможность перекрывать ими очень большие про­леты. Наибольший по пролету висячий мост с кабелем, построен­ный в 1964 г. в Нью-Йорке, перекрывает пролет в 1300 м. Пролеты мостов с вантами достигают 300 м и более.

Висячие мосты с кабелем. . Наивыгоднейшая величина стрелы обычно составляет около 1 / 8 - 1 / 9 пролета.

При различных положениях временной нагрузки кабель меняет свое геометрическое очертание. Например, при загружении вре­менной нагрузкой левой половины пролета (рис. 19.4, а) кабель сильно провисает в этом полупролете за счет правого. В резуль­тате пролетное строение значительно прогибается в загруженной.половине пролета вниз и в незагруженной вверх, образуя двухволновую (S-образную) форму линии прогиба моста. Чтобы умень­шить большие прогибы, вызываемые деформациями кабеля, уст­раивают балки (или фермы) жесткости (см. рис. 19.4, а). Чем больше высота балки жесткости, тем меньше прогибы висячего моста под временной нагрузкой.

Известны и другие способы увеличения жесткости висячих мостов, например прикрепление кабеля в середине пролета к балке жесткости или же устройство. наклонных подвесок, превращающих систему в своеобразную фер­му (рис. 19.4, в).

Висячие мосты в зависимости от способа закрепления концов " кабеля разделяют на распорные и безраспорные. В распорных мостах усилия оттяжек (см. рис. 19.4, а) и концов кабеля (см. рис. 19.4, б) передаются на грунт или на массивные устои. В безраспорных мостах, называемых также висячими мостами с воспринятым распором, горизонтальные слагающие Н усилия в оттяжка и концевых частях кабеля (рис. 19.4, б) передаются балке жест­кости и только вертикальные слагающие требуют закрепления в устоях. Из-за передачи распора на балки жесткости возрастает затрата на них металла, но зато устои имеют меньший объем, чем в распорных мостах. Поэтому безраспорные висячие мосты приме­няют для сравнительно небольших пролетов не более 200-300-м в случае, когда из-за плохих грунтов желательно освободить устои от передачи им распора.



В висячих мостах на кабель передают всю постоянную нагруз­ку пролетного строения, включая вес балок жесткости с конструк­цией проезжей части. Для этого применяют специальные способы монтажа и конструктивные меры.

Используемые для кабелей стальные проволочные канаты обыч­но имеют крестовую свивку, при которой проволоки в прядях и сами пряди навиты в противоположные стороны (рис. 19.5, а). Толщина проволок в канатах составляет 3-5 мм. Против ржав­ления проволоки покрывают оцинковкой и, кроме того, заполняют промежутки между проволоками, прядями и канатами (в кабеле) антикоррозионной смазкой. Применяют также плотные или за­крытые канаты, в которых наружные слои имеют проволоки фасонного сечения (рис. 19.5, б), предохраняющие внутренние про­волоки от проникания к ним влаги.

Кабели образуют из нескольких, рядов канатов, стянутых стальными хомутами (рис. 19.5, в), к которым прикрепляют под­вески из стальных тяжей или крученых проволочных канатов. В мостах особо больших пролетов кабель часто делают из большого числа параллельных проволок. Кабель изготавливают на месте, постепенно навешивая последовательные нити проволоки с по­мощью движущихся вдоль кабеля прядильных колес. Такой спо­соб называют прядением кабеля. Навешенные проволоки обжи­мают, обматывая мягкой проволокой и обычно покрывают еще за­щитной оболочкой.

Пилоны современных висячих мостов возводят металлическими или, реже, железобетонными. Пилоны представляют собой мощные стойки, шарнирно опертые или защемленные нижним концом на опорах. Пилоны, шарнирно опертые нижним концом, принято на­зывать качающимися. Кабель проходит над вершинами пилонов и опирается на них с помощью стальных литых подушек.

В поперечном направлении стойки пилонов связывают между собой распорками (рис. 19.5, г), а при большой высоте - систем поперечных элементов. Иногда стойкам пилона придают наклон в поперечном направлении (рис. 19.5, д). В некоторых случаях находят применение пилоны в виде отдельно стоящих стоек.

