Автокорреляционная функция и аддитивная модель временного ряда. Автокорреляционные функции. Коэффициент автокорреляции и его оценка

Понятие автокорреляционных функций сигналов . Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной интегральной характеристикой формы сигнала, выявления в сигнале характера и параметров взаимной временной связи отсчетов, что всегда имеет место для периодических сигналов, а также интервала и степени зависимости значений отсчетов в текущие моменты времени от предыстории текущего момента. АКФ определяется интегралом от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время :

B s () =s(t) s(t+) dt = ás(t), s(t+)ñ = ||s(t)|| ||s(t+)|| cos (). (6.1.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига . Соответственно, АКФ имеет физическую размерность энергии, а при  = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

B s (0) =s(t) 2 dt = E s .

АКФ относится к четным функциям, в чем нетрудно убедиться заменой переменной t = t- в выражении (6.1.1):

B s () = s(t-) s(t) dt = B s (-).

Максимум АКФ, равный энергии сигнала при =0, всегда положителен, а модуль АКФ при любом значении временного сдвига не превосходит энергии сигнала. Последнее прямо вытекает из свойств скалярного произведения (как и неравенство Коши-Буняковского):

ás(t), s(t+)ñ = ||s(t)||||s(t+||cos (),

cos () = 1 при  = 0, ás(t), s(t+)ñ = ||s(t)||||s(t)|| = E s ,

cos () < 1 при   0, ás(t), s(t+)ñ = ||s(t)||||s(t+)||cos () < E s .

В качестве примера на рис. 6.1.1 приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной
амплитуды прямоугольного импульса, при этом энергии сигналов также будут одинаковыми, что подтверждается равными значениями центральных максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений . На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак + в выражении (6.1.1) означает, что при увеличении значений  копия сигнала s(t+) сдвигается влево по оси t и уходит за 0. Для цифровых сигналов это требует соответствующего продления данных в область отрицательных значений аргумента. А так как при вычислениях интервал задания  обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (6.1.1) функции s(t-) вместо s(t+).

B s () = s(t) s(t-) dt. (6.1.1")

Для финитных сигналов по мере увеличения значения величины сдвига  временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

= 0.

АКФ, вычисленная по центрированному значению сигнала s(t), представляет собой автоковариационную функцию сигнала:

C s () = dt, (6.1.2)

где  s – среднее значение сигнала. Ковариационные функции связаны с корреляционным функциями достаточно простым соотношением:

C s () = B s () -  s 2 .

АКФ сигналов, ограниченных во времени. На практике обычно исследуются и анализируются сигналы, заданные на определенном интервале. Для сравнения АКФ сигналов, заданных на различных временных интервалах, практическое применение находит модификация АКФ с нормировкой на длину интервала. Так, например, при задании сигнала на интервале :

B s () =
s(t) s(t+) dt. (6.1.3)

АКФ может быть вычислена и для слабозатухающих сигналов с бесконечной энергией, как среднее значение скалярного произведения сигнала и его копии при устремлении интервала задания сигнала к бесконечности:

B s () 
. (6.1.4)

АКФ по данным выражениям имеет физическую размерность мощности, и равна средней взаимной мощности сигнала и его копии в функциональной зависимости от сдвига копии.

АКФ периодических сигналов. Энергия периодических сигналов бесконечна, поэтому АКФ периодических сигналов вычисляется по одному периоду Т, с усреднением скалярного произведения сигнала и его сдвинутой копии в пределах периода:

B s () = (1/Т)s(t) s(t-) dt. (6.1.5)

Математически более строгое выражение:

B s () 
.

При =0 значение нормированной на период АКФ равно средней мощности сигналов в пределах периода. При этом АКФ периодических сигналов является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos( 0 t+ 0) при T=2/ 0 имеем:

B s () =
A cos( 0 t+ 0) A cos( 0 (t-)+ 0) = (A 2 /2) cos( 0 ). (6.1.6)

Полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ. С помощью функций автокорреляции можно проверять наличие периодических свойств в любых произвольных сигналах. Пример автокорреляционной функции периодического сигнала приведен на рис. 6.1.2.

