Кто на самом деле создал атомную бомбу. Создание атомной бомбы в ссср. Немирный атом Игоря Курчатова

Появление такого мощного оружия, как ядерная бомба, стало результатом взаимодействия глобальных факторов объективного и субъективного характера. Объективно его создание было вызвано бурным развитием науки, начавшимся с фундаментальных открытий физики первой половины ХХ века. Сильнейшим субъективным фактором стала военно-политическая обстановка 40-х годов, когда страны антигитлеровской коалиции – США, Великобритания, СССР – пытались опередить друг друга в разработках ядерного оружия.

Предпосылки создания ядерной бомбы

Точкой отсчета научного пути к созданию атомного оружия стал 1896 год, когда французский химик А. Беккерель открыл радиоактивность урана. Именно цепная реакция этого элемента и легла в основу разработок страшного оружия.

В конце ХІХ и в первые десятилетия ХХ века ученые обнаружили альфа-, бета-, гамма-лучи, открыли немало радиоактивных изотопов химических элементов, закон радиоактивного распада и положили начало изучению ядерной изометрии. В 1930-х годах стали известны нейтрон и позитрон, а также впервые расщеплено ядро атома урана с поглощением нейтронов. Это стало толчком к началу создания ядерного оружия. Первым изобрел и в 1939 году запатентовал конструкцию ядерной бомбы французский физик Фредерик Жолио-Кюри.

В результате дальнейшего развития ядерное оружие стало исторически беспрецедентным военно-политическим и стратегическим феноменом, способным обеспечить национальную безопасность государства-обладателя и минимизировать возможности всех остальных систем вооружения.

Конструкция атомной бомбы состоит из ряда различных компонентов, среди которых выделяют два основных:

  • корпус,
  • система автоматики.

Автоматика вместе с ядерным зарядом располагается в корпусе, который защищает их от различных воздействий (механического, теплового и др.). Система автоматики контролирует, чтобы взрыв произошел в строго установленное время. Она состоит из следующих элементов:

  • аварийный подрыв;
  • устройство предохранения и взведения;
  • источник питания;
  • датчики подрыва заряда.

Доставка атомных зарядов осуществляется с помощью авиации, баллистических и крылатых ракет. При этом ядерные боеприпасы могут быть элементом фугаса, торпеды, авиабомбы и др.

Системы детонирования ядерных бомб бывают разными. Самым простым является инжекторное устройство, при котором толчком для взрыва становится попадание в цель и последующее образование сверхкритической массы.

Еще одной характеристикой атомного оружия является размер калибра: малый, средний, крупный. Чаще всего мощность взрыва характеризуют в тротиловом эквиваленте. Малый калибр ядерного оружия подразумевает мощность заряда в несколько тысяч тонн тротила. Средний калибр равен уже десяткам тысяч тонн тротила, крупный – измеряется миллионами.

Принцип действия

В основе схемы атомной бомбы лежит принцип использования ядерной энергии, выделяемой в ходе цепной ядерной реакции. Это процесс деления тяжелых или синтеза легких ядер. Из-за выделения огромного количества внутриядерной энергии в кратчайший промежуток времени ядерная бомба относится к оружию массового поражения.

В ходе указанного процесса выделяют два ключевых места:

  • центр ядерного взрыва, в котором непосредственно протекает процесс;
  • эпицентр, являющийся проекцией этого процесса на поверхность (земли или воды).

При ядерном взрыве высвобождается такое количество энергии, которое при проекции на землю вызывает сейсмические толчки. Дальность их распространения очень велика, но значительный вред окружающей среде наносится на расстоянии только нескольких сотен метров.

Атомное оружие имеет несколько типов поражения:

  • световое излучение,
  • радиоактивное заражение,
  • ударная волна,
  • проникающая радиация,
  • электромагнитный импульс.

Ядерный взрыв сопровождается яркой вспышкой, которая образуется из-за высвобождения большого количества световой и тепловой энергии. Сила этой вспышки во много раз выше, чем мощность солнечных лучей, поэтому опасность поражения светом и теплом распространяется на несколько километров.

Еще одним очень опасным фактором воздействия ядерной бомбы является радиация, образующаяся при взрыве. Она действует только первые 60 секунд, но обладает максимальной проникающей способностью.

Ударная волна имеет большую мощность и значительное разрушающее действие, поэтому в считанные секунды причиняет огромный вред людям, технике, строениям.

