Строение животной клетки с обозначениями. Цитоплазма. Функции цитоплазмы. Строение цитоплазмы. Как выглядит животная клетка под микроскопом

В основе строения животных, как и всех других организмов, лежит клетка. Она представляет собой сложную систему, компоненты которой взаимосвязаны посредством разнообразных биохимических реакций. Точное строение конкретной клетки зависит от тех функций, которые она выполняет в организме.

Клетки растений, животных и грибов (всех эукариот) имеют общий план строения. У них есть клеточная мембрана, ядро с ядрышком, митохондрии, рибосомы, эндоплазматическая сеть и ряд других органелл и иных структур. Однако, несмотря на схожесть, животные клетки имеют свои характерные особенности, отличающие их как от клеток растений, так и грибов.

Животные клетки покрыты только клеточной мембраной . У них нет ни целлюлозной клеточной стенки (как у растений), ни хитиновой (как у грибов). Клеточная стенка жесткая. Поэтому, с одной стороны, она обеспечивает как бы внешний скелет (опору) клетке, но, с другой стороны, не дает возможности клеткам растений и грибов поглощать вещества захватом (фагоцитоз и пиноцитоз). Они их всасывают. Животные же клетки способны к такому способу питания. Клеточная мембрана эластична, что дает возможность в определенной степени менять форму клетки.

Обычно животные клетки мельче, чем клетки растений и грибов.

Цитоплазма - это внутреннее жидкое содержимое клетки. Она вязкая, так как представляет собой раствор веществ. Постоянное движение цитоплазмы обеспечивает перемещение веществ и компонентов клетки. Это способствует протеканию различных химических реакций.

Центральное место в животной клетке занимает одно большое ядро . У ядра есть собственная мембрана (ядерная оболочка), отделяющая его содержимое от содержимого цитоплазмы. В ядерной оболочке есть поры, через которые происходит транспорт веществ и клеточных структур. Внутри ядра находится ядерный сок (его состав несколько отличается от цитоплазмы), ядрышко и хромосомы . Когда клетка делится, то хромосомы скручиваются и их можно увидеть в световой микроскоп. В неделящейся клетки хромосомы имеют нитевидную форму. Они находятся в «рабочем состоянии». В это время на них происходит синтез различных типов РНК, которые в дальнейшем обеспечивают синтез белков. В хромосомах хранится генетическая информация. Это код, реализация которого определяет жизнедеятельность клетки, также он передается дочерним клеткам при делении родительской.

Митохондрии, эндоплазматическая сеть (ЭПС), комплекс Гольджи также имеют мембранную оболочку. В митохондриях происходит синтез АТФ (аденозинтрифосфорной кислоты). В ее связях запасается большое количество энергии. Когда эта энергия понадобится для жизнедеятельности клетки, АТФ будет постепенно расщепляться с выделением энергии. На ЭПС часто находятся рибосомы , на них происходит синтез белков. По каналам ЭПС происходит отток белков, жиров и углеводов в комплекс Гольджи , где эти вещества накапливаются и потом отщепляются в виде капелек, окруженных мембраной, по мере надобности.

У рибосом нет мембран. Рибосомы - одни из самых древних компонентов клетки, так как они есть у бактерий. В отличие от эукариот, в клетках бактерий нет настоящих мембранных структур.

В животной клетке есть лизосомы , которые содержат вещества, расщепляющие поглощенную клеткой органику.

В отличие от растительной клетки, у животной нет пластид, в том числе хлоропластов. В результате животная клетка не способна к автотрофному питанию, а питается гетеротрофно.

В животной клетке есть центриоли (клеточный центр), обеспечивающие образование веретена деления и расхождение хромосом в процессе деления клетки. Такой клеточной структуры у растительной клетки нет.

Цитоплазма является, пожалуй, самой важной частью любой клеточной структуры, представляющей собой своего рода «соединительную ткань» между всеми составляющими клетки.

Функции и свойства цитоплазмы многообразны, ее роль в обеспечении жизнедеятельности клетки вряд ли можно переоценить.

В данной статье описаны большинство процессов, происходящих в наименьшей живой структуре на макроуровне, где основная роль отведена гелеобразной массе, заполняющей внутренний объем клетки и придающей последней внешний вид и форму.

Цитоплазма представляет собой вязкое (желеподобное) прозрачное вещество, которое заполняет каждую клетку и ограничено клеточной мембраной. В ее состав входят вода, соли, белки и другие органические молекулы.

Все органоиды эукариотов, такие как ядро, эндоплазматический ретикулят и митохондрии, расположены в цитоплазме. Часть ее, которая не содержится в органоидах, называется цитосоль. Хотя может показаться, что цитоплазма не имеет ни формы, ни структуры на самом деле она представляет собой высокоорганизованное вещество, которое обеспечивается за счет так называемого цитоскелета (белковая структура). Открыта была цитоплазма в 1835 году Робертом Брауном и другими учеными.

Химический состав

Главным образом цитоплазма представляет собой субстанцию, которая заполняет клетку. Эта субстанция вязкая, подобная гелю, состоит на 80% из воды и, обычно, является прозрачной и бесцветной.

Цитоплазма - субстанция жизни, которую также называют молекулярным супом , в котором клеточные органоиды находятся во взвешенном состоянии и соединены друг с другом двухслойной липидной мембраной. Цитоскелет, находящийся в цитоплазме, придает ей форму. Процесс цитоплазматического течения обеспечивает перемещение полезных веществ между органоидами и вывод продуктов жизнедеятельности. Эта субстанция содержит много солей и является хорошим проводником электричества.