Концы кабелей или оттяжек закрепляют в массивных бетонных или железобетонных устоях; при прочном скальном грунте возмож­но непосредственное закрепление в нем концов кабелей. Стальные канаты, составляющие кабель, обычно разводят веерообразно и закрепляют каждый с помощью анкерных стаканов (рис. Л9.5, е).. Для этого конец каждого каната расплетают, заводя в полость анкерного стакана и заливают расплавленным цинковым, алю­миниевым или другим сплавом. В безраспорных висячих мостах кабель закрепляют на конце балки жесткости (рис. 19.5, ж) или обводят через торец балки и закрепляют в кладке устоя.

Балки жесткости висячих мостов могут быть в виде балок со сплошной стенкой, решетчатых ферм и коробчатой конструкции.

В зависимости от схемы висячего моста балки жесткости мо­гут быть разрезными (см. рис. 19.4, а) и неразрезными (см. рис. 19.4, б, в). Балки располагают в плоскостях кабелей (рис. 19.5,з), или принимают другое их расположение, исходя из конструктив­ных соображений. Подвески прикрепляют непосредственно к балкамжесткости, к поперечным балкам проезжей части и к их ко 1 " солям. Между балками жесткости устанавливают ветровые связи. В новейших мостах балку жесткости устраивают в виде единой коробчатой конструкции с обтекаемым очертанием для уменьше­ния воздействия ветра (рис. 19.5, и).

Байтовые мосты. Эти мосты с балкой жесткости, поддержива­емой системой наклонных вантов, опирающихся на пилоны, как разновидность висячих мостов получили за последние годы широ­кое распространение.

В вантовых мостах балку жесткости изготавливают неразрез­ной, а ванты располагают симметрично по обе стороны пилонов. Крайние ванты в береговых пролетах закрепляют нижними кон­цами, над. опорами с тем, чтобы вертикальные-слагающие усилий этих вантов передавались непосредственно опорам. Горизонталь­ные слагающие усилий всех вантов передаются балке жесткости.

Ванты могут быть закреплены на пилонах различно. Если они веерообразно спускаются от вершины пилона к балке жесткости (рис. 19.6, а), то система будет радиальной. Если ванты оперты на пилоны в нескольких точках по их высоте и располагаются па­раллельно друг другу, то систему называют «арфа» (рис. 19.6, б). Мост с вантами может иметь только один пилон (рис. 19.6, в). В поперечном сечении моста обычно устраивают две плоскости ван-тов и пилонов (см. рис. 19.6, а). На дорогах с разделительной полосой могут быть.применены одностоечные пилоны, установлен­ные по продольной оси моста. В этом случае ванты располагают тоже в осевой плоскости (ем. рис. 19.6, б) или направляют их от вершин пилонов наклонно к краям моста (см. рис. 19.6, в).

Соотношение пролетов в трехпролетных вантовых мостах обычно составляет 1: 2,5: 1, а в двухпролетных - 1: 1,5-4-1: 2. Достоинство мостов с балкой жесткости и вантами- большая их жесткость по сравнению с кабельными мостами.

В вантовых мостах с балкой жесткости ванты делают из кру­ченых проволочных канатов тех же видов, которые применяют для кабелей. Каждый вант образуют из пучка канатов, закрепленных нижними концами с помощью анкерных стаканов к балкам жест­кости. На пилонах ванты обычно проходят непрерывно и переда­ют на них свои усилия с помощью опорных частей.

При опирании на пилон нескольких вантов на разной высоте (система «арфа») один из них, обычно верхний, закрепляют не­подвижно, обводя его по. седловидной подушке. Остальные ванты опирают с помощью продольно подвижных опорных, чаете или шарнирно.поворачивающегося балансира (рис. 19.6, г).

Мост – одно из самых древних изобретений человечества. Мосты стали своеобразным символом самоутверждения человека и преодоления сил природы. Благодаря им сокращаются временные затраты на дорогу, а торговое и стратегическое значение становится просто колоссальным.