Функции автоковариации (ФАК) вычисляются аналогично, по центрированным значениям сигнала. Замечательной особенностью этих функций являются их простые соотношения с дисперсией  s 2 сигналов (квадратом стандарта - среднего квадратического отклонения значений сигнала от среднего значения). Как известно, значение дисперсии равно средней мощности сигналов, откуда следует:

|C s ()| ≤  s 2 , C s (0) =  s 2  ||s(t)|| 2 . (6.1.7)

Значения ФАК, нормированные на значение дисперсии, представляют собой функцию автокорреляционных коэффициентов:

 s () = C s ()/C s (0) = C s ()/ s 2  cos ). (6.1.8)

Иногда эту функцию называют "истинной" автокорреляционной функцией. В силу нормировки ее значения не зависят от единиц (масштаба) представления значений сигнала s(t) и характеризуют степень линейной связи между значениями сигнала в зависимости от величины сдвига  между отсчетами сигнала. Значения  s ()  cos () могут изменяться от 1 (полная прямая корреляция отсчетов) до -1 (обратная корреляция).

На рис. 6.1.3 приведен пример сигналов s(k) и s1(k) = s(k)+шум с соответствующими этим сигналам коэффициентами ФАК -  s и  s1 . Как видно на графиках, ФАК уверенно выявила наличие периодических колебаний в сигналах. Шум в сигнале s1(k) понизил амплитуду периодических колебаний без изменения периода. Это подтверждает график кривой C s / s 1 , т.е. ФАК сигнала s(k) с нормировкой (для сопоставления) на значение дисперсии сигнала s1(k), где наглядно можно видеть, что шумовые импульсы при полной статистической независимости своих отсчетов вызвали увеличение значения С s1 (0) по отношению к значению C s (0) и несколько "размыли" функцию коэффициентов автоковариации. Это вызвано тем, что значение  s () шумовых сигналов стремится к 1 при   0 и флюктуирует относительно нуля при  ≠ 0, при этом амплитуды флюктуаций статистически независимы и зависят от количества выборок сигнала (стремятся к нулю при увеличении количества отсчетов).

АКФ дискретных сигналов. При интервале дискретизации данных t = const вычисление АКФ выполняется по интервалам  = t и обычно записывается, как дискретная функция номеров n сдвига отсчетов n:

B s (nt) = ts k s k-n . (6.1.9)

Дискретные сигналы обычно задаются в виде числовых массивов определенной длины с нумерацией отсчетов к = 0,1,…К при t=1, а вычисление дискретной АКФ в единицах энергии выполняется в одностороннем варианте с учетом длины массивов. Если используется весь массив сигнала и число отсчетов АКФ равно числу отсчетов массива, то вычисление выполняется по формуле:

B s (n) =
s k s k-n . (6.1.10)

Множитель K/(K-n) в данной функции является поправочным коэффициентом на постепенное уменьшение числа перемножаемых и суммируемых значений по мере увеличения сдвига n. Без этой поправки для нецентрированных сигналов в значениях АКФ появляется тренд суммирования средних значений. При измерениях в единицах мощности сигнала множитель К/(K-n) заменяется на множитель 1/(K-n).

Формула (6.1.10) применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

B s (n) = s k s k-n , s k-n = 0 при k-n < 0, (6.1.11)

т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (6.1.10). Разницу между нормировками по формулам (6.1.10) и (6.1.11) можно наглядно видеть на рис. 6.1.4.

Формулу (6.1.11) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:

B s (n) = M{s k s k - n } 
. (6.1.12)

Практически, дискретная АКФ имеет такие же свойства, как и непрерывная АКФ. Она также является четной, а ее значение при n = 0 равно энергии или мощности дискретного сигнала в зависимости от нормировки.