Как было сказано, субстанция состоит на 70−90% из воды и является бесцветной . Большинство клеточных процессов происходят в ней, например, гликоз, метаболизм, процессы клеточного деления. Внешний прозрачный стеклообразный слой называется эктоплазмой или клеточной корой, внутренняя часть субстанции носит название эндоплазмы. В клетках растений имеет место процесс цитоплазматического течения, представляющий собой течение цитоплазмы вокруг вакуоля.

Основные характеристики

Следует перечислить следующие свойства цитоплазмы:

Структура и компоненты

В прокариотах (например, бактерии), которые не имеют ядра, соединенного с мембраной, цитоплазма представляет все содержимое клетки внутри плазматической мембраны. В эукариотах (например, клетки растений и животных) цитоплазма образована тремя отличающимися друг от друга компонентами: цитосоль, органоиды, различные частицы и гранулы, носящие название цитоплазматических включений.

Цитосоль, органоиды, включения

Цитосоль представляет собой полужидкий компонент, расположенный внешне по отношению к ядру и внутри плазматической мембраны. Цитосоль составляет приблизительно 70% объема клетки и состоит из воды, волокон цитоскелета, солей и органических и неорганических молекул, растворенных в воде. Также содержит протеины и растворимые структуры такие, как рибосомы и протеасомы. Внутренняя часть цитосоля, наиболее текучая и гранулированная, называется эндоплазмой.

Сеть волокон и высокие концентрации растворенных макромолекул, например, белков приводят к образованию макромолекулярных скоплений, которые сильно влияют на перенос веществ между компонентами цитоплазмы.

Органоид означает «маленький орган», который связан с мембраной. Органоиды находятся внутри клетки и выполняют специфические функции, необходимые для поддержания жизни этого наименьшего кирпичика жизни. Органоиды представляют собой маленькие клеточные структуры, выполняющие специальные функции. Можно привести следующие примеры:

  • митохондрии;
  • рибосомы;
  • ядро;
  • лизосомы;
  • хлоропласты (в растениях);
  • эндоплазматическая сеть;
  • аппарат Гольджи.

Внутри клетки также находится цитоскелет - сеть волокон, помогающих ей сохранять свою форму.

Цитоплазматические включения представляют собой частицы, которые временно находятся во взвешенном состоянии в желеобразной субстанции и состоят из макромолекул и гранул. Можно встретить три типа таких включений: секреторные, питательные, пигментные. В качестве примера секреторных включений можно назвать белки, ферменты и кислоты. Гликоген (молекула для хранения глюкозы) и липиды - яркие примеры питательных включений, меланин, находящийся в клетках кожи, является примером пигментных включений.

Цитоплазматические включения, будучи небольшими частицами, взвешенными в цитосоле, представляют собой разнообразную гамму включений, присутствующих в различного типа клетках. Это могут быть как кристаллы оксалата кальция или диоксида кремния в растениях, так и гранулы крахмала и гликогена. Широкую гамму включений представляют собой липиды, имеющие сферическую форму, присутствующие как в прокариотах, так и в эукариотах, и служащие для накопления жиров и жирных кислот. Например, такие включения занимают большую часть объема адипоситов - специализированных накопительных клеток.

Функции цитоплазмы в клетке

Наиболее важные функции можно представить в виде следующей таблицы:

  • обеспечение формы клетки;
  • среда обитания органоидов;
  • транспорт веществ;
  • запас полезных веществ.

Цитоплазма служит для поддержки органоидов и клеточных молекул. Множество клеточных процессов происходит в цитоплазме. Некоторые из этих процессов включают синтез белков, первый этап клеточного дыхания , который носит название гликолиз , процессы митоза и мейоза . Кроме того, цитоплазма помогает перемещаться гормонам по клетке, также через нее осуществляется вывод продуктов жизнедеятельности.

Большинство разных действий и событий происходит именно в этой желатиноподобной жидкости, в которой содержатся ферменты, способствующие разложению продуктов жизнедеятельности, также здесь проходит множество процессов метаболизма. Цитоплазма обеспечивает клетку формой, заполняя ее, помогает поддерживать органоиды на своих местах. Без нее клетка выглядела бы «сдутой», и различные вещества не могли бы легко перемещаться от одного органоида к другому.

Транспорт веществ

Жидкая субстанция содержимого клетки очень важна для поддержания ее жизнедеятельности, так как позволяет легко обмениваться питательными веществами между органоидами . Такой обмен обязан процессу цитоплазматического течения, представляющему собой потоки цитосоля (наиболее подвижная и текучая часть цитоплазмы), переносящие питательные вещества, генетическую информацию и другие вещества от одного органоида к другому.

Некоторые процессы, которые происходят в цитосоле, включают в себя также перенос метаболитов . Органоид может производить аминокислоту, жирную кислоту и другие вещества, которые через цитосоль перемещаются к органоиду, нуждающемуся в этих веществах.

Цитоплазматические потоки приводят к тому, что сама клетка может перемещаться . Некоторые наименьшие жизненные структуры снабжены ресничками (маленькие, похожие на волос образования снаружи клетки, позволяющие последней перемещаться в пространстве). Для других же клеток, например, амебы единственной возможностью перемещаться является перемещение жидкости в цитосоле.

Запас питательных веществ

Помимо транспорта различного материала, жидкое пространство между органоидами выступает в роли своего рода камеры хранения этих материалов до момента, когда они действительно потребуются тому или иному органоиду . Внутри цитосоля во взвешенном состоянии находятся протеины, кислород и различные строительные блоки. Помимо полезных веществ, в цитоплазме содержатся и продукты метаболизма, которые ждут своей очереди, пока процесс удаления не выведет их из клетки.