По своей пропускной нагрузке мосты делятся на железнодорожные, пешеходные, автомобильные и комбинированные. По статической схеме мосты могут быть балочными, понтонными, распорными или ферменными. TravelAsk представляет 10 наиболее длинных висячих мостов, входящих в категорию распорных систем. Главной отличительной особенностью таких мостов является их несущая конструкция, которая сделана из гибких растяжек. Благодаря ей проезжая часть может находиться в так называемом подвешенном состоянии.

Мост Макинак (или "Большой Мак")

Мост находится в Америке и пролегает над проливом Макино, объединяющим озера Гурон и Мичиган. Длина его основного пролета – 1158 метров.

Мост Хёгакустенброн

Швейцарский мост, пересекающий реку Онгерманэльвен. Длина основного пролета – 1210 метров.


Мост Золотые Ворота

Мост Золотые Ворота построен в . Он соединяет Сан-Франциско на севере полуострова с южной частью округа Марин. Его основной пролет имеет длину 1280 метров.

Мост Верразано

Еще один американский мост. Соединяет районы Нью-Йорка Бруклин и Статен-Айленд. Длина основного пролета равняется 1298 метрам.


Мост Цинма

Мост Цинма расположен в Гонконге и служит соединением между островом Цинг-И на востоке и островом Ма-Ван на западе. Имеет основной пролет в 1377 метров.


Мост Хамбер

Этот однопролетный подвесной мост находится в Великобритании. Он соединяет Восточный Йоркшир и Северный Линкольншир. Длина основного пролета – 1410 метров.

Мост Жуньян

Основной пролет у этого китайского моста равен 1490 метрам. Он соединяет два старинных города – Янчжоу и Чжэньцзян.


Мост Большой Бельт

Мост Большой Бельт в Дании и правда большой – его основной пролёт составляет в длину 1624 метра. Он пересекает одноименный пролив и соединяет острова Фюн и Зеландия.

Мост Сихоумэнь

Китайцы сильно постарались и построили второй по длине мост в мире, основной пролет которого равен 1650 метрам. Мост соединяет остров Цзиньтан и острова Цэцзы.


Мост Акаси-Кайкё

Превзошли Китай только японцы. Их мост Акаси-Кайкё, пересекающий пролив Акаси, считается самым длинным в мире, ведь основной пролет у него достигает 1991 метра.

РЕФЕРАТ

по дисциплине: "Конструкции инженерных сооружений"

на тему: ВИСЯЧИЕ МОСТЫ

Введение 3

1. Краткий исторический очерк развития висячих и вантовых мостов 5

2. Стальная радуга мостов 8

3. Особенности архитектуры металлических мостов. 12

4. Особенности архитектуры железобетонных мостов 13 Список использованной литературы 16

Введение

Висячие конструкции - строительные конструкции, в которых основные элементы, несущие нагрузку, например, тросы, кабели, цепи, сетки, листовые мембраны и т.п., испытывают только растягивающие усилия. Работа висячих конструкций на растяжение позволяет полностью использовать механические свойства высокопрочных материалов (стальной проволоки, капроновых нитей и др.), а незначительный вес их даёт возможность перекрывать сооружения с наибольшими пролётами. Висячие конструкции сравнительно просты в монтаже, надёжны в эксплуатации, отличаются архитектурной выразительностью. Недостатками висячих конструкций являются наличие распоров и большой деформативности под действием местной нагрузки. Для восприятия распоров устраиваются анкерные фундаменты или так называемые контурные конструкции (кольца, опоясывающие по периметру висячих конструкций). Уменьшение деформативности висячих конструкций достигается введением стабилизирующих элементов - оттяжек, раскосов, балок жёсткости, дополнительных поясов, а также приданием висячим конструкциям формы, допускающей предварительное напряжение. Геометрически неизменяемые висячие конструкции, выполненные из прямолинейных элементов (вантов), называются вантовыми. Висячие конструкции могут быть плоскими и пространственными. Простейший вид плоской висячей конструкции - закрепленный на опорах трос с подвешенными к нему элементами, воспринимающими местную нагрузку. Современные плоские висячие конструкции применяются главным образом в висячих мостах, висячих покрытиях, канатных дорогах, подвесных переходах трубопроводов (рис. 1) и т.п.

