Биология атф и другие органические соединения клетки. АТФ и другие органические соединения клетки — Гипермаркет знаний. А также другие работы, которые могут Вас заинтересовать

Вопрос 1. Какое строение имеет молекула АТФ?
АТФ - это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04 %; в скелетных мышцах 0,5 %). Молекула аденозинтрифосфорной кислоты (АТФ) по своей структуре напоминает один из нуклеотидов молекулы РНК. АТФ включает три компонента: аденин, пятиуглеродный сахар рибозу и три остатка фосфорной кислоты, соединенных между собой особыми макроэргическими связями.

Вопрос 2. Какую функцию выполняет АТФ?
АТФ является универсальным источником энергии для всех реакций, протекающих в клетке. Энергия выделяется в случае отделения от молекулы АТФ остатков фосфорной кислоты при разрыве макроэргических связей. Связь между остатками фосфорной кислоты является макроэргической, при ее расщеплении выделяется примерно в 4 раза больше энергии, чем при расщеплении других связей. Если отделяется один остаток фосфорной кислоты, то АТФ переходит в АДФ (аденозиндифосфорную кислоту). При этом выделяется 40 кДж энергии. При отделении второго остатка фосфорной кислоты выделяется еще 40 кДж энергии, а АДФ переходит в АМФ (аденозинмонофосфат). Выделившаяся энергия используется клеткой. Энергию АТФ клетка использует в процессах биосинтеза, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т.д. АТФ является универсальным аккумулятором энергии в живых организмах.
При гидролизе остатка фосфорной кислоты выделяется энергия:
АТФ + Н 2 О = АДФ + Н 3 РО 4 + 40 кДж/моль

Вопрос 3. Какие связи называются макроэргическими?
Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

Вопрос 4. Какую роль выполняют в организме витамины?
Обмен веществ невозможен без участия витаминов. Витамины - низкомолекулярные органические вещества, жизненно необходимые для существования организма человека. Витамины или совсем не вырабатываются в человеческом организме, или вырабатываются в недостаточных количествах. Так как чаще всего витамины являются небелковой частью молекул ферментов (коферментами) и определяют интенсивность множества физиологических процессов в организме человека, то необходимо их постоянное поступление в организм. Исключения до некоторой степени составляют витамины группы В и А, способные в небольших количествах накапливаться в печени. Кроме того, некоторые витамины (В 1 В 2 , К, Е) синтезируются бактериями, обитающими в толстом кишечнике, откуда и всасываются в кровь человека. При недостатке витаминов в пище или заболеваниях желудочно-кишечного тракта поступление витаминов в кровь уменьшается, и возникают заболевания, имеющие общее название гиповитаминозов. При полном отсутствии какоголибо витамина возникает более тяжелое расстройство, получившее название авитаминоза. Например, витамин D регулирует обмен кальция и фосфора в организме человека, витамин К участвует в синтезе протромбина и способствует нормальной свертываемости крови.
Витамины подразделяются на водорастворимые (С, РР, витамины группы В) и жирорастворимые (А, D, E и др.). Водорастворимые витамины усваиваются в водном растворе, а при их избытке в организме легко выводятся с мочой. Жирорастворимые витамины усваиваются вместе с жирами, поэтому нарушение переваривания и всасывания жиров сопровождается нехваткой рада витаминов (А, О, К). Значительное увеличение содержания жирорастворимых витаминов в пище может вызвать ряд нарушений обмена веществ, так как эти витамины плохо выводятся из организма. В настоящее время насчитывается не менее двух десятков веществ, относящихся к витаминам.

«Органическая шерсть» - Комплект для новорожденного. Содержите малыша в комфортном тепле и не сковывает движения. Энергетика шерсти похожа на энергетику мамы. Поглощает влагу. Рост 86, 1-2 года Вкладыши для груди. Одежда Organic & Natural ™ Baby из органической шерсти: Нежная и мягкая. Нежная шерсть и наружный шов не раздражает кожу малыша.

«Уроки по органической химии» - Качественная и количественная Фактическая. Термин «органические вещества» введен в науку Й.Я.Берцелиусом в 1807 году. Phosphorus. М.Бертло синтезирует жиры (1854 г.). Классификация органических веществ. А.М.Бутлеров синтезирует сахаристое вещество (1861 г.). Вопросы. А.Кольбе синтезирует уксусную кислоту (1845 г.).