Плазматическая мембрана

Клеточная, или плазматическая, мембрана представляет собой образование, препятствующее вытеканию цитоплазмы из клетки. Эта мембрана состоит из фосфолепидов, образующих двойной липидный слой, который является полупроницаемым: лишь определенные молекулы могут проникать через этот слой. Протеины, липиды и другие молекулы могут проникать через клеточную мембрану посредством процесса эндоцитоза, при котором образуется пузырек с этими веществами.

Пузырек, включающий в себя жидкость и молекулы, отрывается от мембраны, образуя при этом эндосому. Последняя перемещается внутри клетки к своим адресатам. Продукты жизнедеятельности выводятся посредством процесса экзоцитоза. В этом процессе пузырьки, образующиеся в аппарате Гольджи, соединяются с мембраной, которая выталкивает их содержимое в окружающую среду. Также мембрана обеспечивает форму клетки и служит опорной платформой для цитоскелета и клеточной стенки (в растениях).

Клетки растений и животных

Подобие внутреннего содержимого клеток растений и животных говорит об их одинаковом происхождении. Цитоплазма обеспечивает механическую поддержку внутренним структурам клетки, которые находятся в ней во взвешенном состоянии.

Цитоплазма поддерживает форму и консистенцию клетки, а также содержит множество химических веществ, являющихся ключевыми для поддержания жизненных процессов и метаболизма.

Реакции метаболизма, такие как гликоз и синтез протеинов, происходят в желеобразном содержимом. В клетках растений, в отличие от животных, присутствует движение цитоплазмы вокруг вакуоли, которое известно как цитоплазматическое течение.

Цитоплазма клеток животных представляет собой вещество, подобное гелю, растворенному в воде, она заполняет весь объем клетки и содержит белки и другие важные молекулы, необходимые для жизнедеятельности. Гелеобразная масса содержит протеины, углеводороды, соли, сахара, аминокислоты и нуклеотиды , все клеточные органоиды и цитоскелет.

Все живые организмы имеют во многом схожее клеточное строение. Однако у клеток разных царств живого имеются свои особенности. Так клетки бактерий не имеют ядер, а у клеток растений есть жесткая целлюлозная клеточная стенка и хлоропласты. Строение животных клеток также имеет свои характерные особенности.

Чаще всего клетки животных мельче, чем клетки растений. По форме они очень разнообразны. Форма и строение животной клетки зависит от выполняемых ею функций. У сложно организованных животных тела состоят из множества тканей. Каждую ткань составляют свои клетки, имеющие характерные для них особенности строения. Но несмотря на все разнообразие, можно выделить общее в строении всех животных клеток.

От внешней среды содержимое клетки животного ограничено только клеточной мембраной . Она эластична, поэтому многие клетки имеют неправильную форму, могут незначительно изменять ее. Мембрана имеет сложное строение, в ней выделяют два слоя. Клеточная мембрана отвечает за избирательный транспорт веществ внутрь клетки и из нее.

Внутри животной клетки содержится цитоплазма, ядро, органоиды, рибосомы, различные включения и др. Цитоплазма представляет собой вязкую жидкость, находящуюся в постоянном движении. Движение цитоплазмы способствует протеканию различных химических реакций в клетке, т. е. обмену веществ.

Во взрослой растительной клетке есть большая центральная вакуоль. В животной клетке такой вакуоли нет. Однако в животных клетках постоянно образуются и исчезают маленькие вакуоли . В них могут содержаться питательные вещества для клетки или продукты распада, подлежащие удалению.

Строение животной клетки отличается от растительной еще тем, что в животной клетке достаточно большое ядро располагается обычно в центре (а у растений оно смещено из-за наличия большой центральной вакуоли). Внутри ядра содержится ядерный сок, а также находятся ядрышко и хромосомы . Хромосомы содержат наследственную информацию, которая при делении передается дочерним клеткам. Также они управляют жизнедеятельностью самих клеток.

У ядра есть своя мембрана, отделяющая его содержимое от цитоплазмы. Кроме ядра в цитоплазме клетки есть другие структуры, имеющие собственные мембраны. Эти структуры называют органоидами клетки, или, по-другому, органеллами клетки. В обычной по строению животной клетке, кроме ядра, есть следующие органоиды: митохондрии, эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы.

Митохондрии - это энергетические станции клетки. В них образуется АТФ - органическое вещество, в последствие при расщеплении которого выделяется много энергии, обеспечивающей протекание процессов жизнедеятельности в клетке. Внутри митохондрии есть множество складок - крист.

Эндоплазматическая сеть состоит из множества каналов, по которым транспортируются синтезируемые в клетке белки, а также другие вещества. По каналам ЭПС вещества поступают в аппарат Гольджи , который в животных клетках выражен сильнее, чем в растительных. В аппарате Гольджи, который представляет собой комплекс трубочек, вещества накапливаются. Далее по мере надобности они будут использованы в клетке. Кроме того на мембране аппарата Гольджи происходит синтез жиров и углеводов для построения всех мембран клетки.

В лизосомах содержатся вещества, расщепляющие ненужные клетке и вредные для нее белки, жиры и углеводы.

Кроме органелл, окруженных мембраной, в животных клетках есть немембранные структуры: рибосомы и клеточный центр. Рибосомы есть в клетках всех организмов, а не только у животных. А вот клеточного центра у растений нет.

Рибосомы располагаются группами на эндоплазматической сети. ЭПС, покрытая рибосомами, называется шероховатой. Без рибосом ЭПС называется гладкой. На рибосомах происходит синтез белков.

Клеточный центр состоит из пары цилиндрических телец. Эти тельца на определенном этапе создают своеобразное веретено деления, которое способствует правильному расхождению хромосом при делении клетки.