Висячий мост - мост, в котором основная несущая конструкция выполнена из гибких элементов (кабелей, канатов, цепей и др.), работающих на растяжение, а проезжая часть подвешена. В современных висячих мостах широко применяют проволочные кабели и канаты из высокопрочной стали с пределом прочности 2-2,5 Гн/м 2 (200-250 кгс/мм 2), что существенно снижает собственный вес моста и позволяет перекрывать большие пролёты. Наряду с этим висячие мосты имеют малую жёсткость вследствие того, что при движении временной нагрузки по мосту кабель (цепь) изменяет свою геометрическую форму, вызывая большие прогибы пролётного строения. Для уменьшения прогибов висячие мосты усиливают в уровне их проезжей части продольными балками или фермами жесткости, распределяющими временную нагрузку и уменьшающими деформацию кабеля. Висячие мосты, в которых проезжая часть поддерживается геометрически неизменяемой висячей формой из прямолинейных канатов - вантов, называются вантовыми. Висячие системы применяют главным образом для автодорожных и городских мостов(рис. 1 ). Крупнейший висячий мост, сооружённый в 1965 при входе в нью-йоркскую бухту Веррацано (США), имеет средний пролёт длиной 1298 м (рис. 2 ).

Рисунок 1. Пешеходный висячий мост через р. Днепр в Киеве. 1956-1957г.


Рисунок 2.Висячий мост в бухте Веррацано. 1965г

Краткий исторический очерк развития висячих и вантовых мостов

Идея применения гибких растянутых элементов растительного происхождения (лианы, бамбук) для перекрытия рек и ущелий возникла, очевидно, на заре человеческого общества. Достаточно достоверные исторические данные свидетельствуют о постройке таких мостов в Древнем Египте, Юго-Восточной Азии, Центральной и Южной Америке.

Переход от примитивных конструкций висячих мостов к современным системам относится к XVII-XVIII вв и связан с именами Веррантиуса (Испания), Пойе (Франция) и Финлея (Англия), который получил на свою висячую систему патент.

Первый период развития висячих мостов, относящийся к XVIII в., представлен небольшими цепными мостиками:

· 1741 г., Англия, р.Тисе, пролет L= 21 м,

· 1785 г., Германия, р. Лаан, пролет L = 38 м,

· 1796 г., США, L = 29 м и другие.

Второй период - XIX в. - характерен широким внедрением новых материалов (чугуна, стали), что дало мощный импульс развитию висячих мостов.

К 1809 г. в Америке было построено около 40 висячих мостов. В 1814 г. в Лондоне сооружен пешеходный мостик пролетом 32 м, цепи которого составлены из плоских звеньев, соединенных болтами. В 1816 г. впервые цепь была заменена проволочным кабелем.

1820 г., Англия, р. Твид, L = 110 м - первый висячий мост под экипажную езду.

1834 г., в г. Фрейбурге французскими инженерами построен один из выдающихся мостов Европы пролетом 265 м. Мост чрезвычайно живописен, он буквально парит над горной долиной.

1883 г., США, Нью-Йорк, Бруклинский мост, L = 486 м, позволил почти вдвое увеличить мировой рекорд по величине пролета. Пример подлинно монументального сооружения: эффект контраста массивных каменных пилонов и ажурной паутины кабелей, вант, подвесок (три плоскости). Наверное, самый популярный мост у поэтов, художников, писателей - достаточно вспомнить стихотворение В.В. Маяковского "Бруклинский мост".

1895 г., Англия, р. Темза - Тауэрский мост-замок, L = 63 м, - своего рода символ Лондона, его достопримечательность, характерной особенностью которой является сочетание среднего разводного пролетного строения и двух боковых - висячих.