«Эволюция органического мира» - Копчик человека. Гоацин - современная птица, некоторыми признаками сходная с археоптериксом. Интернет источники. Эволюция. Ехидна. Казуар – австралийский страус. Утконос. Изучив материал темы «Доказательства эволюции органического мира» Вы должны уметь: Доказательства эволюции органического мира. Одиннадцатилетний Прутвирай Патил из деревни Сангливади в индийском штате Махараштра.

«Органические вещества клетки» - Спасибо за внимание. Каковы функции углеводов и липидов? Органические вещества, входящие в состав клетки. Вывод. Липиды. Перечислите функции белков. Закрепление. Сделать вывод. Повторить домашнее задание Изучить новую тему. Углеводы состоят из атомов углерода и молекул воды. Какие органические вещества входят в состав клеток?

«Шиповые соединения» - Для упрочнения соединений применяют нагели. Косую стамеску для чистового точения затачивают с двух сторон. Рабочая часть долота имеет форму клина с углом 35 . В зависимости от вида клея изделие выдерживают в сжатом состоянии до 24 ч. Долото предназначено для долбления гнезд и проушин. Характерным элементом фасонных деталей являются галтели.

«Биологически активные соединения» - Мировое производство важнейших жиров и масел. Латанопрост (Ксалатан) – антиглаукомное средство (на основе синтетического простагландина группы F2a). Каскад арахидоновой к-ты. Простые липиды – воски. Первичная классификация липидов биологических мембран. Биологически активные соединения живых организмов.

Аденозинтрифосфорная кислота – АТФ

Нуклеотиды являются структурной основой для целого ряда важных для жизнедеятельности органических веществ, например, макроэргических соединений.
Универсальным источником энергии во всех клетках служит АТФ - аденозинтрифосфорная кислота или аденозинтрифосфат.
АТФ содержится в цитоплазме, митохондриях, пластидах и ядрах клеток и является наиболее распространенным и универсальным источником энергии для большинства биохимических реакций, протекающих в клетке.
АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтез веществ, деление и т.д. В среднем содержание АТФ в клетке составляет около 0,05% её массы, но в тех клетках, где затраты АТФ велики (например, в клетках печени, поперечно полосатых мышц), её содержание может доходить до 0,5%.

Строение АТФ

АТФ представляет собой нуклеотид, состоящий из азотистого основания - аденина, углевода рибозы и трёх остатков фосфорной кислоты, в двух из которых запасается большое количество энергии.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом ~ ), так как при ее разрыве выделяется почти в 4 раза больше энергии, чем при расщеплении других химических связей.

АТФ - неустойчивая структура и при отделении одного остатка фосфорной кислоты, АТФ переходит в аденозиндифосфат (АДФ) высвобождая 40 кДж энергии.

Другие производные нуклеотидов

Особую группу производных нуклеотидов составляют переносчики водорода. Молекулярный и атомарный водород обладает большой химической активностью и выделяется или поглощается в ходе различных биохимических процессов. Одним из наиболее широко распространенных переносчиков водорода является никотинамиддинуклеотидфосфат (НАДФ).

Молекула НАДФ способна присоединять два атома или одну молекулу свободного водорода, переходя в восстановленную форму НАДФ · H 2 . В таком виде водород может быть использован в различных биохимических реакциях.
Нуклеотиды могут также принимать участие в регуляции окислительных процессов в клетке.

Витамины

Витамины (от лат. vita - жизнь) - сложные биоорганические соединения, совершенно необходимые в малых количествах для нормальной жизнедеятельности живых организмов. От других органических веществ витамины отличаются тем, что не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины), другие витамины поступают в организм с пищей.
Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах (они делятся на две группы: водорастворимые (B 1 , B 2 , B 5 , B 6 , B 12 , PP , C) и жирорастворимые (A , D , E , K)).

Витамины участвуют практически во всех биохимических и физиологических процессах, составляющих в совокупности обмен веществ. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме.

Вопрос 1. Какое строение имеет молекула АТФ?
АТФ - это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04 %; в скелетных мышцах 0,5 %). Молекула аденозинтрифосфорной кислоты (АТФ) по своей структуре напоминает один из нуклеотидов молекулы РНК. АТФ включает три компонента: аденин, пятиуглеродный сахар рибозу и три остатка фосфорной кислоты, соединенных между собой особыми макроэргическими связями.