Клеточные включения представляют собой различные капли и зерна, состоящие из белков жиров и углеводов. Они постоянно присутствуют в цитоплазме клетки и участвуют в обмене веществ.

2.4. Принципы структурно-функциональной организации клетки многоклеточного животного организма

2.4.1. Структурно-функционально-метаболическая внутриклеточная компартментация. Биологическая мембрана. Немембранные способы компартментации

Упорядоченность содержимого эукариотической клетки и происходящих в ней процессов достигается путем компартментации , то есть разделения ее объема на компартменты или «ячейки», различающиеся по химическому, прежде всего, ферментному составу.

Компартментация обеспечивает пространственное разделение и/или обособление веществ и процессов (функций) в клетке. Понятие компартмента распространяется на целую органеллу (митохондрия) или ее часть (внутренняя мембрана митохондрии или ограничиваемое ею пространство – матрикс митохондрии). Иногда в качестве самостоятельного компартмента эукариотической клетки выделяют ядро.

Роль биологических мембран в компартментации объема эукариотической клетки очевидна (рис. 2-4). Мембраны разных компартментов различаются по химической организации (липидный и белковый состав, набор ассоциированных молекул). Этим достигается их функциональная специализация.

Рис. 2-4. Компартментация объема клетки с помощью мембран.

Мембраны выполняют функции: отграничивающую (барьерную), поддержания формы и сохранения содержимого структуры (клетки или органеллы), организации поверхностей раздела между гидрофильной водной и гидрофобной неводной фазами и, таким образом, избирательного размещения в объеме клетки соответствующих ферментных систем. Сами мембраны благодаря наличию в них жировых веществ (липидов) образуют в клетке гидрофобную фазу для химических превращений в неводной среде.

Общепринята жидкомозаичная модель молекулярной организации биологической мембраны (рис. 2-5). Конструкционную основу мембраны составляет двойной или бимолекулярный слой (бислой ) липидов . Мембранные липиды полярны. Их молекулы имеют гидрофобные, обращенные в бислое друг к другу и внутрь мембраны, и гидрофильные «наружные» участки. Липидный бислой имеет свойство, ликвидируя свободные края, самозамыкаться, что обусловливает способность мембран восстанавливать непрерывность при повреждениях. Это же свойство лежит в основе образования с восстановлением непрерывности мембраны клеточной оболочки пузырьков при поглощении клеткой (эндоцитоз ) твердых частиц (фагоцитоз ) и порций жидкости (пиноцитоз ), а также при выделении железистой клеткой секрета (экзоцитоз ). По агрегатному состоянию липидный бислой напоминает жидкость: липидные молекулы свободно перемещаются в пределах «своего» монослоя.

Рис. 2-5. Жидкомозаичная модель молекулярной организации биологической мембраны.

Разнообразие функций биологических мембран связано с многообразием мембранных белков. Выделяют интегральные и периферические мембранные белки. Первые пронизывают мембрану насквозь или же погружены в липидный бислой частично, вторые располагаются на поверхности мембраны. Такая структура позволяет рассматривать мембрану как жидкомозаичное образование: в двухмерном «море» липидов «плавают» белковые «айсберги» и «льдины».

Мембранный механизм компартментации объема клетки - не единственный. Известно семейство самокомпартментирующихся ферментов - протеаз (пептидаз ), участвующих во внелизосомном расщеплении белков. В клетках они «укрыты» в протеасомах (рис. 2-6). Это мультимерные гетеробелковые агрегаты «цилиндрической» формы, образующиеся путем самосборки. Протеазы в них занимают внутреннюю зону, а снаружи располагаются белки-«проводники» или шапероны (см. также 2.4.4.4-д). В функцию последних входит опознание (детекция) белков, подлежащих протеолитическому расщеплению, и их «допуск» внутрь протеасомы к протеазам. Известно, что протеасомы обеспечивают деградацию циклина B в анафазе митоза. В комплексе с соответствующей циклинзависимой киназой названный белок принимает участие в регуляции прохождения клеткой митотического цикла (см. 3.1.1.1).

Рис. 2-6. Протеасомный комплекс (самокомпартментализующиеся протеазы).

2.4.2. Клеточная оболочка

Клетки как дискретные структуры отделены от окружения оболочкой. Основу клеточной оболочки (плазмалемма ) составляет мембрана. Изнутри к мембране примыкает кортикальный (корковый ) слой цитоплазмы (0,1–0,5 мкм), лишенный рибосом и пузырьков, но богатый цитоскелетными структурами - микротрубочками и микрофиламентами, имеющими в своем составе сократимые белки. Наличие таких белков обусловливает участие этих структур в двигательной функции (амебоидное движение). Белки цитоскелетных образований связаны с интегральными мембранными белками (см. 2.4.1).

Снаружи мембрана клеточной оболочки покрыта гликокаликсом (10–20 нм). В его основе - комплексы белков с углеводами (гликопротеиды ), жирами (липопротеиды ) и жиров с углеводами (гликолипиды ). Белковые и липидные участки комплексов находятся внутри мембраны или в связи с ней, тогда как углеводные «выдвинуты» во внеклеточный матрикс (внеклеточная или околоклеточная среда - наряду с кровью и лимфой, часть внутренней среды организма). Такая структура плазмалеммы обеспечивает избирательное взаимодействие клеток друг с другом, а также с факторами внутренней среды организма. Среди этих факторов важная роль принадлежит сигнальным молекулам (лиганды ).