Проникающая радиация опасна для живых организмов и является причиной развития лучевой болезни у человека. Электромагнитный импульс поражает только технику.

Все эти виды поражений в совокупности делают атомную бомбу очень опасным оружием.

Первые испытания ядерной бомбы

Наибольшую заинтересованность в атомном оружии первыми проявили США. В конце 1941 года в стране были выделены огромные средства и ресурсы на создание ядерного вооружения. Результатом работ стали первые испытания атомной бомбы с взрывным устройством «Gadget», которые прошли 16 июля 1945 года в американском штате Нью-Мексико.

Для США наступило время действовать. Для победного окончания второй мировой войны было решено разгромить союзника гитлеровской Германии – Японию. В Пентагоне были выбраны цели для первых ядерных ударов, на которых США хотели продемонстрировать, насколько мощным оружием они обладают.

6 августа того же года первая атомная бомба под именем «Малыш» была сброшена на японский город Хиросима , а 9 августа бомба с названием «Толстяк» упала на Нагасаки .

Попадание в Хиросиме было признано идеальным: ядерное устройство взорвалось на высоте 200 метров. Взрывной волной были опрокинуты печки в домах японцев, отапливаемые углем. Это привело к многочисленным пожарам даже в городских районах, удаленных от эпицентра.

За первоначальной вспышкой последовал удар тепловой волны, которой длился секунды, но его мощность, охватив радиус 4 км, расплавила черепицу и кварц в гранитных плитах, испепелила телеграфные столбы. Вслед за тепловой волной пришла ударная. Скорость ветра составила 800 км/час, а его порыв снес практически все в городе. Из 76 тысяч зданий 70 тысяч были полностью разрушены.

Через несколько минут пошел странный дождь из крупных капель черного цвета. Он был вызван конденсатом, образовавшимся в более холодных слоях атмосферы из пара и пепла.

Люди, попавшие под действие огненного шара на расстоянии 800 метров, были сожжены и превратились в пыль. У некоторых обгоревшая кожа была сорвана ударной волной. Капли черного радиоактивного дождя оставляли неизлечимые ожоги.

Оставшиеся в живых заболели неизвестным ранее заболеванием. У них началась тошнота, рвота, лихорадка, приступы слабости. В крови резко упал уровень белых телец. Это были первые признаки лучевой болезни.

Через 3 дня после проведения бомбардировки Хиросимы была сброшена бомба на Нагасаки. Она имела такую же мощность и вызвала аналогичные последствия.

Две атомные бомбы за секунды уничтожили сотни тысяч человек. Первый город был практически стерт ударной волной с лица земли. Больше половины мирных жителей (порядка 240 тысяч человек) погибли сразу от полученных ран. Многие люди подверглись облучению, которое привело к лучевой болезни, раку, бесплодию. В Нагасаки в первые дни было убито 73 тысячи человек, а через некоторое время в сильных муках умерло еще 35 тысяч жителей.

Видео: испытания ядерной бомбы

Испытания РДС-37

Создание атомной бомбы в России

Последствия бомбардировок и история жителей японских городов потрясли И. Сталина. Стало понятно, что создание собственного ядерного оружия – это вопрос национальной безопасности. 20 августа 1945 года в России начал свою работу комитет по атомной энергии, который возглавил Л. Берия.

Исследования по ядерной физике велись в СССР еще с 1918 года. В 1938 году при Академии наук была создана комиссия по атомному ядру. Но с началом войны практически все работы в этом направлении были приостановлены.

В 1943 году советские разведчики передали из Англии закрытые научные труды по атомной энергии, из которых следовало, что создание атомной бомбы на Западе продвинулось далеко вперед. В это же время в США были внедрены надежные агенты в несколько центров американских ядерных исследований. Они передавали информацию по атомной бомбе советским ученым.

Техническое задание на разработку двух вариантов атомной бомбы составил их создатель и один из научных руководителей Ю. Харитон. В соответствии с ним планировалось создание РДС («реактивного двигателя специального») с индексом 1 и 2:

  1. РДС-1 – бомба с зарядом из плутония, который предполагалось подрывать путем сферического обжатия. Его устройство передала русская разведка.
  2. РДС-2 – пушечная бомба с двумя частями уранового заряда, которые должны сближаться в стволе пушки до создания критической массы.

В истории знаменитого РДС самую распространенную расшифровку – «Россия делает сама» – придумал заместитель Ю. Харитона по научной работе К. Щeлкин. Эти слова очень точно передавали суть работ.