АКФ зашумленных сигналов . Зашумленный сигнал записывается в виде суммы v(k) = s(k)+q(k). В общем случае, шум не обязательно должен иметь нулевое среднее значение, и нормированная по мощности автокорреляционная функция цифрового сигнала, содержащая N – отсчетов, записывается в следующем виде:

B v (n) = (1/N) s(k)+q(k), s(k-n)+q(k-n) =

= (1/N) [s(k), s(k-n) + s(k), q(k-n) + q(k), s(k-n) + q(k), q(k-n)] =

B s (n) + M{s k q k-n } + M{q k s k-n } + M{q k q k-n }.

B v (n) = B s (n) +
+
+
. (6.1.13)

При статистической независимости полезного сигнала s(k) и шума q(k) с учетом разложения математического ожидания

M{s k q k-n } = M{s k } M{q k-n } =

может использоваться следующая формула:

B v (n) = B s (n) + 2+ . (6.1.13")

Пример зашумленного сигнала и его АКФ в сопоставлении с незашумленным сигналом приведен на рис. 6.1.5.

Из формул (6.1.13) следует, что АКФ зашумленного сигнала состоит из АКФ сигнальной компоненты полезного сигнала с наложенной затухающей до значения 2+шумовой функцией. При больших значениях K, когда→ 0, имеет местоB v (n)  B s (n). Это дает возможность не только выделять по АКФ периодические сигналы, практически полностью скрытые в шуме (мощность шумов много больше мощности сигнала), но и с высокой точностью определять их период и форму в пределах периода, а для одночастотных гармонических сигналов – и их амплитуду с использованием выражения (6.1.6).

Таблица 6.1.

Сигнал Баркера

АКФ сигнала

1, 1, 1, -1, -1, 1, -1

7, 0, -1, 0, -1, 0, -1

1,1,1,-1,-1,-1,1,-1,-1,1,-1

11,0,-1,0,-1,0,-1,0,-1,0,-1

1,1,1,1,1,-1,-1,1,1-1,1,-1,1

13,0,1,0,1,0,1,0,1,0,1,0,1

Кодовые сигналы являются разновидностью дискретных сигналов. На определенном интервале кодового слова Мt они могут иметь только два амплитудных значения: 0 и 1 или 1 и –1. При выделении кодов на существенном уровне шумов форма АКФ кодового слова имеет особое значение. С этой позиции наилучшими считаются такие коды, значения боковых лепестков АКФ которых минимальны по всей длине интервала кодового слова при максимальном значении центрального пика. К числу таких кодов относится код Баркера, приведенный в таблице 6.1. Как видно из таблицы, амплитуда центрального пика кода численно равна значению М, при этом амплитуда боковых осцилляций при n  0 не превышает 1.

Введение

Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц .

Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные а, следовательно, высоко значимые автокорреляции .

При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Автокорреляционная функция

Коэффициент автокорреляции и его оценка

Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k - постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (k) = E[(x(t) - m)(x(t + k) - m)] -

и автокорреляции

r (k) = E[(x(t) - m)(x(t + k) - m)] / D ,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t 1),x(t 2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t 1 , t 2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как

r (k) = g (k) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

Наиболее важным из различных коэффициентов автокорреляции является первый - r 1 , измеряющий тесноту связи между уровнями x(1), x(2) ,..., x(n -1) и x(2), x(3), ..., x(n).

Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику

t = r 1 (n -1) 0.5 ,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

Автокорреляционная функция - зависимость взаимосвязи между функцией (сигналом) и ее сдвинутой копией от величины временного сдвига.

Для детерминированных сигналов автокорреляционная функция (АКФ ) сигнала f (t) {\displaystyle f(t)} определяется интегралом :

Ψ (τ) = ∫ − ∞ ∞ f (t) f ∗ (t − τ) d t {\displaystyle \Psi (\tau)=\int _{-\infty }^{\infty }f(t)f^{*}(t-\tau)\mathrm {d} t} K (τ) = E { X (t) X ∗ (t − τ) } {\displaystyle K(\tau)=\mathbb {E} \{X(t)X^{*}(t-\tau)\}} ,

где E { } {\displaystyle \mathbb {E} \{\ \}} - математическое ожидание , звездочка означает комплексное сопряжение.