Белки клеточных оболочек, являющиеся мишенями для сигнальных молекул, составляют семейство рецепторных белков или рецепторов . В результате их взаимодействия с сигнальными молекулами образуется лиганд-рецепторный комплекс , который активирует внутриклеточный сигнальный путь (сигналлинг ). В итоге достигается необходимая реакция клеток-мишеней: активируются гены и, следовательно, образуются требуемые белки и запускаются необходимые процессы жизнедеятельности: изменяется интенсивность энергетического обмена, инициируются клеточная пролиферация, дифференцировка, апоптоз. К этому семейству относятся, в частности, адренорецепторы , взаимодействующие с таким лигандом, как гормон мозгового вещества надпочечников адреналин (рис. 2-7). Адреналин как сигнальная молекула выполняет функцию первичного внеклеточного мессенджера (англ., messenger - посланник, гонец, посредник; здесь и ниже - агент, доставляющий к клетке или передающий внутри нее сигнал, побуждающий к определенному действию или изменению состояния). Образующийся гормон-рецепторный комплекс запускает внутриклеточный сигнальный путь, начинающийся с белка-преобразователя (семейство G -белков ). Активированный G -белок (на рис. 2-7 не показан) передает сигнал на фермент аденилатциклазу с образованием из АТФ циклического аденозинмонофосфата (цАМФ ). Последний в качестве вторичного внутриклеточного мессенджера активирует фермент протеинкиназу , катализирующую фосфорилирование других ферментов . Перейдя благодаря фосфорилированию в функционально активное состояние, эти ферменты обеспечивают метаболический или иной ответ . Описанная последовательность событий соответствует, например, ситуации, когда животное попадает в экстремальные условия и вынуждено вступить в борьбу или обратиться в бегство («кошка - собака»). Адекватный ответ здесь состоит в выбросе из клеток печени в кровь глюкозы с активацией распада гликогена в мышцах, что решает проблему покрытия возросших энергозатрат. В других случаях образование комплекса «адреналин–адренорецептор» и, далее, цАМФ приводит к активации промоторов, запускающих транскрипцию цАМФ-индуцибильных (цАМФ-зависимых) генов с образованием соответствующих белков.

Рис. 2-7. Гормональная регуляция клеточной деятельности с участием рецепторов плазмалеммы.

Реакция клетки на сигнальные молекулы (лиганды) зависит от наличия в плазмалемме рецепторного белка, а содержание клеточного ответа - от разновидности рецептора, активируемого сигнального пути и/или типа клетки. G -белки активируют образование не только цАМФ, но и других вторичных мессенджеров, которыми служат циклический гуанозинмонофосфат (цГМФ), оксид азота (NO ), ионы Са2+, липид диацилглицерин (ДАГ). Некоторые внутриклеточные сигнальные пути запускаются с рецепторов плазмалеммы без участия вторичных мессенджеров. Есть примеры, когда сигнальная молекула (лиганд), в частности, женские половые гормоны, например, эстрадиол и/или прогестерон взаимодействуют не с рецептором плазмалеммы, а с цитоплазматическим (внутриклеточным) рецептором (см.2.4.3.1 и рис. 2-9).

Лиганд-рецепторные взаимодействия представляют собой ключевой элемент межклеточного общения , без которого невозможна жизнедеятельность многоклеточного живого существа.

Межклеточная (околоклеточная) среда служит также источником для клеток пластических веществ-предшественников, необходимых для разнообразных синтезов. В нее же выделяются многие продукты внутриклеточного обмена веществ, которые затем выводятся из организма. С медицинской точки зрения важным представляется то, что околоклеточная (межклеточная) среда может содержать токсические продукты, оказывающие на клетки неблагоприятное действие. Строго говоря, токсическим агентом становится любое вещество, в том числе лекарственное средство , появляющееся в организме в ненадлежащем количестве и/или в ненадлежащем месте.

Белки клеточных оболочек многочисленны и разнообразны: в плазмалемме эритроцитов, например, их не менее 100. Классификация этих белков имеет функциональную основу - рецепторные, о которых речь шла выше, структурные, транспортные, обеспечивающие взаимодействия как межклеточные, так и клеток и околоклеточного окружения (внеклеточного матрикса) и др.

Структурные белки плазмалеммы во взаимодействии с цитоскелетными образованиями участвуют в поддержании формы клеток, допуская ее обратимые изменения. В обеспечении формы эритроцита (двояковогнутый диск, что увеличивает площадь поверхности клетки) важная роль принадлежит белку спектрину, волоконца которого образуют субплазмалеммальный примембранный каркас. Мутации по гену спектрина фенотипически проявляются в изменении формы эритроцитов, а клинически - в развитии наследственных болезней красной крови сфероцитоза и эллиптоцитоза .

Необходимым условием жизнедеятельности клеток является чрезмембранный транспорт веществ, который должен быть избирательным и иметь скорость, соответствующую метаболическим потребностям. Эти задачи решаются благодаря специализированным транспортным системам с участием в них представителей семейства транспортных белков . К семейству относится, в частности, белоканионного канала в мембране эритроцита , посредством которого в соответствии с концентрационными градиентами происходит обмен ионами Cl – и HCO 3– между плазмой крови и красными кровяными тельцами в тканях и в легких.

Многие белки клеточных оболочек являются антигенами . Наличие помеченных распознаваемым под микроскопом «зондом» (флюоресцентный краситель) моноклональных антител, образующих комплекс исключительно со «своим» антигеном, позволяет использовать антигенные белки клеточных оболочек в качестве маркеров клеток определенного типа (белок CD 19 - маркер В -лимфоцитов человека), их положения в гистогенетическом ряду (антигенными маркерами родоначальных клеток всех клеточных элементов периферической крови являются белки CD 34 и CD 133, клеток лейкоцитарного ряда - CD 33, клеток эритроцитарного ряда - CD 36) или функционального состояния (белок CD 95 участвует в передаче клетке сигнала к апоптозу).

