Решить однородное дифференциальное уравнение первого порядка примеры. Задание на определение однородных уравнений. V. Решить для закрепления по учебнику Башмакова

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Функция f(x,y) называется однородной функцией своих аргументов измерения n , если справедливо тождество f(tx,ty) \equiv t^nf(x,y) .

Например, функция f(x,y)=x^2+y^2-xy есть однородная функция второго измерения, так как

F(tx,ty)=(tx)^2+(ty)^2-(tx)(ty)=t^2(x^2+y^2-xy)=t^2f(x,y).

При n=0 имеем функцию нулевого измерения. Например, \frac{x^2-y^2}{x^2+y^2} есть однородная функция нулевого измерения, так как

{f(tx,ty)=\frac{(tx)^2-(ty)^2}{(tx)^2+(ty)^2}=\frac{t^2(x^2-y^2)}{t^2(x^2+y^2)}=\frac{x^2-y^2}{x^2+y^2}=f(x,y).}

Дифференциальное уравнение вида \frac{dy}{dx}=f(x,y) называется однородным относительно x и y , если f(x,y) есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

\frac{dy}{dx}=\varphi\!\left(\frac{y}{x}\right).

Вводя новую искомую функцию u=\frac{y}{x} , уравнение (1) можно привести к уравнению с разделяющими переменными:

X\frac{du}{dx}=\varphi(u)-u.

Если u=u_0 есть корень уравнения \varphi(u)-u=0 , то решение однородного уравнения будет u=u_0 или y=u_0x (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку y=ux .

Пример 1. Решить однородное уравнение xy"=\sqrt{x^2-y^2}+y .

Решение. Запишем уравнение в виде y"=\sqrt{1-{\left(\frac{y}{x}\right)\!}^2}+\frac{y}{x} так что данное уравнение оказывается однородным относительно x и y . Положим u=\frac{y}{x} , или y=ux . Тогда y"=xu"+u . Подставляя в уравнение выражения для y и y" , получаем x\frac{du}{dx}=\sqrt{1-u^2} . Разделяем переменные: \frac{du}{1-u^2}=\frac{dx}{x} . Отсюда интегрированием находим

\arcsin{u}=\ln|x|+\ln{C_1}~(C_1>0) , или \arcsin{u}=\ln{C_1|x|} .

Так как C_1|x|=\pm{C_1x} , то, обозначая \pm{C_1}=C , получаем \arcsin{u}=\ln{Cx} , где |\ln{Cx}|\leqslant\frac{\pi}{2} или e^{-\pi/2}\leqslant{Cx}\leqslant{e^{\pi/2}} . Заменяя u на \frac{y}{x} , будем иметь общий интеграл \arcsin{y}{x}=\ln{Cx} .

Отсюда общее решение: y=x\sin\ln{Cx} .

При разделении переменных мы делили обе части уравнения на произведение x\sqrt{1-u^2} , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь x=0 и \sqrt{1-u^2}=0 . Но x\ne0 в силу подстановки u=\frac{y}{x} , а из соотношения \sqrt{1-u^2}=0 получаем, что 1-\frac{y^2}{x^2}=0 , откуда y=\pm{x} . Непосредственной проверкой убеждаемся, что функции y=-x и y=x также являются решениями данного уравнения.


Пример 2. Рассмотреть семейство интегральных кривых C_\alpha однородного уравнения y"=\varphi\!\left(\frac{y}{x}\right) . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых C_\alpha , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем \frac{y}{x}=\frac{y_1}{x_1} , так что в силу самого уравнения y"=y"_1 , где y" и y"_1 - угловые коэффициенты касательных к интегральным кривым C_\alpha и C_{\alpha_1} , в точках M и M_1 соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

\frac{dy}{dx}=f\!\left(\frac{ax+by+c}{a_1x+b_1y+c_1}\right).

где a,b,c,a_1,b_1,c_1 - постоянные, а f(u) - непрерывная функция своего аргумента u .

Если c=c_1=0 , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел c,c_1 отлично от нуля, то следует различать два случая.

1) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}\ne0 . Вводя новые переменные \xi и \eta по формулам x=\xi+h,~y=\eta+k , где h и k - пока неопределенные постоянные, приведем уравнение (3) к виду

\frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta+ah+bk+c}{a_1\xi+b_2\eta+a_1h+b_1k+c_1}\right).

Выбирая h и k как решение системы линейных уравнений

\begin{cases}ah+bk+c=0,\\a_1h+b_1k+c_1=0\end{cases}~(\Delta\ne0),

получаем однородное уравнение \frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta}{a_1\xi+b_1\eta}\right) . Найдя его общий интеграл и заменив в нем \xi на x-h , a \eta на y-k , получаем общий интеграл уравнения (3).

2) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}=0 . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае \frac{a_1}{a}=\frac{b_1}{b}=\lambda , и, следовательно, уравнение (3) имеет вид \frac{dy}{dx}=f\!\left(\frac{ax+by+c}{\lambda(ax+by)+c_1}\right) . Подстановка z=ax+by приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение (x+y-2)\,dx+(x-y+4)\,dy=0 .

Решение. Рассмотрим систему линейных алгебраических уравнений \begin{cases}x+y-2=0,\\x-y+4=0.\end{cases}

Определитель этой системы \Delta=\begin{vmatrix}\hfill1&\hfill1\\\hfill1&\hfill-1\end{vmatrix}=-2\ne0 .

Система имеет единственное решение x_0=-1,~y_0=3 . Делаем замену x=\xi-1,~y=\eta+3 . Тогда уравнение (5) примет вид

(\xi+\eta)\,d\xi+(\xi-\eta)\,d\eta=0.

Это уравнение является однородным уравнением. Полагая \eta=u\xi , получаем

(\xi+\xi{u})\,d\xi+(\xi-\xi{u})(\xi\,du+u\,d\xi)=0 , откуда (1+2u-u^2)\,d\xi+\xi(1-u)\,du=0 .

Разделяем переменные \frac{d\xi}{\xi}+\frac{1-u}{1+2u-u^2}\,du=0.

Интегрируя, найдем \ln|\xi|+\frac{1}{2}\ln|1+2u-u^2|=\ln{C} или \xi^2(1+2u-u^2)=C .

Возвращаемся к переменным x,~y :

(x+1)^2\left=C_1 или x^2+2xy-y^2-4x+8y=C~~(C=C_1+14).

Пример 4. Решить уравнение (x+y+1)\,dx+(2x+2y-1)\,dy=0 .

Решение. Система линейных алгебраических уравнений \begin{cases}x+y+1=0,\\2x+2y-1=0\end{cases} несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку x+y=z , dy=dz-dx . Уравнение примет вид

(2-z)\,dx+(2z-1)\,dz=0.

Разделяя переменные, получаем

Dx-\frac{2z-1}{z-2}\,dz=0 отсюда x-2z-3\ln|z-2|=C.

Возвращаясь к переменным x,~y , получаем общий интеграл данного уравнения

X+2y+3\ln|x+y-2|=C.

Б. Иногда уравнение можно привести к однородному заменой переменного y=z^\alpha . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному x приписать измерение 1, переменному y - измерение \alpha и производной \frac{dy}{dx} - измерение \alpha-1 .

Пример 5. Решить уравнение (x^2y^2-1)\,dy+2xy^3\,dx=0 .

Решение. Делаем подстановку y=z^\alpha,~dy=\alpha{z^{\alpha-1}}\,dz , где \alpha пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для y и dy , получим

\alpha(x^2x^{2\alpha}-1)z^{\alpha-1}\,dz+2xz^{3\alpha}\,dx=0 или \alpha(x^2z^{3\alpha-1}-z^{\alpha-1})\,dz+2xz^{3\alpha}\,dx=0,

Заметим, что x^2z^{3\alpha-1} имеет измерение 2+3\alpha-1=3\alpha+1, z^{\alpha-1} имеет измерение \alpha-1 , xz^{3\alpha} имеет измерение 1+3\alpha . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие 3\alpha+1=\alpha-1 , или \alpha-1 .

Положим y=\frac{1}{z} ; исходное уравнение принимает вид

\left(\frac{1}{z^2}-\frac{x^2}{z^4}\right)dz+\frac{2x}{z^3}\,dx=0 или (z^2-x^2)\,dz+2xz\,dx=0.

Положим теперь z=ux,~dz=u\,dx+x\,du . Тогда это уравнение примет вид (u^2-1)(u\,dx+x\,du)+2u\,dx=0 , откуда u(u^2+1)\,dx+x(u^2-1)\,du=0 .

Разделяем переменные в этом уравнении \frac{dx}{x}+\frac{u^2-1}{u^3+u}\,du=0 . Интегрируя, найдем

\ln|x|+\ln(u^2+1)-\ln|u|=\ln{C} или \frac{x(u^2+1)}{u}=C.

Заменяя u через \frac{1}{xy} , получаем общий интеграл данного уравнения 1+x^2y^2=Cy.

Уравнение имеет еще очевидное решение y=0 , которое получается из общего интеграла при C\to\infty , если интеграл записать в виде y=\frac{1+x^2y^2}{C} , а затем перейти к пределу при C\to\infty . Таким образом, функция y=0 является частным решением исходного уравнения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Однородное дифференциальное уравнение первого порядка - это уравнение вида
, где f - функция.

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение . Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Решение

Делаем замену y → ty , x → tx .


Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u - функция от x . Дифференцируем по x :
y′ =
Подставляем в исходное уравнение (i) .
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f(u) - u ) .

При f(u) - u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f(u) - u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii) . Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i) .

Всякий раз, когда мы, в процессе преобразований, делим какое либо уравнение на некоторую функцию, которую обозначим как g(x, y) , то дальнейшие преобразования справедливы при g(x, y) ≠ 0 . Поэтому следует отдельно рассматривать случай g(x, y) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Решить уравнение

Решение

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u - функция от x .
y′ = (ux) ′ = u′ x + u (x) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = - x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний - к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 - 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные ,
.

Применим формулу:
(a + b)(a - b) = a 2 - b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 - 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Ответ

,
,
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

В настоящее время по базовому уровню изучения математики на изучение математики в старших классах предусмотрено всего 4 часа (2 часа алгебры, 2 часа геометрии). В сельских малокомплектных школах стараются увеличить количество часов за счет школьного компонента. Но если класс гуманитарный, то школьный компонент добавляется на изучение предметов гуманитарного направления. В маленьком селе зачастую школьнику выбирать не приходится, он учится в том классе; какой имеется в школе. Становиться же юристом, историком или журналистом (бывают такие случаи) не собирается, а хочет стать инженером или экономистом, поэтому ЕГЭ по математике должен сдать на высокие балы. При таких обстоятельствах, учителю математики приходится находить свой выход из создавшейся ситуации, к тому же по учебнику Колмогорова изучение темы «однородные уравнения» не предусмотрено. В прошлые годы для введения данной темы и закрепления мне требовалось два сдвоенных урока. К сожалению, проверка образовательного надзора у нас запретила сдвоенные уроки в школе, поэтому количество упражнений пришлось сократить до 45 минут, и соответственно уровень сложности упражнений понизить до среднего. Предлагаю вашему вниманию план-конспект урока по данной теме в 10 классе с базовым уровнем изучения математики в сельской мало комплектной школе.

Тип урока : традиционный.

Цель : научиться решать типичные однородные уравнения.

Задачи :

Познавательные :

Развивающие :

Воспитательные :

  • Воспитание трудолюбия через терпеливое выполнение заданий, чувства товарищества через работу в парах и группах.

Ход урока

I. Организационный этап (3 мин.)

II. Проверка знаний, необходимых для усвоения нового материала (10 мин.)

Выявить основные затруднения с дальнейшим разбором выполненных заданий. Ребята выполняют по выбору 3 варианта. Задания, дифференцированные по степени сложности и по уровню подготовленности ребят, с последующим объяснением у доски.

1 уровень . Решите уравнения:

  1. 3(х+4)=12,
  2. 2(х-15)=2х-30
  3. 5(2-х)=-3х-2(х+5)
  4. x 2 -10х+21=0 Ответы: 7;3

2 уровень . Решите простейшие тригонометрические уравнения и биквадратное уравнение:

ответы:

б) x 4 -13x 3 +36=0 Ответы: -2; 2; -3; 3

3 уровень. Решение уравнений методом замены переменных:

б) x 6 -9x 3 +8=0 Ответы:

III. Сообщение темы, установка целей и задач.

Тема: Однородные уравнения

Цель : научиться решать типичные однородные уравнения

Задачи :

Познавательные :

  • познакомиться с однородными уравнениями, научиться решать наиболее часто встречаемые виды таких уравнений.

Развивающие :

  • Развитие аналитического мышления.
  • Развитие математических навыков: научиться выделять основные признаки, по которым однородные уравнения отличаются от других уравнений, уметь устанавливать сходство однородных уравнений в их различных проявлениях.

IV. Усвоение новых знаний (15 мин.)

1. Лекционный момент.

Определение 1 (Записываем в тетрадь). Уравнение вида P(x;y)=0 называется однородным, если P(x;y) однородный многочлен.

Многочлен от двух переменных х и у называют однородным, если степень каждого его члена равна одному и тому же числу к.

Определение 2 (Просто ознакомление). Уравнения вида

называют однородным уравнением степени n относительно u(x) и v(x). Поделив обе части уравнения на (v(x))n, можно с помощью замены получить уравнение

Что позволяет упростить исходное уравнение. Случай v(x)=0 необходимо рассмотреть отдельно, так как на 0 делить нельзя.

2. Примеры однородных уравнений:

Поясните: почему они однородные, приведите свои примеры таких уравнений.

3. Задание на определение однородных уравнений:

Среди заданных уравнений определить однородные уравнения и объяснить свой выбор:

После того как объяснили свой выбор на одном из примеров показать способ решения однородного уравнения:

4. Решить самостоятельно:

Ответ:

б) 2sin x – 3 cos x =0

Разделим обе части уравнения на cos x, получим 2 tg x -3=0, tg x=⅔ , x=arctg⅔ +

5. Показать решение примера из брошюры «П.В. Чулков. Уравнения и неравенства в школьном курсе математики. Москва Педагогический университет «Первое сентября» 2006 стр.22». Как один из возможных примеров ЕГЭ уровня С.

V . Решить для закрепления по учебнику Башмакова

стр 183 № 59 (1,5) или по учебнику под редакцией Колмогорова: стр81 №169 (а, в)

ответы:

VI . Проверочная, самостоятельная работа (7 мин.)

1 вариант 2 вариант
Решить уравнения:
а) sin 2 x-5sinxcosx+6cos 2 x=0 а) 3sin 2 x+2sin x cos x-2cos 2 x=0

б) cos 2 -3sin 2 =0

б)

Ответы к заданиям:

1 вариант а) Ответ: arctg2+πn,n € Z; б) Ответ: ±π/2+ 3πn,n € Z; в)

2 вариант а) Ответ: arctg(-1±31/2)+πn,n € Z; б) Ответ: -arctg3+πn, 0,25π+πk, ; в) (-5;-2); (5;2)

VII . Домашнее задание

№169 по Колмогорову, №59 по Башмакову.

2) 3sin 2 x+2sin x cos x =2 Указание: в правой части использовать основное тригонометрическое тождество 2(sin 2 x + cos 2 x)

Ответ: arctg(-1±√3) +πn ,

Использованная литература:

  1. П.В. Чулков. Уравнения и неравенства в школьном курсе математики. – М.: Педагогический университет «Первое сентября», 2006. стр. 22
  2. А. Мерзляк, В. Полонский, Е. Рабинович, М. Якир. Тригонометрия. – М.: «АСТ-ПРЕСС», 1998, стр. 389
  3. Алгебра для 8 класса под редакцией Н.Я. Виленкина. – М.: «Просвещение», 1997.
  4. Алгебра для 9 класса под редакцией Н.Я. Виленкина. Москва «Просвещение», 2001.
  5. М.И. Башмаков. Алгебра и начала анализа. Для 10-11 классов – М.: «Просвещение» 1993
  6. Колмогоров, Абрамов, Дудницын. Алгебра и начала анализа. Для 10-11 классов. – М.: «Просвещение», 1990.
  7. А.Г. Мордкович. Алгебра и начала анализа. Часть 1 Учебник 10-11 классы. – М.: «Мнемозина», 2004.