Если исходная функция строго периодическая , то на графике автокорреляционной функции тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности исходной функции, а следовательно, и о её частотных характеристиках. Автокорреляционная функция применяется для анализа сложных колебаний , например, электроэнцефалограммы человека.

Энциклопедичный YouTube

    1 / 3

    Автокорреляционная функция

    Что такое Автокорреляция?

    Частная автокорреляционная функция

    Субтитры

    К сожалению, коэффициенты процесса скользящего среднего плохо интерпретируемы. Что означает 2ε(t- 1) + 3ε(t- 2) совершенно непонятно. И для интерпретации используют так называемую автокорреляционную функцию процесса: ρk или Corr(Yt, Yt- k) - эта функция называется автокорреляционной функцией процесса. По смыслу для стационарного процесса с нормально распределенными игриками ρk показывает, насколько в среднем изменится сегодняшний Y, если Y k-периодов назад, то есть Yt- k, вырос на 1. Давайте на примере того же самого МА (2)-процесса, процесса скользящего среднего порядка 2, посчитаем и проинтерпретируем автокорреляционную функцию на этот раз. Значит, нас интересует ρk, то есть это Corr (корреляция) между Yt и Y k-периодов назад. Сначала мы заметим какие-то общие соображения, как считать автокорреляционную функцию для любого процесса. По определению корреляции: Corr(Yt, Yt- k) это есть Cov(Yt, Yt- k), деленная на корень из произведения дисперсий: Var(Yt) * Var(Yt- k). Однако у нас стационарный процесс. Здесь мы пользуемся тем, что процесс стационарный, а именно – у него дисперсии одинаковые. Var(Yt) = Var (Yt -k). Ну, соответственно, раз эти две дисперсии равны, то корень из них просто равен - одной из них, любой - Cov(Yt, Yt- k) в числителе так и остается, а в знаменателе корень из произведения двух одинаковых чисел дает просто первое из этих чисел. И, соответственно, мы договорились, что вот это - это автоковариационная функция - это γk, а это дисперсия или γ0. Соответственно, мы получили, что ρk, на самом деле, автокорреляционная функция. Это просто отмасштабированная автоковариационная. Я напомню предыдущие результаты. В предыдущем упражнении мы выяснили, что γk = 14ς квадрат, если k = 0, это дисперсия; - 3ς квадрат, если k = 1;- 2ς квадрат, если k = 2 и 0 при больших значениях k, а именно больше либо равным 3. Исходя из общей формулы, мы получаем, что ρ0 - это и есть γ0 на γ0, это всегда 1 для любого процесса, поэтому это неинтересный показатель, а вот остальные уже более интересные. ρ1- это есть γ1/γ0, в нашем случае мы получаем- 3/14. ρ2 - это есть γ2/γ0, это есть - 2/14. И, соответственно, ρ3 = ρ4 =... = 0. Соответственно, мы можем проинтерпретировать эти коэффициенты. Что означает ρ1? Он означает, что если нам известно, что Yt-1 (вчерашний Y) вырос на одну единицу, то это приводит к тому, что в среднем Yt падает на 3/14. Это мы можем проинтерпретировать ρ1. Ну и, соответственно, ρ2 мы интерпретируем аналогично. Если известно, что Yt- 2 (то есть позавчерашнее значение Y) оказалось, скажем, больше среднего на 1, то есть по сравнению с каким-то средним значением выросло на одну единицу, то мы можем сделать вывод, что Yt в среднем упадет на 2/14. Это мы интерпретируем вот этот коэффициент. Ну а, соответственно, ρ3, ρ4 и так далее интерпретируется следующим образом, что информация о значении Yt- 3 она уже не несет никакой информации о текущем Yt и, в частности, бесполезна при прогнозировании. А вот предыдущие два значения они нам важны.

Применение в технике

Корреляционные свойства кодовых последовательностей, используемых в широкополосных системах, зависят от типа кодовой последовательности, её длины, частоты следования её символов и от её посимвольной структуры.

Изучение АКФ играет важную роль при выборе кодовых последовательностей с точки зрения наименьшей вероятности установления ложной синхронизации.

Другие применения

Автокорреляционная функция играет важную роль в математическом моделировании и анализе временных рядов, показывая характерные времена для исследуемых процессов (см., например: Турчин П. В. Историческая динамика. М.: УРСС , 2007. ISBN 978-5-382-00104-3). В частности, циклам в поведении динамических систем соответствуют максимумы автокорреляционной функции некоторого характерного параметра.

Скоростное вычисление

Часто приходится вычислять автокорреляционную функцию для временного ряда x i {\displaystyle x_{i}} . Вычисление «в лоб» работает за O (T 2) {\displaystyle O(T^{2})} . Однако есть способ сделать это за .

Суть этого способа состоит в следующем. Можно сделать некое обратное взаимно однозначное преобразование данных, называемое преобразованием Фурье, которое поставит им во взаимно однозначное соответствие набор данных в другом пространстве, называемом пространством частот. У операций над данными в нашем обычном пространстве, таких как сложение, умножение и, главное, автокорреляция, есть взаимно-однозначные соответствия в пространстве частот Фурье. Вместо того, чтобы вычислять автокорреляцию «в лоб» на наших исходных данных, мы произведем соответствующую ей операцию над соответствующими данными в пространстве частот Фурье-спектра, что делается за линейное время O(T) - автокорреляции в пространстве частот соответствует простое умножение. После этого мы по полученным данным восстановим соответствующие им в обычном пространстве. Переход из обычного пространства в пространство частот и обратно делается с помощью быстрого преобразования Фурье за O (T log ⁡ T) {\displaystyle O(T\log T)} , вычисление аналога автокорреляции в пространстве частот - за O(T). Таким образом, мы получили выигрыш по времени при вычислениях. и прямо пропорциональна первым n {\displaystyle n} элементам последовательности

Ψ (τ) ∼ Re ⁡ fft − 1 ⁡ (| fft ⁡ (x →) | 2) {\displaystyle \Psi (\tau)\sim \operatorname {Re} \operatorname {fft} ^{-1}\left(\left|\operatorname {fft} ({\vec {x}})\right|^{2}\right)}

Квадрат комплексного модуля берётся поэлементно: | a → | 2 = { Re 2 ⁡ a i + Im 2 ⁡ a i } {\displaystyle \left|{\vec {a}}\right|^{2}=\left\{\operatorname {Re} ^{2}a_{i}+\operatorname {Im} ^{2}a_{i}\right\}} . Если нет погрешностей вычисления, мнимая часть будет равна нулю. Коэффициент пропорциональности определяется из требования Ψ (0) = 1 {\displaystyle \Psi (0)=1} .

Краткая теория

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного рада. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты () и циклической (сезонной) компоненты ().

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания. Простейший подход - расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой , сезонной и случайной компонент. Общий вид мультипликативный модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой , сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выравненных данных в аддитивной или в мультипликативной модели.

4. Аналитическое выравнивание уровней или и расчет значений с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или .

6. Расчет абсолютных и/или относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Пример решения задачи

Условие задачи

Имеются условные данные об объемах потребления электроэнергии жителями региона за 16 кварталов.

Требуется:

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).

3. Сделать прогноз на 2 квартала вперед.

Чтобы решение задачи по эконометрике было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по эконометрике...

1 5.5 9 8.2 2 4.8 10 5.5 3 5.1 11 6.5 4 9.0 12 11.0 5 7.1 13 8.9 6 4.9 14 6.5 7 6.1 15 7.3 8 10.0 16 11.2

Решение задачи

1) Построим поле корреляции:

Уже исходя из графика видно, что значения образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу:

1 5.5 --- --- --- --- --- --- 2 4.8 5.5 -2.673 -1.593 4.260 7.147 2.539 3 5.1 4.8 -2.373 -2.293 5.443 5.633 5.259 4 9 5.1 1.527 -1.993 -3.043 2.331 3.973 5 7.1 9 -0.373 1.907 -0.712 0.139 3.635 6 4.9 7.1 -2.573 0.007 -0.017 6.622 0.000 7 6.1 4.9 -1.373 -2.193 3.012 1.886 4.811 8 10 6.1 2.527 -0.993 -2.510 6.384 0.987 9 8.2 10 0.727 2.907 2.112 0.528 8.449 10 5.5 8.2 -1.973 1.107 -2.184 3.894 1.225 11 6.5 5.5 -0.973 -1.593 1.551 0.947 2.539 12 11 6.5 3.527 -0.593 -2.092 12.437 0.352 13 8.9 11 1.427 3.907 5.574 2.035 15.262 14 6.5 8.9 -0.973 1.807 -1.758 0.947 3.264 15 7.3 6.5 -0.173 -0.593 0.103 0.030 0.352 16 11.2 7.3 3.727 0.207 0.770 13.888 0.043 Сумма 112.1 106.4 0 0 10.507 64.849 52.689 Среднее значение 7.473 7.093

Следует заметить. что среднее значение получается путем деления не на 16, а на 15, так как у нас теперь на одно наблюдение меньше.

Коэффициент автокорреляции первого порядка:

Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка:

1 5.5 --- --- --- --- --- --- 2 4.8 --- --- --- --- --- --- 3 5.1 5.5 -2.564 -1.579 4.048 6.576 2.492 4 9 4.8 1.336 -2.279 -3.044 1.784 5.192 5 7.1 5.1 -0.564 -1.979 1.116 0.318 3.915 6 4.9 9 -2.764 1.921 -5.311 7.641 3.692 7 6.1 7.1 -1.564 0.021 -0.034 2.447 0.000 8 10 4.9 2.336 -2.179 -5.089 5.456 4.746 9 8.2 6.1 0.536 -0.979 -0.524 0.287 0.958 10 5.5 10 -2.164 2.921 -6.323 4.684 8.535 11 6.5 8.2 -1.164 1.121 -1.306 1.356 1.258 12 11 5.5 3.336 -1.579 -5.266 11.127 2.492 13 8.9 6.5 1.236 -0.579 -0.715 1.527 0.335 14 6.5 11 -1.164 3.921 -4.566 1.356 15.378 15 7.3 8.9 -0.364 1.821 -0.664 0.133 3.318 16 11.2 6.5 3.536 -0.579 -2.046 12.501 0.335 Сумма 107.3 99.1 0 0 -29.721 57.192 52.644 Среднее значение 7.664 7.079

Следовательно:

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу:

Лаг Коэффициент автокорреляции уровней 1 0.180 2 -0.542 3 0.129 4 0.980 5 0.987 6 -0.686 7 0.019 8 0.958 9 0.117 10 -0.707 11 -0.086 12 0.937

Коррелограмма:

Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать выводы о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

2) Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии.

Разделив полученные суммы на 4, найдем скользящие средние. Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние.

Итого за четыре квартала Скользящая средняя за четыре квартала Центрированая скользящая средняя Оценка сезонной компоненты 1 5.5 -- -- -- -- 2 4.8 24.4 6.1 -- -- 3 5.1 26 6.5 6.300 -1.200 4 9 26.1 6.525 6.513 2.488 5 7.1 27.1 6.775 6.650 0.450 6 4.9 28.1 7.025 6.900 -2.000 7 6.1 29.2 7.3 7.163 -1.063 8 10 29.8 7.45 7.375 2.625 9 8.2 30.2 7.55 7.500 0.700 10 5.5 31.2 7.8 7.675 -2.175 11 6.5 31.9 7.975 7.888 -1.388 12 11 32.9 8.225 8.100 2.900 13 8.9 33.7 8.425 8.325 0.575 14 6.5 33.9 8.475 8.450 -1.950 15 7.3 --- --- --- --- 16 11.2 --- --- --- ---

Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими среднеми. Используем эти оценки для расчета значений сезонной компоненты . Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты :

Показатели Год № квартала, I II III IV 1 --- --- -1.2 2.488 2 0.45 -2 -1.063 2.625 3 0.7 -2.175 -1.388 2.9 4 0.575 -1.95 --- --- Всего за i-й квартал 1.725 -6.125 -3.651 8.013 Средняя оценка сезонной компоненты для -го квартала, 0.575 -2.042 -1.217 2.671 Скорректированная сезонная компонента, 0.578 -2.039 -1.213 2.674

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должны быть равна нулю.

Для данной модели имеем:

Корректирующий коэффициент:

Рассчитываем скорректированные значения сезонной компоненты и заносим полученные данные в таблицу.

Проверим равенство нулю суммы значений сезонной компоненты:

Исключим влияние сезонной компоненты, вычитая ее значения из кажждого уровня исходного временного ряда. Получим величины . Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

1 5.5 0.578 4.922 5.853 6.431 -0.931 0.867 3.423 2 4.8 -2.039 6.839 6.053 4.014 0.786 0.618 6.503 3 5.1 -1.213 6.313 6.253 5.040 0.060 0.004 5.063 4 9 2.674 6.326 6.453 9.127 -0.127 0.016 2.723 5 7.1 0.578 6.522 6.653 7.231 -0.131 0.017 0.063 6 4.9 -2.039 6.939 6.853 4.814 0.086 0.007 6.003 7 6.1 -1.213 7.313 7.053 5.840 0.260 0.068 1.563 8 10 2.674 7.326 7.253 9.927 0.073 0.005 7.023 9 8.2 0.578 7.622 7.453 8.031 0.169 0.029 0.722 10 5.5 -2.039 7.539 7.653 5.614 -0.114 0.013 3.423 11 6.5 -1.213 7.713 7.853 6.640 -0.140 0.020 0.723 12 11 2.674 8.326 8.053 10.727 0.273 0.075 13.323 13 8.9 0.578 8.322 8.253 8.831 0.069 0.005 2.403 14 6.5 -2.039 8.539 8.453 6.414 0.086 0.007 0.723 15 7.3 -1.213 8.513 8.653 7.440 -0.140 0.020 0.003 16 11.2 2.674 8.526 8.853 11.527 -0.327 0.107 14.823 Итого 1.876 68.500

Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда с помощью линейного тренда. Результаты аналитического выравнивания следующие:

Подставляя в это уравнение значения , найдем уровни для каждого момента времени

Найлем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов.

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок:

Следовательно, можно сказать, что аддитивная модель объясняет 99.3% общей вариации уровней временного ряда.

3) Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:

Значения сезонных компонент за соответствующие кварталы равны:

Таким образом:

Если возникли сложности с решением задач, то сайт сайт оказывает онлайн помощь студентам по эконометрике с контрольными или экзаменами.

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Линейная модель парной регрессии
Задача на расчет линейной модели парной регрессии. В ходе решения приведено вычисление коэффициентов регрессии, произведена оценка их значимости, а также вычислена средняя ошибка аппроксимации и показан расчет доверительного интервала прогноза.

Модель множественной линейной регрессии
Страница содержит последовательное и систематизирование решение задачи на тему корреляционного анализа. Рассмотрена линейная модель множественной регрессии - вычисление коэффициентов регрессии и коэффициентов стандартизированного уравнения регрессии. Приведен расчет парных, частных и множественного коэффициента корреляции, коэффициентов эластичности.

3.2. Найти среднее ряда и среднеквадратическое отклонение s t , нанести их на график:

3.3. Найти коэффициенты автокорреляции для лагов τ = 1;2.

Решение . Расчет выполним по формуле

Для τ = 1 и наших значений формула примет вид:


14
12
10
8
6 s t = 3,69
4
s t = 3,69
2
T
1 2 3 4 5 6 7

Рисунок 4.1 – Нестационарный случайный процесс роста выручки

Все промежуточные расчеты см. в таблице 4.2. Окончательно:

Аналогично для r(2), см. таблицу 4.3:

Таблица 4.2 – Лаг τ = 1

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 3 -3,72 -2,72 10,12 13,84
2 3 4 -2,72 -1,72 4,68 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 5 -0,72 -0,72 0,52 0,52
5 5 7 -0,72 1,28 -0,92 0,52
6 7 14 1,28 8,28 10,60 1,64
7 - - - - - 68,56
26 38 - - 26,23 95,43

3.4. Построить по трем точкам (0,00; 1,00), (1,00; 0,32), (2,00; 0,10) автокорреляционную функцию.

Решение . См. рисунок 4.1.

r

Рисунок 4.1 Автокорреляционная функция для случайного процесса

Примечание: точки 4 и 5 вычислять необязательно.

Таблица 4.3 – Лаг τ = 2

t y(t) y(t+τ) y(t)- ( =5,72) y(t+τ)- (y(t)- ) · (y(t+τ)- ) (y(t)- ) 2
1 2 4 -3,72 -1,72 6,40 13,84
2 3 5 -2,72 -0,72 1,96 7,40
3 4 5 -1,72 -0,72 1,24 2,96
4 5 7 -0,72 1,28 -0,92 0,52
5 5 14 -0,72 8,28 -5,96 0,52
6 - - - - - 1,64
7 - - - - - 68,56
19 35 - - 2,71 95,43

1. Мнацаканян, А.Г. Методические указания по оформлению учебных текстовых работ (рефератов, контрольных, курсовых, выпускных квалификационных) / А.Г. Мнацаканян, Ю.Я. Настин, Э.С. Круглова. – Калининград, Изд-во КГТУ, 2017. – 22 с.

2. Кремер, Н.Ш. Эконометрика: учебник / Н.Ш. Кремер, Б.А. Путко. – Эконометрика: учебник. – М.: ЮНИТИ-ДАНА, 2012. – 387 с.

3. Настин, Ю,Я. Эконометрика: учеб пос. / Ю. Я. Настин. – Калининград: НОУ ВПО БИЭФ, 2004. – 82 с.

4. Настин, Ю.Я. Эконометрика: метод. указ. и задания по контрольной работе / Ю.Я. Настин. – Калининград: ФГОУ ВПО КГТУ, 2015. – 40 с.

5. Пахнутов, И.А. Введение в эконометрику: учебно-метод пос. / И.А. Пахнутов. – Калининград: ФГОУ ВПО «КГТУ», 2009. – 108 с.

6. Буравлев, А.И. Эконометрика: учебник / А.И. Буравлев. – М.: Бином. Лаборатория знаний, 2012. – 164 с.

7. Уткин, В.Б. Эконометрика: учебник / В.Б. Уткин – изд. 2-е – М.: Дашков и К, 2011. – 564 с.

8. Эконометрика: учебник /под ред. И.И. Елисеевой. –М.: Проспект, 2011.-288 с.

9. Валентинов, В.А. Эконометрика: учебник / В.А. Валентинов – изд. 2-е – М.: Дашков и К, 2010. – 448 с.

10. Магнус, Я.Р. Эконометрика: начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. – 8-е издание, М.: Дело, 2008. – 504 с.

11. http://window.edu.ru/resource/022/45022 Скляров Ю.С. Эконометрика. Краткий курс: Учебное пособие. - СПб.: ГУАП, 2007. - 140 с.

12. http://window.edu.ru/resource/537/74537 Шанченко, Н. И. Эконометрика: лабораторный практикум: учебное пособие / Н. И. Шанченко. - Ульяновск: УлГТУ, 2011. - 117 с.

13. Берндт, Э.Р. Практика эконометрики: классика и современность: Учебник / пер с англ / Э.Р. Берндт. – М.: ЮНИТИ-ДАНА, 2005. – 863 с.

Приложение А

Значения функции Лапласа