Маркеры CD используют в диагностических и/или прогностических целях. Клетки злокачественных опухолей различной локализации образуют конкретные белки-антигены: CD 24 типичен для клеток мелкоклеточного рака легких, CD 87 - рака молочной железы, кишечника, простаты. Уровень синтеза CD 82 коррелирует со скоростью метастазирования раковых клеток ряда опухолей, а наличие CD 9 типично для пониженного уровня метастазирования клеток при раке молочной железы и меланоме. Избирательное образование представителей семейства CD наблюдается при болезнях неонкологической природы: например, при одной из форм цирроза печени - первичном биллиарном - снижен синтез CD 26.

При всей перспективности научно-практического направления, как такового, индикаторный потенциал большинства маркеров CD , прежде всего в онкологии , где требуется высочайший уровень ответственности перед пациентом, на настоящее время ниже желаемого и не дает оснований для бесспорных диагностических заключений .

2.4.2.1. Макромолекулярный полиморфизм: механизмы и функциональные следствия

Для многих белков клеточной оболочки характерно свойство макромолекулярной полифункциональности . В многоклеточном организме они являются участниками разных событий.

Строение животной клетки

Механизмы и следствия этого феномена иллюстрирует белковое семейство CD 44.

CD 44 - широко экспрессируемое (их образуют кроветворные клетки, Т — и В -лимфоциты, моноциты, кератиноциты, фибробласты, эндотелиальные клетки сосудов, цилиндрический эпителий желудочно-кишечного тракта, переходный эпителий мочевого пузыря) семейство изоформ (вариантов) «базовой» молекулы.

Члены семейства CD 44 - трансмембранные белки. Особенность гена CD 44 состоит в наличии двух групп экзонов (об экзон–интронной организации генов см. 2.4.5.5). Одна из них (экзоны 1–5 и 16–20 или s 1–10) кодирует так называемые стабильные (CD 44s ), тогда как другая (экзоны 6–15 или v 1–10) так называемые вариабельные (CD 44v ) изоформы белка. На после(пост)транскрипционном уровне из пре-и(м)РНК транскрипта в результате альтернативного сплайсинга образуется более 1000 вариантов и(м)РНК. Полиморфизм изоформ и, следовательно, свойств образуемых белков усиливается благодаря после(пост)трансляционным изменениям молекул полипептидов1: их гликозилированию, а также комплексированию субъединиц (полипептидов) путем полимеризации2. Ы Верстка! Подстраничные примечания. МС Ы

1При использования генетической информации ДНК в жизнедеятельности клетки важная роль принадлежит пост(после)транскрипционным и пост(после)трансляционным процессам, благодаря чему путь от гена к функционирующему белку, как правило, долгий. Это объясняет, почему исследования в области геномики и протеомики (см. 1.1) должны проводиться согласованно.

2Гомо- или гетерологичная полимеризация (ди-, три-, тетрамеризация), заключается в образовании надмакромолекулярных комплексов из, соответственно, одинаковых или разных белковых субъединиц (двух, трех, четырех полипептидов или простых белков) является эффективным механизмом регуляции функций на макромолекулярном уровне. Применительно к членам семейства CD 44 она способствует усилению сродства к определенным лигандам. Полимеризацию белковых субъединиц допустимо рассматривать как один из способов безмембранной функциональной компартментации внутри- и внеклеточных процессов на макромолекулярном уровне.

Молекулярный полиморфизм CD 44 и разнообразие лигандов (гиалуроновая кислота, коллагены I и VI типов, ряд внутриклеточных белков) объясняют вовлеченность белка CD 44 во многие события. Это перемещение (миграция) и метастазирование опухолевых клеток, агрегация (образование клетками групп), адгезия (прикрепление, “прилипание” клеток) и активация (обычно под клеточной активацией понимается клеточная пролиферация, то есть митотическое деление) лимфоидных клеток, представление (презентация) ростовых факторов и цитокинов клеткам, хоуминг (англ., home - дом; здесь, избирательное проникновение клеток в подходящую «тканевую нишу») Т -лимфоцитов, выход из сосудистого русла лейкоцитов, например, в очаге воспаления.

Достарыңызбен бөлісу:

1 … 12 13 14 15 16 17 18 19 … 77

Все клетки состоят из трех основных частей:

  1. клеточной оболочки (ограничивает клетку от окружающей среды);
  2. цитоплазмы (составляет внутреннее содержимое клетки);
  3. ядра (у прокариот - нуклеоид) - содержит генетический материал клетки.

Строение клеточной оболочки

Основу клеточной оболочки составляет плазматическая мембрана (наружная клеточная мембрана, плазмолемма) - биологическая мембрана, ограничивающая внутренние содержимое клетки от внешней среды.

Все биологические мембраны представляют собой двойной слой липидов, гидрофобные концы которых обращены внутрь, а гидрофильные головки - наружу.

Кроме липидов в состав мембраны входят белки: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Периферические белки прилегают к билипидному слою с внутренней или внешней стороны, полуинтегральные - частично встроены в мембрану, интегральные - проходят через всю толщу мембраны.

Строение клетки животных

Белки способны перемещаться в плоскости мембраны.

Мембранные белки выполняют различные функции: транспорт различных молекул; получение и преобразование сигналов из окружающей среды; поддержание структуры мембран. Наиболее важное свойство мембран - избирательная проницаемость.

Плазматические мембраны животных клеток имеют снаружи слой гликокаликса, состоящий из гликопротеинов и гликолипидов и выполняющий сигнальную и рецепторную функции. Он играет важную роль в объединении клеток в ткани.