Вопрос 2. Какую функцию выполняет АТФ?
АТФ является универсальным источником энергии для всех реакций, протекающих в клетке. Энергия выделяется в случае отделения от молекулы АТФ остатков фосфорной кислоты при разрыве макроэргических связей. Связь между остатками фосфорной кислоты является макроэргической, при ее расщеплении выделяется примерно в 4 раза больше энергии, чем при расщеплении других связей. Если отделяется один остаток фосфорной кислоты, то АТФ переходит в АДФ (аденозиндифосфорную кислоту). При этом выделяется 40 кДж энергии. При отделении второго остатка фосфорной кислоты выделяется еще 40 кДж энергии, а АДФ переходит в АМФ (аденозинмонофосфат). Выделившаяся энергия используется клеткой. Энергию АТФ клетка использует в процессах биосинтеза, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т.д. АТФ является универсальным аккумулятором энергии в живых организмах.
При гидролизе остатка фосфорной кислоты выделяется энергия:
АТФ + Н 2 О = АДФ + Н 3 РО 4 + 40 кДж/моль

Вопрос 3. Какие связи называются макроэргическими?
Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

Вопрос 4. Какую роль выполняют в организме витамины?
Обмен веществ невозможен без участия витаминов. Витамины - низкомолекулярные органические вещества, жизненно необходимые для существования организма человека. Витамины или совсем не вырабатываются в человеческом организме, или вырабатываются в недостаточных количествах. Так как чаще всего витамины являются небелковой частью молекул ферментов (коферментами) и определяют интенсивность множества физиологических процессов в организме человека, то необходимо их постоянное поступление в организм. Исключения до некоторой степени составляют витамины группы В и А, способные в небольших количествах накапливаться в печени. Кроме того, некоторые витамины (В 1 В 2 , К, Е) синтезируются бактериями, обитающими в толстом кишечнике, откуда и всасываются в кровь человека. При недостатке витаминов в пище или заболеваниях желудочно-кишечного тракта поступление витаминов в кровь уменьшается, и возникают заболевания, имеющие общее название гиповитаминозов. При полном отсутствии какоголибо витамина возникает более тяжелое расстройство, получившее название авитаминоза. Например, витамин D регулирует обмен кальция и фосфора в организме человека, витамин К участвует в синтезе протромбина и способствует нормальной свертываемости крови.
Витамины подразделяются на водорастворимые (С, РР, витамины группы В) и жирорастворимые (А, D, E и др.). Водорастворимые витамины усваиваются в водном растворе, а при их избытке в организме легко выводятся с мочой. Жирорастворимые витамины усваиваются вместе с жирами, поэтому нарушение переваривания и всасывания жиров сопровождается нехваткой рада витаминов (А, О, К). Значительное увеличение содержания жирорастворимых витаминов в пище может вызвать ряд нарушений обмена веществ, так как эти витамины плохо выводятся из организма. В настоящее время насчитывается не менее двух десятков веществ, относящихся к витаминам.

Работа добавлена на сайт сайт: 2016-06-09

">Лекция № 2

">Нуклеиновые кислоты, АТФ и другие органические соединения клетки

"> ">Типы нуклеиновых кислот ">. В клетках имеется два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, оторые соединены прочными химическими связями.

"> Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар – рибозу; одно из 4 азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар – дезоксирибозу; одно из 4 азотистых оснований: аденин, цитозин, гуанин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой – остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи – 4 типа нерегулярно чередующихся азотистых оснований.

"> Молекула ДНК представляет собой структуру, состоящую из 2 нитей, которые по всей длине соединены друг с другом водородными связями.

"> Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

">А (аденин) – Т (тимин)

">Т (тимин) – А (аденин)

">Г (гуанин) – Ц (цитозин)

">Ц (цитозин) – Г (гуанин)

"> Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

"> Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла важную роль в развитии молекулярной биологии и генетики. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т.е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

"> ">Основные виды РНК ">. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми белками РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

"> В синтезе белка принимает участие и другой вид РНК – транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул – рибосомам.

"> Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина – урацил.

">Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

">АТФ ">.

"> В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

"> Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров.К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды – мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

"> ">Аденозинфосфорные кислоты ">. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще 2 остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений, т.е. для всех процессов жизнедеятельности.

"> Витамины. К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, которые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных. Недостаток ряда витаминов в организме человека и животных ведет к нарушению работы ферментов и является причиной тяжелых заболеваний – авитаминозов.