Третий период - нынешний век - характерен бурным развитием висячих мостов, использованием достижений науки и техники.

1903 г., США, г. Нью-Йорк, Вильямсбургский мост, L = 488 м.

1930 г., США, г. Детройт, L = 564 м, первый висячий мост, вышедший на первое место среди всех систем мостов по длине пролета, превзойдя Квебекский мост пролетом 548 м (металлическая консольно-подвесная ферма).

1931 г., США, р. Гудзон, L= 1067 м - первый мост, превзошедший километровый пролет, окончательно закрепивший превосходство висячих систем.

1937 г., США, г. Сан-Франциско, мост Золотые Ворота, L = 1280 м, предмет национальной гордости американцев (на праздновании 50-летия моста в 1987 г. собралось 150 000 человек), получил много призов за красоту, особый эффект от оранжевого кабеля на фоне голубого океана.

1965 г., США, г. Нью-Йорк, мост "Верразано-Нерроуз", L = 1298 м - последний американский мировой рекорд, оставшийся рекордом Америки.

1981 г., Великобритания, пролив Хамбер, L = 1410 м.

Первые висячие мосты в России построены в Петербурге в 1820-1830-е гг.:

1823 г., пешеходный мостик в Екатерингофском парке пролетом 15,2 м;

1824 г., Пантелеймоновский мост через р. Фонтанку у Летнего сада, L = 40 м (разобран в 1905 г. после разрушения соседнего Египетского моста при проходе кавалерийского отряда).

Некоторые пешеходные висячие мостики того периода сохранились до сих пор: Почтамтский (через Мойку), Банковский и Львиный (через канал Грибоедова).

1836 г., г. Брест-Литовск, первый в России висячий мост на проволочных канатах, L = 89 м.

1847 г., г. Киев, р. Днепр, четырехпролетный мост, L = 134 м, разрушен белополяками в 1920 г.

В XX в. на территории СССР построен ряд висячих мостов весьма больших пролетов под трубопроводы (р. Амударья, L = 660 м; р. Днепр, L = 720 м) и временный мост пролетом 874 м через Волгу под конвейерную линию при строительстве ГЭС.

Таблица 1. Самые большие висячие мосты мировой практики

Страна Город (место) Препятствие Пролет, м Год завершения строительства Название моста
Япония о. Хонсю - о. Сикоку пролив 1990 1998 Akashi-Kaikyo (Акаси)
Дания Хальсков -Спрогё пролив 1624 1997 Большой Бельдт
Сянган (Гонконг) о. Лантау пролив 1413 1997 Tsing Ма (Цзин-Ма)
Великобритания г. Гулль залив Хамбер 1410 1981 Humber (Хамбер)
США г. Нью-Йорк р. Гудзон 1298 1965 Verrazano-Narrows (Верразано-Нерроуз)
США г. Сан-Франциско залив 1280 1937 Golden Gate (Золотые ворота)
Швеция Веда-Хорнё пролив 1210 1997 Хога Хустен
США Мичиган пролив Макинак 1158 1957 Большой Мак
Япония о. Хонсю - о. Сикоку пролив 1100 1988 1) Seto Ohashi (Сето Охаси) 2) Minami Bisan Seto (Минами Бисан Сето)
Турция г. Стамбул пролив Босфор 1090 1988 Фатах Султан Мехмет
Турция г. Стамбул пролив Босфор 1074 1973 Босфорский
США г. Нью-Йорк р. Гудзон 1067 1931 Дж. Вашингтона
Япония о. Хонсю - о. Сикоку пролив 1030 1999 Курусима-З
Япония о. Хонсю - о. Сикоку пролив 1020 1999 Курусима-2
Португалия г. Лиссабон р. Тахо 1013 1966 Мост 25 апреля (Винте э Синко де Абрил)
Великобритания г. Эдинбург залив Форт 1006 1964 Forth (Фортский мост)

Некоторые сведения о первых вантовых мостах: 1817 г., Англия, пешеходный мост, L = 33,5 м. 1868 г., г. Прага, р. Влтава, L = 146 м, вантовая ферма. 1909 г., Франция, мост Кассагне, L = 156 м, построен инженером Жискляром.

Большое внимание строительству мостов с вантовыми фермами уделялось в 1930-1940 гг. в СССР (р. Магана, L = 80м; р. Сурхоб, L = 120 м; р. Нарын, L = 132 м; р. Заревшан, L = 145 м).

Общие сведения о самых больших висячих мостах мировой практики, в том числе строящихся, приведены в таблице 1.

Страница 2 из 6

Висячие мосты простейших типов известны в странах Европы, Азии, Африки и Америки со времени возникновения устойчивой сети дорог, развития торговли и обмена. Идея использования висячей конструкции при устройстве мостовых переходов закономерно возникала на определенном уровне развития производительных сил на разных континентах и у разных народов. В центральной Азии и на Кавказе при переходах через горные реки строили узкие висячие мосты без перил (рис. 7.3). В Южной Америке, по свидетельству Гумбольдта, для перехода через реку использовали мосты на канатах, сплетенных из растительных волокон, прикрепленных к вершинам деревьев. Металлические цепные висячие мосты начали строить в Англии в эпоху промышленной революции с 40-х годов XVIII в.

Рис. 7.3 - Висячий мост в Центральной Азии

Конструктивные схемы висячих мостов позволяют, как правило, создавать сооружения, обладающие большой архитектурной выразительностью, благодаря четкому выделению несущей конструкции и ее опорных точек. Такие мосты хорошо «читаются» на фоне городской застройки. Они неоднократно возводились в ряде крупных городов Европы и Америки. В нашей стране при реализации плана реконструкции Москвы в 1936 г. через р. Москву по проекту инж. Б. П. Константинова построен висячий мост, получивший название Крымского по древнему названию существовавшего здесь брода. Крымский мост имеет отдельно стоящие пилоны при рекордной ширине проезда (см. рис. 7.1 в предыдущей лекции). Такое решение потребовало специальных динамических расчетов, подтвердивших надежность сооружения. Мост весьма успешно эксплуатируется до настоящего времени и является одним из красивейших мостов Москвы.

Первый из мостов, центральный пролет которого превышает километровый рубеж, построен в Сан-Франциско в 1937 г. через пролив Золотые Ворота. Глубина пролива по оси перехода, достигающая 115 м, а также особые условия судоходства у входа в гавань крупнейшего порта тихоокеанского побережья США продиктовали выбор висячей схемы сооружения. Вес каждого из пилонов, выполненных в основном из углеродистой стали, составлял 220 000 кН. В верхней части пилонов на длине 60 м применена более прочная кремнистая сталь. Поперечное сечение пилона - ячеистое, развитое вдоль и поперек моста (рис. 7.4). Форма поперечного сечения позволяет легко изменять по высоте площадь и момент инерции в соответствии с требованиями расчета и характером силовых воздействий на пилон. Площадь поперечного сечения пилона в верхней части 25 100 см 2 , в нижней, у основания - 48 600 см 2 . Кабели заделаны в массивы из бетона объемом по 24 500 м 3 , опирающиеся на скальное основание. Несущий кабель состоит из 61 пряди по 452 проволоки в каждой и имеет диаметр 921 мм. Расстояние между фермами жесткости 27, 42 м. Ширина проезжей части 18,28 м рассчитана на шесть полос автомобильного движения с тротуарами по 3,35 м. Интенсивность постоянной нагрузки в среднем пролете 321 кН/м и в боковых - 302 кН/м, а временной для всего моста - 595 кН/м, т. е. постоянная нагрузка превосходит временную примерно в 5,4 раза.

Рис. 7.4 - Поперечные сечения пилонов мостов: а - Золотые Ворота; б - Веррацано-Нерроуз

Мост через пролив Золотые Ворота сдан в эксплуатацию за 3 года до Такомской катастрофы и имеет не совсем благоприятное отношение ширины к центральному пролету. Сооружение в целом чувствительно к ветру и отнесено к недостаточно устойчивым.