Информация о том, что СССР овладел секретами ядерного оружия, вызвало в США порыв к быстрейшему началу упреждающей войны. В июле 1949 появился план «Троян», согласно которому боевые действия планировалось начать 1 января 1950 года. Затем дата нападения была перенесена на 1 января 1957 года с тем условием, чтобы в войну вступили все страны НАТО.

Сведения, полученные по каналам разведки, ускорили работу советских ученых. По мнению западных специалистов, советское ядерное оружие могло быть создано не раньше 1954-1955 года. Однако испытание первой атомной бомбы произошло в СССР уже в конце августа 1949 года.

На полигоне в Семипалатинске 29 августа 1949 года было подорвано ядерное устройство РДС-1 – первая советская атомная бомба, которую изобрел коллектив ученых, возглавляемый И. Курчатовым и Ю. Харитоном. Взрыв имел мощность 22 Кт. Конструкция заряда подражала американскому «Толстяку», а электронная начинка была создана советскими учеными.

План «Троян», согласно которому американцы собирались сбросить атомные бомбы на 70 городов СССР, был сорван из-за вероятности ответного удара. Событие на Семипалатинском полигоне сообщило миру о том, что советская атомная бомба положила конец американской монополии на владение новым оружием. Это изобретение полностью разрушило милитаристский план США и НАТО и предупредило развитие Третьей мировой войны. Началась новая история – эпоха мира во всем мире, существующего под угрозой тотального уничтожения.

«Ядерный клуб» мира

Ядерный клуб – условное обозначение нескольких государств, владеющих ядерным оружием. Сегодня такое вооружение есть:

  • в США (с 1945)
  • в России (первоначально СССР, с 1949)
  • в Великобритании (с 1952)
  • во Франции (с 1960)
  • в Китае (с 1964)
  • в Индии (с 1974)
  • в Пакистане (с 1998)
  • в КНДР (с 2006)

Имеющим ядерное оружие также считается Израиль, хотя руководство страны не комментирует его наличие. Кроме того, на территории государств – членов НАТО (Германии, Италии, Турции, Бельгии, Нидерландов, Канады) и союзников (Японии, Южной Кореи, несмотря на официальный отказ) располагается ядерное оружие США.

Казахстан, Украина, Белоруссия, которые владели частью ядерного вооружения после распада СССР, в 90-х годах передали его России, ставшей единственным наследником советского ядерного арсенала.

Атомное (ядерное) оружие – самый мощный инструмент глобальной политики, который твердо вошел в арсенал взаимоотношений между государствами. С одной стороны, оно является эффективным средством устрашения, с другой – весомым аргументом для предотвращения военного конфликта и укрепления мира между державами, владеющими этим оружием. Это – символ целой эпохи в истории человечества и международных отношений, с которым надо обращаться очень разумно.

Видео: музей ядерного оружия

Видео о российской Царь-Бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Олег Александрович Лаврентьев, герой нашего рассказа, родился в 1926 году в Пскове. До войны парень успел окончить семь классов. Видимо, где-то под конец этого процесса в его руки попала книжка, рассказывающая о физике атомного ядра и последних открытиях в этой области.

30-е годы XX века были временем открытия новых горизонтов. В 1930 году было предсказано существование нейтрино , в 1932 году открыт нейтрон . В последующие годы были построены первые ускорители элементарных частиц. Возник вопрос о возможности существования трансурановых элементов. В 1938 году Отто Ган впервые получил барий, облучая уран нейтронами, а Лиза Мейтнер смогла объяснить, что произошло. Через несколько месяцев она же предсказала цепную реакцию. До постановки вопроса об атомной бомбе оставался один шаг.

Нет ничего удивительного в том, что хорошее описание этих открытий запало в душу подростка. Несколько нетипичнее то, что этот заряд сохранился в ней во всех последующих передрягах. А потом была война. Олег Лаврентьев успел поучаствовать в ее завершающей стадии, в Прибалтике. Затем перипетии службы забросили его на Сахалин. В части была относительно неплохая библиотека, а на свое денежное довольствие Лаврентьев, тогда уже сержант, выписал журнал «Успехи физических наук» , чем, видимо, произвел немалое впечатление на сослуживцев. Командование поддержало энтузиазм своего подчиненного. В 1948 году он читал лекции по ядерной физике офицерам части, а в следующем году получил аттестат зрелости, пройдя за год трехлетний курс в местной вечерней школе рабочей молодежи. Неизвестно, чему и как там на самом деле учили, но сомневаться в качестве образования младшего сержанта Лаврентьева не приходится - результат был нужен ему самому.

Как вспоминал он сам через много лет, мысль о возможности термоядерной реакции и ее использовании для получения энергии впервые посетила его в 1948 году, как раз при подготовке лекции для офицеров. В январе 1950 года Президент Трумэн, выступая перед Конгрессом, призвал к скорейшему созданию водородной бомбы. Это было ответом на первое советское ядерное испытание в августе предыдущего года. Ну а для младшего сержанта Лаврентьева это было толчком к немедленным действиям: ведь он-то знал, как ему на тот момент думалось, как сделать эту бомбу и опередить потенциального противника.

Первое письмо с описанием идеи, адресованное Сталину, осталось без ответа, и какие-либо его следы впоследствии найдены не были. Скорее всего, оно просто потерялось. Следующее письмо было отправлено надежнее: в ЦК ВКП(б) через Поронайский горком.

В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений.

Спецработа

На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений.

1. Основные идеи.

2. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую.

3. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую.

4. Литиево-водородная бомба (конструкция).

Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата («написана весьма поверхностно»). По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть - там, где предлагается бомба, - крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части.

В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А.Д.Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы.

Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом (их изотопов) и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко - это не подходит.

Непростая бомба

Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается.

Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития - его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6 LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости (например, вокруг или, наоборот, внутри) ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово.

А
Б
В
Г
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" alt="А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" src="/sites/default/files/images_custom/2017/07/bombh_explosion-ru.svg.png">

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

/ © Википедия

Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они - газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились . Проблема только в том, что ее невозможно доставить «адресату» - размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему.

Изложенное здесь совсем не сложно для нас, живущих сегодня. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально.

Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же - это дейтерид легкого изотопа лития. Принципиальное отличие в том, что вместо реакции дейтерия с тритием автор предполагает реакцию лития с дейтерием и/или водородом. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6 Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было.

Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы - это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог.

Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов - милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности.

Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора.

Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических (один в другом) электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5–1 мегавольт, причем внутренний электрод (сетка) является отрицательным полюсом, а внешний - положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы (преимущественно, продукты реакции), двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, - это и есть наш выигрыш, который относительно несложно «снять» с установки.

В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна - главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, - ничуть не меняет значения этого факта.

Как впоследствии неоднократно заявлял Андрей Дмитриевич Сахаров, именно письмо сержанта с Сахалина впервые навело его на мысль использовать поле для удержания плазмы в термоядерном реакторе. Правда, Сахаров и его коллеги предпочли использовать другое поле - магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость.

Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят (с его слов), что сделал это он полностью самостоятельно, без протекции каких-либо инстанций.

«Инстанции», тем не менее, следили за его судьбой. В сентябре Лаврентьев встречается с И.Д.Сербиным , чиновником ЦК ВКП(б) и получателем его писем с Сахалина. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее.

В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А.Д.Сахаровым. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л.П.Берия . С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя.

По воспоминаниям О.А.Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. «Это были смотрины, - резюмировал Олег Александрович. - Ему хотелось, как я понял, посмотреть на меня и, возможно, на Сахарова, что мы за люди. По-видимому, мнение оказалось благоприятным».

Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната (правда, маленькая - 14 кв. м.), два персональных преподавателя по физике и математике. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.

Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б.Л.Ванниковым , Н.И.Павловым и И.В.Курчатовым . Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов.

Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение. В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Лаврентьева. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно.

Вход в Курчатовский инстутут. Современная фотография. / © Викимедиа

В мае наш герой получил пропуск в ЛИПАН - Лабораторию измерительных приборов Академии наук, ныне Институт им. Курчатова. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР (магнитным термоядерным реактором). Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» - так гласит докладная записка на имя Берии.

Сотрудничество с ЛИПАНом уже тогда вышло достаточно напряженным. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям. В конце 1951 года в ЛИПАНе состоялось детальное обсуждение его проекта. Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы.

Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше. О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее.

Ваш благодетель умер

26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо.

В университете мне не только перестали давать повышенную стипендию, но и «вывернули» плату за обучение за прошедший год, фактически оставив без средств к существованию, - рассказывал много лет спустя Олег Александрович. - Я пробился на прием к новому декану и в полной растерянности услышал: «Ваш благодетель умер. Чего же вы хотите?» Одновременно в ЛИПАНе был снят допуск, и я лишился постоянного пропуска в лабораторию, где по существующей ранее договоренности должен был проходить преддипломную практику, а впоследствии и работать. Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил.

После университета Лаврентьева так и не взяли на работу в ЛИПАН, единственное в СССР место, где тогда занимались термоядерным синтезом. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.

Наш герой отправился в Харьков, где в ХФТИ как раз создавался отдел плазменных исследований. Там он и сосредоточился над своей любимой темой - электромагнитными ловушками плазмы. В 1958 году была пущена установка С1, наконец-то показавшая жизнеспособность идеи. Следующее десятилетие ознаменовалось строительством еще нескольких установок, после чего идеи Лаврентьева стали восприниматься в научном мире всерьез.

Харьковский физико-технический институт, современное фото

В семидесятых предполагалось построить и запустить большую установку «Юпитер», которая должны была стать наконец полноценным конкурентом токамаков и стеллараторов, построенным на других принципах. К сожалению, пока новинка проектировалась, обстановка вокруг изменилась. В целях экономии средств установка была уменьшена вдвое. Потребовалась переделка проекта и расчетов. К моменту ее завершения технику пришлось уменьшать еще на треть - и, конечно, все снова пересчитывать. Запущенный наконец образец был вполне работоспособен, но до полноценных масштабов было, конечно, далеко.

Олег Александрович Лаврентьев до конца своих дней (его не стало в 2011 году) продолжал активную исследовательскую работу, много публиковался и, в общем, вполне состоялся как ученый. Но главная идея его жизни пока так и осталась непроверенной.

Ядерное оружие - оружие массового поражения взрывного действия, основанное на использовании энергии деления тяжелых ядер некоторых изотопов урана и плутония, или при термоядерных реакциях синтеза легких ядер изотопов водорода дейтерия и трития, в более тяжелые, например, ядра изотопов гелия.

Ядерными зарядами могут быть снабжены боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины. По мощности различают ядерные боеприпасы сверхмалые (менее 1 кт), малые (1-10 кт), средние (10-100 кт), крупные (100-1000 кт) и сверхкрупные (более 1000 кт). В зависимости от решаемых задач возможно применение ядерного оружия в виде подземного, наземного, воздушного, подводного и надводного взрывов. Особенности поражающего действия ядерного оружия на население определяются не только мощностью боеприпаса и видом взрыва, но и типом ядерного устройства. В зависимости от заряда различают: атомное оружие, в основе которого лежит реакция деления; термоядерное оружие - при использовании реакции синтеза; комбинированные заряды; нейтронное оружие.

Единственным встречающимся в природе в заметных количествах делящимся веществом является изотоп урана с массой ядра 235 атомных единиц массы (уран-235). Содержание этого изотопа в природном уране составляет всего 0.7%. Оставшаяся часть приходится на уран-238. Поскольку химические свойства изотопов абсолютно одинаковы, для выделения урана-235 из природного урана необходимо осуществление достаточно сложного процесса разделения изотопов. В результате может быть получен высокообогащенный уран, содержащий около 94% урана-235, который пригоден для использования в ядерном оружии.

Делящиеся вещества могут быть получены искусственно, причем наименее сложным с практической точки зрения является получение плутония-239, образующегося в результате захвата нейтрона ядром урана-238 (и последующей цепочки радиоактивных распадов промежуточных ядер). Подобный процесс можно осуществить в ядерном реакторе, работающем на природном или слабообогащенном уране. В дальнейшем, плутоний может быть выделен из отработавшего топлива реактора в процессе химической переработки топлива, что заметно проще осуществляемого при получении оружейного урана процесса разделения изотопов.

Для создания ядерных взрывных устройств могут быть использованы и другие делящиеся вещества, например уран-233, получаемый при облучении в ядерном реакторе тория-232. Однако практическое применение нашли только уран-235 и плутоний-239, прежде всего из-за относительной простоты получения этих материалов.

Возможность практического использования выделяющейся при делении ядер энергии обусловлена тем, что реакция деления может иметь цепной, самоподдерживающийся характер. В каждом акте деления образуется примерно два вторичных нейтрона, которые, будучи захвачены ядрами делящегося вещества, могут вызвать их деление, в свою очередь приводящее к образованию еще большего количества нейтронов. При создании специальных условий количество нейтронов, а следовательно и актов деления, растет от поколения к поколению.

Взрыв первого ядерного взрывного устройства был произведен США 16 июля 1945 г. в Аламогордо, штат Нью - Мексико. Устройство представляло собой плутониевую бомбу, в которой для создания критичности был использован направленный взрыв. Мощность взрыва составила около 20 кт. В СССР взрыв первого ядерного взрывного устройства, аналогичного американскому, был произведен 29 августа 1949 г.

История создания ядерного оружия.

В начале 1939 года французский физик Фредерик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии как обычное взрывчатое вещество. Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне второй мировой войны, и потенциальное обладание таким мощным оружием давало любому его обладателю огромные преимущества. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии.

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия "Малыш" и "Толстяк". Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235.

Бомба "Толстяк" с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. Первыми целями для ядерных ударов были выбраны японские города (Хиросима, Нагасаки, Кокура, Ниигата). С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов(один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба "Малыш". 9 августа еще одна бомба была сброшена над городом Нагасаки.

Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны - 300 тысяч человек, еще 200 тысяч получили ранения, ожоги, лучевую болезнь. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи.

После американских атомных бомбежек по распоряжению Сталина 20 августа 1945 года был образован специальный комитет по атомной энергии под руководством Л. Берия. В комитет вошли видные ученые А.Ф. Иоффе, П.Л. Капица и И.В. Курчатов. Большую услугу советским атомщикам оказал коммунист по убеждениям, ученый Клаус Фукс - видный работник американского ядерного центра в Лос-Аламосе. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.

В 1946 - 1948 годах в СССР была создана атомная промышленность. В районе г. Семипалатинска был построен испытательный полигон. В августе 1949 года там было подорвано первое советское ядерное устройство. Перед этим президенту США Г. Трумэну доложили, что Советский Союз овладел секретом ядерного оружия, но ядерную бомбу Советский Союз создаст не ранее 1953 года. Это сообщение вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план "Тройан", в котором предусматривалось начать боевые действия в начале 1950 года. На то время США располагало 840 стратегическими бомбардировщиками и свыше 300 атомными бомбами.

Поражающими факторами ядерного взрыва являются : ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс.

Ударная волна. Основной поражающий фактор ядерного взрыва. На нее расходуется около 60% энергии ядерного взрыва. Она представляет собой область резкого сжатия воздуха, распространяющуюся во все стороны от места взрыва. Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним. Оно измеряется в кило паскалях - 1 кПа =0,01 кгс/см2.

При избыточном давлении 20-40 кПа незащищенные люди могут получить легкие поражения. Воздействие ударной волны с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей, разрывами внутренних паренхиматозных органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Световое излучение - это поток лучистой энергии, включающий видимые ультрафиолетовые и инфракрасные лучи.

Его источник - светящаяся область, образуемая раскаленными продуктами взрыва. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 с. Сила его такова, что, несмотря на кратковременность, оно способно вызывать пожары, глубокие ожоги кожи и поражение органов зрения у людей.

Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь.

Проникающая радиация.

Это поток гамма-излучения и нейтронов. Воздействие длится 10-15 с. Первичное действие радиации реализуется в физических, физико-хи­мических и химических процессах с образованием химически активных сво­бодных радикалов (Н, ОН, НО2) обладающих высокими окислительными и восстановительными свойствами. В последующем образуются различные перекисные соединения, угнетающие активность одних ферментов и повы­шающие - других, играющих важную роль в процессах аутолиза (самораство­рения) тканей организма. Появление в крови продуктов распада радиочув­ствительных тканей и патологического обмена веществ при воздействии вы­соких доз ионизирующего излучения является основой формирования токсемии - отравления организма, связанного с циркуляцией в крови токси­нов. Основное значение в развитии радиационных поражений имеют нару­шения физиологической регенерации клеток и тканей, а также изменения функций регуляторных систем.

Радиоактивное заражение местности

Основными её источниками являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате приобретения радиоактивных свойств элементами из которых изготовлен ядерный боеприпас и входящих в состав грунта. Из них образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, и с воздушными массами переносится на значительные расстояния. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.

Электромагнитный импульс .

Это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Следствием его воздействия является перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с проводными линиями.

Разновидностью ядерного оружия является нейтронное и термоядерное оружие.

Нейтронное оружие, представляет собой малогабаритный термоядер­ный боеприпас мощностью до 10 кт, предназначенный в основном для пора­жения живой силы противника за счет действия нейтронного излучения. Ней­тронное оружие относится к тактическому ядерному оружию.

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.