Плазматические мембраны растительных клеток покрыты клеточной стенкой из целлюлозы. Поры в стенке позволяют пропускать воду и небольшие молекулы, а жесткость обеспечивает клетке механическую опору и защиту.

Функции клеточной оболочки

Клеточная оболочка выполняет следующие функции:

  • определяет и поддерживает форму клетки;
  • защищает клетку от механических воздействий и проникновения повреждающих биологических агентов;
  • отграничивает внутреннее содержимое клетки;
  • регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава;
  • осуществляет узнавание многих молекулярных сигналов (например, гормонов);
  • участвует в формировании межклеточных контактов и различного рода специфических выпячиваний цитоплазмы (ресничек, жгутиков).

Механизмы проникновения веществ в клетку

Между клеткой и окружающей средой постоянно происходит обмен веществ. Ионы и небольшие молекулы транспортируются через мембрану путем пассивного или активного транспорта, макромолекулы и крупные частицы - путем эндо- и экзоцитоза.

Способ переносаНаправление переносаПереносимые веществаЗатраты энергииОписание способа
Диффузия: через липидный слой (пассивный транспорт) По градиенту концентрации O2, CO2, мочевина, этанол Без затрат энергии (пассивный процесс) Мелкие нейтральные молекулы просачиваются между молекулами липидов. Гидрофобные вещества, как правило, диффундируют быстрее гидрофильных. Ионы и крупные молекулы не могут пересечь липидный бислой
Диффузия: через белковые поры (пассивный транспорт) Ионы (в том числе Ca2+, K+, Na+), вода Трансмембранные (интегральные) белки могут иметь водные каналы, по которым ионы или полярные молекулы пересекают мембрану, минуя гидрофобные хвосты липидов
Облегченная диффузия (пассивный транспорт) Глюкоза, лактоза, аминокислоты, нуклеотиды, глицерин Белок-переносчик, находящийся в клеточной мембране, на одной стороне мембраны присоединяет молекулу или ион. Это изменяет форму молекулы переносчика, и его положение в мембране изменяется так, что молекула или ион выделяются уже с другой стороны мембраны
Активный транспорт Против градиента концентрации Na+ и K+, H+, аминокислоты в кишечнике, Ca2+ в мышцах, Na+ и глюкоза в почках С затратами энергии (активный процесс) Как и облегченная диффузия, осуществляется белками-переносчиками. Но в данном случае изменение формы молекулы переносчика (ее конформация) вызывается присоединением не молекулы переносимого вещества, а фосфатной группы, отделившейся от молекулы АТФ в ходе гидролиза.
Фагоцитоз Крупные макромолекулы и твердые частицы В месте контакта с частицами мембрана впячивается, затем формируется пузырек, который отшнуровывается от плазматической мембраны и поступает в цитоплазму. Характерен для амебоидных простейших, кишечнополостных, клеток крови - лейкоцитов, клеток капилляров костного мозга, селезенки, печени, надпочечников
Пиноцитоз Капли жидкости Поглощение капель жидкости по механизму, аналогичному фагоцитозу. Характерен для амебоидных простейших и клеток крови - лейкоцитов, клеток печени, некоторых клеток почек

Пассивный транспорт - перемещение веществ по градиенту концентрации; осуществляется без затрат энергии путем простой диффузии, осмоса или облегченной диффузии с помощью белков-переносчиков.

Диффузия - транспорт ионов и молекул через мембрану из области с высокой в область с низкой их концентрацией, т.е. по градиенту концентрации. Диффузия может быть простой и облегченной. Если вещества хорошо растворимы в жирах, то они проникают в клетку путем простой диффузии. Например, кислород, потребляемый клетками при дыхании, и углекислый газ в растворе быстро диффундируют через мембраны. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.

Осмос - диффузия воды через полупроницаемую мембрану из области с меньшей концентрацией солей в область с более высокой их концентрацией. Возникающее давление на полупроницаемую мембрану называют осмотическим. Клетки содержат растворы солей и других веществ, что создает определенное осмотическое давление. Живые клетки способны регулировать его, изменяя концентрацию веществ. Например, амебы имеют сократительные вакуоли для регуляции осмоса. В организме человека осмотическое давление регулируется системой органов выделения.

Облегченная диффузия - транспорт веществ в клетку через ионные каналы, образованные в мембране белками, с помощью белков-переносчиков, также находящихся в мембране. Таким образом попадают в клетку нерастворимые в жирах и не проходящие через поры вещества. Например, путем облегченной диффузии глюкоза поступает в эритроциты.

Активный транспорт - перенос веществ белками-переносчиками против градиента концентрации с затратами энергии. Например, транспорт аминокислот, глюкозы, ионов натрия, калия, кальция и др.

Эндоцитоз - поглощение веществ (путем окружения) выростами плазматической мембраны с образованием окруженных мембраной пузырьков. Экзоцитоз - выделение веществ из клетки (путем окружения) выростами плазматической мембраны с образованием окруженных мембраной пузырьков. Поглощение и выделение твердых и крупных частиц получило названия фагоцитоз и обратный фагоцитоз , жидких или растворенных частичек - пиноцитоз и обратный пиноцитоз соответственно.

Химия, Биология, подготовка к ГИА и ЕГЭ

В основе строения животных, как и всех других организмов, лежит клетка. Она представляет собой сложную систему, компоненты которой взаимосвязаны посредством разнообразных биохимических реакций. Точное строение конкретной клетки зависит от тех функций, которые она выполняет в организме.