При сооружении во Франции Танкарвильского моста через р. Сену на автомобильной дороге Гавр-Руан, открытого для движения в 1959 г., была реализована идея надежной связи между кабелем и верхним поясом фермы жесткости в середине пролета (рис. 7.5). Такая связь при условии закрепления фермы жесткости от горизонтальных перемещений на одной из опор сильно затрудняет развитие наиболее опасных кососимметричных форм колебаний пролетного строения и повышает аэродинамическую устойчивость пролетного строения. При выборе конструкции пролетного строения были приняты меры для уменьшения ее лобового сопротивления при боковом ветре. Конструкция проезжей части в виде тонкой плиты расположена на балках, прикрепленных к узлам жесткости. Сквозная конструкция для ветрового потока значительно меньшее препятствие, чем балка жесткости со сплошной стенкой Такомского моста.

Рис. 7.5 - Танкарвильский мост, 1959 г

Массивный устой в левобережной пойме р. Сены оказался необходимым в связи с обеспечением подмостового габарита. Выход скальных пород на правом берегу позволил отказаться от устройства дорогостоящего устоя и заанкерить кабели непосредственно в скале в наклонных штольнях.

В ноябре 1964 г. в США был сдан в эксплуатацию один из крупнейших в мире висячих мостов в устье р. Гудзон у входа в Нью-Йоркскую гавань, названный по имени итальянского мореплавателя Джиованни да Веррацано, впервые исследовавшего в 1524 г. гавань, на берегах которой впоследствии возник Нью-Йорк. Мост построен на скоростной автостраде в Нью-Йорке вместо ранее существовавшей паромной переправы. Пропускная способность моста, рассчитанного на 12 полос движения, составляет 48 млн. автомобилей в год (рис. 7.6). Центральный пролет моста 1300 м, общая длина с подходами 4178,5 м, а висячей части 2040 м. Каждый из четырех несущих кабелей, расположенных попарно, имеет диаметр 915 мм и сформирован из 61 проволочной пряди, составленной из 428 параллельных стальных проволок диаметром по 5 мм с пределом прочности 1580 МПа. Разрывное усилие для кабеля достигает 1 000 000 кН, Мощные стальные рамы обеспечивают неизменность контура формы жесткости. Железобетонная плита проезжей части вместе с системой продольных балок и связей и неизменяемыми боковыми гранями ферм скомпанована в замкнутую пространственную конструкцию трубчатого типа, обладающую высокой жесткостью при кручении. Верхняя и нижняя проезжие части разделены продольными барьерами на две половины для трех полос движения, каждая из которых имеет ширину 3,75 м. Проезжая часть имеет 2%-ный уклон от середины главного пролета к устоям.

Рис. 7.6 - Мост Веррацано-Нерроуз, 1964 г.

Общая масса несущих кабелей - 31787 т; расход высокопрочной стали на сооружение висячей части моста составляет 108 840 т, на подходы - 18140 т. Расход арматурной стали на висячую часть моста - 21 768 т. и на подходы 9070 т, бетона соответственно - 459 000 и 84 150 м 3 .

По сравнению с мостом Золотые Ворота нагрузка на кабели возросла на 75%, что вызвано утяжелением конструкции проезжей части и увеличением числа полос движения транспорта. Повышение уровня натяжения несущих кабелей существенно увеличило жесткость пролетного строения. Допустимые напряжения для кабелей 600 МПа.

Каждая из подвесок образована четырьмя парами стальных канатов диаметром по 56 мм. Пара подвесок образует петлю, огибающую укрепленный на кабеле стальной хомут, стянутый болтами. С учетом места расположения моста большое внимание было уделено выбору конструктивных форм и архитектуре моста. Удачна форма стальных пилонов, имеющих спокойный силуэт без лишних деталей, что подчеркивает грандиозные масштабы сооружения.

Интересен самый большой в мире висячий мост под двухъярусную совмещенную езду, построенный в 1966 г. в Лиссабоне через р. Тахо. Особое внимание в его конструкции уделено сейсмостойкости сооружения, поскольку Лиссабон расположен в тектонически активной зоне побережья Атлантического океана и неоднократно подвергался сильным землетрясениям. Расчетную схему моста проверяли на возможное воздействие землетрясения путем решения на ЭВМ соответствующей динамической задачи о кинематическом возбуждении колебаний с определением инерционных сил и внутренних усилий в системе.

При этом в расчете была использована реальная запись одного из сильных землетрясений, наблюдавшегося в Калифорнии.

Мост предназначен для пропуска двухпутной железной дороги и шести полос автомобильного движения, причем ввод сооружения в эксплуатацию был предусмотрен в две очереди. Строительство первой очереди предназначено для пропуска 20 000 авт./сут. по четырем полосам движения (рис. 7.7 и 7.8, а). Вторая очередь обеспечит расширение верхнего проезда до шести полос и прокладку двухпутной железнодорожной колеи (рис. 7.7 и 7.8, б). В связи с возрастанием расчетной временной нагрузки висячее пролетное строение должно быть усилено за счет устройства системы дополнительного кабеля и прямолинейных вант, поддерживающих узлы фермы жесткости. Стальные конструкции моста при этом не потребуют усиления, так как они изготовлены из высокопрочной-легированной стали с пределом прочности до 950 МПа. Заводские стыки конструкций пилонов выполнены на заклепках, а балок жесткости - на сварке. Все монтажные стыки - на высокопрочных болтах.

Рис 7.7 - Левая (а) и правая (б) части моста Тахо. 1966 г.: № 1-7 номера опоры моста

Рис. 7.8 - Поперечный разрез фермы жесткости моста Тахо

Представляют интерес также некоторые технико-экономические данные моста.

Расстояние между устоями - 2277,64 м, между кабелями -23,5 м. Высота подмостового габарита - 70,1 м (см. рис. 7.7 и рис. 7.8). Каждый кабель сформирован из 87 проволочных прядей по 304 оцинкованных проволоки диаметром 4,9 мм. Дополнительный кабель предусмотрен из 20 тросов диаметром по 67 мм; длинные ванты вставлены из 12 таких же тросов.

Фундаментами пилонов служат опускные колодцы (рис. 7.9), при этом основание опоры № 3 под южным пилоном заложено на рекордной глубине -- 79,3 м ниже уровня воды. Высота пилонов над водой - 190,5 м. Расход материалов на мост - 72600 т стали и 263000 м 3 бетона.

Рис. 7.9 - Промежуточные опоры № 4 и 5 (см. рис. 7.7)

Один из наиболее совершенных и перспективных типов висячих мостов - мосты с наклонными подвесками . В ЦНИИпроектстальконструкции в 1972 - 1973 гг. запроектирован висячий трубопровод с нагонными подвесками и главным пролетом 390 м для перехода через р. Амударью на газопроводной магистрали Бухара-Урал, а в 1974 г. построен висячий трубопровод с пролетом 680 м тоже через р. Амударью.

Выдающиеся по своим техническим данным мосты с наклонными подвесками построены в Англии. Первые аэродинамические испытания были начаты английской Национальной физической лабораторией в связи с разработкой проектов Фортского и Севернского мостов, последний из которых построен по схеме с наклонными подвесками и открыт для движения в 1965 г.

Основные конструктивные решения, примененные в проекте Севернского моста, были впоследствии использованы при строительстве мостов через проливы Босфор и Хамбер. Балки жесткости этих мостов имеют хорошо обтекаемую форму поперечного сечения и представляют собой замкнутые металлические коробки малой высоты, присоединенные к кабелям при помощи наклонных подвесок, образующих жесткую решетчатую конструкцию. Мост через пролив Босфор (рис. 7.10) сдан в эксплуатацию в октябре 1973 г. и предназначен для пропуска шести полос автомобильного движения. Общая стоимость его составила 36 млн. долл. Мост расположен в сейсмической зоне и рассчитан на сейсмическое воздействие, эквивалентное ускорению 0,1 g.

Рис. 7.10 - Висячий металлический мост через пролив Босфор