Клетки растений, животных и грибов (всех эукариот) имеют общий план строения. У них есть клеточная мембрана, ядро с ядрышком, митохондрии, рибосомы, эндоплазматическая сеть и ряд других органелл и иных структур. Однако, несмотря на схожесть, животные клетки имеют свои характерные особенности, отличающие их как от клеток растений, так и грибов.

Животные клетки покрыты только клеточной мембраной . У них нет ни целлюлозной клеточной стенки (как у растений), ни хитиновой (как у грибов). Клеточная стенка жесткая. Поэтому, с одной стороны, она обеспечивает как бы внешний скелет (опору) клетке, но, с другой стороны, не дает возможности клеткам растений и грибов поглощать вещества захватом (фагоцитоз и пиноцитоз). Они их всасывают. Животные же клетки способны к такому способу питания. Клеточная мембрана эластична, что дает возможность в определенной степени менять форму клетки.

Обычно животные клетки мельче, чем клетки растений и грибов.

Цитоплазма - это внутреннее жидкое содержимое клетки. Она вязкая, так как представляет собой раствор веществ. Постоянное движение цитоплазмы обеспечивает перемещение веществ и компонентов клетки. Это способствует протеканию различных химических реакций.

Центральное место в животной клетке занимает одно большое ядро . У ядра есть собственная мембрана (ядерная оболочка), отделяющая его содержимое от содержимого цитоплазмы. В ядерной оболочке есть поры, через которые происходит транспорт веществ и клеточных структур. Внутри ядра находится ядерный сок (его состав несколько отличается от цитоплазмы), ядрышко и хромосомы . Когда клетка делится, то хромосомы скручиваются и их можно увидеть в световой микроскоп. В неделящейся клетки хромосомы имеют нитевидную форму. Они находятся в «рабочем состоянии». В это время на них происходит синтез различных типов РНК, которые в дальнейшем обеспечивают синтез белков. В хромосомах хранится генетическая информация. Это код, реализация которого определяет жизнедеятельность клетки, также он передается дочерним клеткам при делении родительской.

Митохондрии, эндоплазматическая сеть (ЭПС), комплекс Гольджи также имеют мембранную оболочку. В митохондриях происходит синтез АТФ (аденозинтрифосфорной кислоты). В ее связях запасается большое количество энергии. Когда эта энергия понадобится для жизнедеятельности клетки, АТФ будет постепенно расщепляться с выделением энергии. На ЭПС часто находятся рибосомы , на них происходит синтез белков. По каналам ЭПС происходит отток белков, жиров и углеводов в комплекс Гольджи , где эти вещества накапливаются и потом отщепляются в виде капелек, окруженных мембраной, по мере надобности.

У рибосом нет мембран. Рибосомы — одни из самых древних компонентов клетки, так как они есть у бактерий. В отличие от эукариот, в клетках бактерий нет настоящих мембранных структур.

В животной клетке есть лизосомы , которые содержат вещества, расщепляющие поглощенную клеткой органику.

В отличие от растительной клетки, у животной нет пластид, в том числе хлоропластов. В результате животная клетка не способна к автотрофному питанию, а питается гетеротрофно.

В животной клетке есть центриоли (клеточный центр), обеспечивающие образование веретена деления и расхождение хромосом в процессе деления клетки. Такой клеточной структуры у растительной клетки нет.

Цитоплазма - это ограниченная клеточной мембраной внутренняя среда клетки кроме ядра и вакуоли. Ранее было сказано, что клетка состоит на 80% из воды. Особенностью строения цитоплазмы клетки является то, большая часть водной структуры клетки приходится на цитоплазму. К твёрдой части цитоплазмы можно отнести белки, углеводы, фосфолипиды, холестерин и другими азотсодержащие органические соединения, минеральные соли, включения в виде капелек гликогена (у животных клеток) и другие вещества. В цитоплазме протекают почти все процессы клеточного метаболизма. Также цитоплазма содержит запасные питательные вещества и нерастворимые отходы обменных процессов.

Функции цитоплазмы или роль цитоплазмы в клетке

Функции цитоплазмы или роль цитоплазмы :
1. Связывают все части клетки в единое целое;
2. В ней протекают химические процессы;
3. Осуществляет транспортировку веществ;
4. Выполняет опорную функцию.

 

К особенностям строения цитоплазмы можно отнести следующее:
1. Бесцветное вязкое вещество;
2. Находится в постоянном движении;
3. Содержит органойды (постоянные структурные компоненты и клеточные включения, и непостоянные структурные клетки);
4. Включения могут находиться в виде капель(жиры) и зёрен(белки и углеводы).

Посмотреть как выглядит цитоплазма можно на примере строения растительной клетки или животной клетки .

Движение цитоплазмы

Движение цитоплазмы в клетке осуществляется фактически непрерывно. Само движение цитоплазмы осуществляется за счёт цитоскелета , а точнее за счёт изменения формы цитоскелета.

Органойды цитоплазмы

К органойдам цитоплазмы клетки можно отнести все органойды находяциеся в клетке, так как все они расположены внутри цитоплазмы. Все органойды в цитоплазме находятся в подвижном состоянии и могут перемещаться за счёт цитоскелета.

Состав цитоплазмы

Состав цитоплазмы включает в себя:
1. Вода примерно 80%;
2. Белок около 10%;
3. Липиды около 2%;
4. Органические соли около 1%;
5. Неорганические соли 1%;
6. РНК примерно 0,7%;
7. ДНК примерно 0,4%.
Названный состав цитоплазмы справедлив для эукариотических клеток.

Делит все клетки (или живые организмы ) на два типа: прокариоты и эукариоты . Прокариоты - это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома - молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро , в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды . К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму - от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой - жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри - комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей - двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим