Что грозит земле из космоса. Космическая катастрофа: вспышка сверхновой. Стоит ли бояться и собирать чемоданы в другую галактику

О том, что злые инопланетные цивилизации хотят поработить нашу планету или что еще хуже, уничтожить вовсе, сообщается с тех самых пор, как возникла уфология и появились первые свидетельства визитов НЛО. Так ли это действительно и может человечество напрасно старается найти в глубинах космоса братьев по разуму? Возможно больше внимания следовало бы уделить не внутренним конфликтам и дележу природных ресурсов, а наоборот всем вместе поработать на перспективу защиты от инопланетного вторжения? Пока наши космические технологии находятся лишь в зачаточном состоянии и поэтому любой даже теоретически возможный контакт с инопланетянами, несет в себе потенциальную угрозу. Если они с легкостью могут перемещаться через космическое, пространство, то и их наступательные технологии находятся на соответствующем уровне и наше сегодняшнее оружие вряд ли может представлять для них серьезную угрозу.

Наверно те, кто увлекается научной фантастикой от классиков этого жанра, не раз замечали, что очень многое, что описано в их произведениях, впоследствии находило отображение в нашей реальной жизни. Факс, телефон, межпланетные перелеты были описаны еще Ж. Верном, а впоследствии и авторы двадцатого столетия тоже описывали технологии, которые стали сегодня вполне обычными. Создается впечатление, что они имели сведения о будущем, да и некоторые из классиков фантастической прозы признавались о получении информации из космоса. Сам процесс был описан ими, как спонтанные видения, и понять его природу невозможно. Не исключено, что вчитавшись внимательнее в их повести, можно обнаружить много ценной информации, ведь довольно часто в их произведениях описывается и вторжение инопланетных существ на Землю, и война с ними.

Что же делать, если это действительно правда и стоит ли нам опасаться?

Чаще всего инопланетяне описываются, как существа, дышащие хлором или другими газами, смертельно опасными для человеческого организма. Многие писатели утверждают, что захватчики на самом деле находятся совсем близко и скорее всего это Марс или Венера. Ведь именно злыми марсианами почему-то принято было всегда пугать общественность, а учитывая подозрения ученых относительно наличия жизни под поверхностью красной планеты, эта теория не так уж и фантастична.

Интересно, что мнение ученых, от написанного фантастами, не сильно отличается, но помимо Марса, они в качестве объекта несущего потенциальную угрозу, рассматривают, и Луну. Само появление единственного естественного спутника Земли довольно туманно и на сей счет до сих пор существует несколько версий. Самая известная – Луна - это ядро планеты Фаэтон, погибшей в результате столкновения с крупным астероидом. Существуют предположения, что именно с нее, а также частично пострадавшего от такого же катаклизма Марса, на Землю переселились представители высокоразвитых цивилизаций, дав старт развитию человечества. Исследователи космоса предполагают, что Луна внутри все же полая и природа ее появления на орбите никак не связана с планетарными катастрофами. Версия, что это стационарная база пришельцев, постоянно ведущих мониторинг за планетой и происходящим на ней, не так уж и нова. Вполне возможно, что миллионы лет назад, они прибыли из других галактик и выбрали Землю в качестве некоего полигона. Достаточно вспомнить, что человечество до сих пор не видело оборотную сторону своего спутника, а попытки строительства на ней космической перевалочной базы, с которой могли бы стартовать корабли к другим планетам, так и остались в теории. Создается впечатление что некто специально тормозит такие процессы.

«Луна может быть не только стационарной базой со всей необходимой инфраструктурой, но даже космическим кораблем, с возможностью перемещения в космическом пространстве», — утверждают ученые. Дело в том, что размеры спутника достаточно невелики, и он мог бы полностью затонуть в акватории Черного моря. Над Луной не раз замечалась активность НЛО, которые на самом деле могли просто заходить на посадку на ее обратной стороне. Кроме всего, верования древних племен и целых цивилизаций всегда уделяли Луне особое место в пантеоне, почитая ее не меньше Солнца. В некоторых источниках можно найти упоминания, что боги, периодически приходившие с небес, жили на Луне, то есть, это действительно могли быть инопланетные колонизаторы, с планетарной базы, прилетавшие за очередной партией добытых ископаемых.

Всем известно правило, что искать всегда следует рядом, поэтому обязательно следовало бы обратить внимание на аномальные зоны Земли. Дело в том, что для инопланетян с их техническими возможностями, давно уже не проблема перемещаться на миллиарды световых лет через пространственные порталы, которые как раз и находятся в местах, подобных бермудскому треугольнику. Прилетая на Землю через эти порты, они направляются на Луну, с тем, чтобы сделать остановку и следовать далее по намеченному маршруту. Стоит вспомнить хотя бы то, что основная масса случаев обнаружения НЛО относится именно к ночному времени. Ученые предположили, что корабли ориентируются на Луну, как на маяк. Наверно именно транзитным положением планеты можно объяснить, то, что инопланетяне проявляют повышенный интерес и к самой планете, как удобной площадке оснащенной всем необходимым.

Легенда о черной планете Нибиру и ее обитателях анунаках, которые якобы инспектируют Землю периодически пролетая возле нее, известна со времен Майя, составивших свой знаменитый календарь. По одной из версий, эти существа могут в один из своих визитов либо уничтожить полностью планету, либо колонизировать ее. Надо сказать, что и саму планету Нибиру многие склонны считать на самом деле космическим кораблем который способен моментально появляться и исчезать в любом месте пространства. Таким образом, можно считать, что угроза быть порабощенными или уничтоженными существует постоянно. Усилившаяся же в последнее время активность НЛО, как предполагают уфологи, не может предвещать ничего хорошего. Их фиксируют в различных частях планеты и не только в воздухе, но и в воде, что ранее было не часто.

Ученые предполагают, что если инопланетная раса захочет завоевать Землю, то сделает это настолько быстро, что земляне даже не успеют выполнить хоть какие-то мероприятия по защите, даже с имеющимся оружием. В фильмах всегда показывают, что угрозу видят загодя с помощью телескопов, либо же инопланетяне появляются среди бела дня на своих кораблях и некоторое время позволяют местному населению отойти от шока, чтобы затем вступить с ними к контакт. На самом деле, даже современные телескопы не смогут засечь передвижений кораблей в космосе из-за высокой скорости и возможно даже невидимости. Обладая способностью перемещаться со скоростью света или вообще проходить сквозь пространство, аппараты инопланетян не всегда удается увидеть в атмосфере планеты, в абсолютном же вакууме это никак невозможно. Именно этим объясняется и тот факт, что до сих пор, не зарегистрировано ни одного случая, когда инопланетные космические аппараты попали бы в поле зрения наблюдателей за пределами планеты. Можно было бы конечно списать на то, что полученные данные засекречиваются, но ведь существует немало частных телескопов и даже обсерваторий, которые не ограничены в распространении информации.

Согласно последним исследованиям, черные дыры все же являются пространственными переходами, а не скоплениями антиматерии, способной все уничтожать. Именно они и могут стать источником проникновения в нашу систему агрессивно настроенных обитателей из других галактик. Благодаря таким переходам, за короткое время сюда могут переместиться значительные силы противника.

К сожалению, при нынешнем уровне технического развития человечества, мы полностью уязвимы перед инопланетной угрозой, как и не сможем противостоять ей хоть сколько длительное время. Сегодня человечество более занято распределением природных ресурсов и войнами между собой, вместо того чтобы разрабатывать общую систему защиты. Ведь по сути, угроза для Земли исходит даже от космического мусора, а не только от внеземных организмов и любой метеорит большого размера может стать причиной гибели всего живого.

No related links found



Угроза из космоса. В безопасности ли планета Земля от каменных гостей из других Галактик?

Каждую минуту на огромной скорости, словно пули, только в несколько раз быстрее, в поверхность соседствующих планет и спутника Земли — Луну, врезаются незваные космические гости. Астрономы то и дело предостерегают о гигантских булыжниках, траектория полета которых пролегает в опасной близости с голубой планетой. Будет ли столкновение внезапным или ученые смогут предотвратить катастрофу? Какие опасности таит в себе холодный космос? И могут ли земляне действительно противостоять атакам комет и астероидов?

Люди изобрели вакцины от неизлечимых ранее болезней, сумели обмануть природу и благодаря медицине увеличить продолжительность жизни. Они строят дороги на высоте тысяч метров среди скальных пород и неспокойных вулканов, прорубают подводные тоннели для скоростных поездов и с интересом заглядываются на Марс, как будущую колонию землян. Но покорить космос, разгадать его тайны и быть готовым к вторжению каменных осколков - оказалось не под силу. Реальная угроза человечеству не на Земле, уверены ученые.

Примером беспомощности человека стало внезапное падение Челябинского метеорита, предсказать которое оказалось невозможным. А предотвратить разрушения - тем более. Смещение метеорита на пару градусов, скорость чуть больше и реальной катастрофы было бы не миновать. То, как отделалось человечество после его падения, не иначе как везение, уверяют эксперты в области астрономии и физики. Но сколько еще подобных или в несколько сотен раз больше угроз находится совсем рядом с Землей?

Астероиды возвращаются

12 лет назад рядом с Землей пролетел астероид «Апофис», ученые внимательно изучали его траекторию, размеры и просчитывали вероятность столкновения. Она, к слову, оказалась, практически равной нулю. Но такие исследования позволили выяснить, когда каменный гость снова наведается в Солнечную систему. И каковы его реальные размеры. Оказалось, что «Апофис» вернется совсем скоро - в 2029 году, уверены ученые, он пролетит совсем рядом, что увидеть астероид можно будет через обычный телескоп. Такая близость к орбите Земли опасна тем, что земная гравитация способна влиять на все приближающиеся к ней предметы, если притянуть огромный булыжник не получится, но изменить его траекторию - запросто. И тогда по возвращении через несколько лет - маршрут гиганта может проходить еще ближе к планете. В конечном итоге, астероид, которые пролетал, к примеру, еще в 50-х годах прошлого века, в свое следующее возвращение может оказаться уже в земной атмосфере. Правда, несмотря на это, некоторые научные издания относятся к «астероидным катастрофам» скептически, обвиняя всех, кто распространяет слухи о приближении очередного «астероида-убийцы» в желании пропиариться и запустить среди всех уже заученную страшилку. Одно из таких изданий даже обращалось напрямую к NASA, чтобы те во всеуслышание сделали официальное заявление о наличии каких-либо реальных угроз для планеты со стороны астероидов в ближайшие несколько лет. К слову, американские ученые этот факт подтвердили, по всем расчетам, которыми владеет NASA, крупных столкновений не будет как минимум сто с лишним лет. На наш век хватит!

Черные дыры

Если с астероидами все более-менее понятно, то вот с «кротовьими норами», или по-другому — черными дырами, ясности нет никакой. Пожалуй, главная причина в том, что изучить их не представляется возможным. И как действуют силы и работают законы физики в этом космическом теле - известно лишь приблизительно. Недавно результаты астрофизических исследований были опубликованы в одном из зарубежных журналов, в тексте рассказывалось о «подозрительном извержении вещества из черной дыры» всего лишь в 105 миллионах световых лет от Земли. Другими словами, если без научных терминов, из черной дыры выходило вещество, напоминающее газ, только разогретый до миллиона градусов по Цельсию. Другими словами, такая мощная энергия если «не достанет» до нашей системы, то существенно повлияет на нее. И когда эффект будет виден невооруженным глазом, опять-таки, подсчитать сложно. Ученые даже шутят, что черных дыр в нашей Галактике хватает и изучать их нужно как можно эффективнее. Засасывают они планеты, выбрасывают раскаленный газ или «пожирают» звёзды - пока материя не будет изучена, предотвратить катастрофу или предсказать ее — не предоставляется возможным.

Сожгут планету дотла гамма-излучения

Такие сгустки радиоактивной энергии появляются вследствие взрыва звёзд, поясняют ученые. Даже если звезда находится за несколько миллионов световых лет от нашей системы - вспышки после взрыва хорошо различимы. Кроме того, эти гамма-лучи по силе разрушения сравнимы с ядерным ударом прямиком из космоса. Их мощность способна сжечь атмосферу и всё живое на планете. Правда, если «дотянутся». Барьер в несколько миллионов световых лет — существенный аргумент в пользу Земли.

Раскаленное Солнце

Одна из самых популярных версий и сценариев для фильмов-катастроф - капризы нашей звезды-кормилицы — Солнца. Немудрено, что без нее жизнь на планете была бы невозможна. Ученые полагают, что температура нашей планеты постепенно увеличивается, не так, как на раскаленной сковородке, но тем не менее - через какие-то тысячи лет температура будет выше, а значит размер Солнца тоже увеличится. Соответственно, вместе с этим поменяется климат Земли - океаны начнут испаряться, лишая всё живое необходимой влаги. В любом случае, никто не обещал Земле счастливое существование до скончания веков. По другой версии, Солнце, напротив, остывает и такой сценарий тоже не сулит ничем хорошим. Превратившись в белого карлика, звезда будет не в состоянии обеспечивать светом и теплом ближайшие планеты. И жизнь на Земле также окажется в заточении вечной мерзлоты.

Земля взята в окружение. Сколько угроз?

Известно, что в опасной близости от Земли находится около 6200 объектов, все они рано или поздно пролетят или уже пролетели рядом и любое изменение в их траектории сулит столкновением. Какова вероятность такой встречи? «Опасной близости» — это обозначения расстояния, когда в случае изменения траектории возможно столкновение. Т.е. тут сразу несколько главных составляющих, которые не дают гарантий реальной угрозы - «в случае» и «возможно». Вероятность сценария, когда под воздействием внешних факторов крупный астероид вдруг направится к Земле 1: 10000000. На самом деле, сотрудники NASA очень пристально следят за каждым космическим объектом, правда, нехватка финансирования тоже играет свою роль. Взять под контроль каждое небесное тело - нереально. А вот те, что могут представлять угрозу Земле - находится в особом реестре. Ученые игнорируют только те объекты, чьи размеры меньше одного километра, по большей части потому, что нет финансовой возможности и достаточного количества человеческих ресурсов. Поэтому вовремя обнаружить астероид, который сможет наделать шума, даже если не уничтожит планету, проблематично. По-соседски близко с Землей проходили пока только очень маленькие астероиды, падение которых не сулит никакими бедами. Так, например 6 ноября 2009 года на расстоянии меньше 14 тысяч километров от Земли пролетел астероид-малыш по имени 2009VA, диаметр которого составил меньше 10 метров. А один из последних непрошеных гостей- 2014RC, пролетевший на расстоянии почти 40 тысяч километров, его диаметр составил более 20 метров. По крайней мере, как уверяют астрономы, такие случаи, как Челябинский метеорит, являются рядовыми, и возможно, даже попав в телескоп крупной обсерватории, ему никто не предал бы особого значения. Ведь размеры объекта не попадают под критерии критических. Тем не менее, космические инциденты еще раз напоминают человечеству, кто во Вселенной хозяин. Вместо того, чтобы придумывать новые смартфоны и вбивать покрепче сваи очередной международной корпорации - стоило бы подумать о развитии космической программы. Ведь будущее человечества в открытиях, а многие из них находятся за пределами земной орбиты.

До тех пор пока существование внеземных цивилизаций не доказано, можно лишь предоставить волю фантазии и голливудским воротилам о том, как бы выглядело инопланетное вторжение на Землю. Однако за пределами нашей планеты есть и другие опасности, потенциально угрожающие нашему существованию. Некоторые из них маловероятны, другие же за многострадальную историю Земли уже случались и вполне реальны…

Внеземные цивилизации погибли?

Летом 1950 года в кафетерии Лос-Аламосской лаборатории итальянский физик и нобелевский лауреат Энрико Ферми (одна из ведущих фигур американского проекта создания атомной бомбы) вел неформальную беседу с тремя другими физиками. Выслушав доводы своих коллег в пользу существования в Галактике великого множества высокоразвитых цивилизаций, Ферми спросил: «Ну и где они в таком случае?»

Как ни странно, этот вопрос, получивший название «парадокса Ферми», имеет в наше время куда большую известность, чем все научные достижения великого итальянца. В развернутой формулировке этот парадокс звучит так: «Законы природы едины повсюду во Вселенной, поэтому любая высокоразвитая цивилизация располагает теми же научно-техническими и технологическими возможностями, что и человечество». Имея космолеты, способные развивать скорость хотя бы около 10% скорости света, цивилизация могла бы расселиться по всей Галактике и колонизировать пригодные для жизни планеты всего за несколько миллионов лет - срок ничтожный по космическим меркам. Поэтому если бы в Галактике действительно существовали многочисленные цивилизации, первые из них добрались бы сюда миллионы (а то и миллиарды) лет тому назад. Но в таком случае само по себе отсутствие инопланетян на Земле является убедительным доказательством отсутствия высокоразвитых внеземных цивилизаций как таковых.

Конечно, со времен разговора Ферми с коллегами выдвинуто много гипотез, объясняющих этот парадокс. Одна из гипотез заключается в том, что возникающие цивилизации недолговечны - каждую из них в конце концов уничтожает космическая катастрофа. Такое предположение наводит на грустные мысли - может, человечество ждет та же судьба? Какие космические катастрофы могут грозить нашей цивилизации?

Прямое попадание

Наиболее очевидной угрозой является возможное падение на землю астероида или кометы. Напоминанием об этой угрозе являются гигантские кратеры, оставшиеся на поверхности нашей планеты от столкновений с астероидами в прошлом. Достаточно вспомнить 10-километровый Чиксулубский астероид, упавший на Землю 65 млн лет назад, - событие, по мнению многих ученых, положившее конец эре динозавров. От этой катастрофы остался ударный кратер, находящийся на полуострове Юкатан, диаметром около 180 км и глубиной до 17-20 км.

Еще больше по размерам кратер Вредефорт, расположенный в Южной Африке. Образовавшийся два миллиарда лет назад кратер имеет диаметр 250 километров. Можно только гадать, какой планетарной катастрофой стало столкновение с астероидом, приведшее к появлению этого кратера (жизнь на Земле в ту эпоху ограничивалась бактериями, но если бы на Земле существовали сложные организмы, они бы, вероятно, были полностью уничтожены).

К счастью, люди, в отличие от динозавров, могут хотя бы попытаться защитить себя от астероидной угрозы. При нынешнем развитии техники от внезапно появившегося астероида человечество будет защищаться ударами ракет с атомными или термоядерными зарядами. В будущем, несомненно, будут созданы более совершенные механизмы «астероидной обороны».

Геомагнитные бури

Однако технический прогресс, делающий жизнь комфортной и способный защитить от многих угроз, в некоторых отношениях делает человечество более уязвимым. Напоминанием об этом служит событие, произошедшее 28 августа 1859 года. В тот день выброшенные Солнцем облака заряженных частиц, достигнув Земли, вызвали колебания электрического и магнитного поля чудовищной силы. Полярное сияние в ночь с 28-го на 29-е число охватило все небо от полюсов и до экватора (его наблюдали даже жители тропической Кубы). Стрелки магнитных компасов крутились как сумасшедшие, телеграфные системы выходили из строя одна за другой-линии передач искрили, телеграфная бумага загоралась. Так на Землю пришла мощнейшая за историю наблюдений геомагнитная буря 1859 года, также известная как Событие Кэррингтона (названная так в честь наблюдавшего в тот день за Солнцем астронома), или Солнечный супершторм.

Через два дня магнитное поле пришло в норму, огни на небе погасли, а повреждения на телеграфных линиях были вскоре исправлены. Человечество в итоге отделалось легким испугом - грубые механизмы XIX века были неуязвимы для геомагнитной бури любой мощности. Но трудно даже представить последствия от такой солнечной активности для продвинутой современной техники, управляемой электроникой. В наши дни солнечный супершторм, аналогичный произошедшему в 1859 году, станет планетарной катастрофой. Электромагнитный удар из космоса просто выжжет всю незащищенную электронику на планете, так что человечество, ставшее заложником собственного технического гения, ждет тяжелое испытание.

Улицы будут забиты остановившимися легковушками, автобусами, грузовиками (все они управляются электроникой), причем вышедшие из строя машины вызовут множество аварий. Пострадавшие в авариях будут долго ждать помощи врачей - ведь машины скорой помощи, а также пожарные и полицейские машины тоже не будут заводиться. Все, что питалось от аккумуляторов или от электросети, перестанет работать. Все, что окажется в небе, - вертолеты и самолеты - скорее всего, выйдет из строя и разобьется.

Как можно видеть, повторение событий 1859 года в сегодняшнем мире будет означать полное крушение всей технологической базы человечества во всем мире - ведь одновременно выйдут из строя как устройства, управляемые электроникой, так и питающие их энергосистемы. На восстановление работы промышленности и воссоздание энергосистемы уйдут месяцы хаоса и голода - хватит ли у человечества воли продержаться столько времени без социального взрыва и последующей за ним анархии?

Страх и ужас сверхновых

Впрочем, катаклизм на Солнце напрямую угрожает лишь управляемой электроникой технике. Гораздо более страшной (хотя и значительно менее вероятной) угрозой является взрыв сверхновой звезды в космических «окрестностях» Солнечной системы. Такой катаклизм способен выжечь все живое на поверхности нашей планеты. Излучение уничтожит озоновый слой в атмосфере, а радиация «стерилизует» поверхность Земли. Ведь вспышка сверхновой звезды - один из самых грандиозных катаклизмов во Вселенной.

Сверхновая возникает на последних стадиях существования звезды с массой, значительно превосходящей солнечную. Существование звезды определяется соотношением между силами гравитации, стремящимися сжать звезду, и давлением излучения звезды, «распирающим» ее изнутри. Когда излучение оказывается недостаточным, чтобы компенсировать огромное гравитационное поле звезды, светило начинает сжиматься, причем это сжатие происходит с ускорением. Плотность и температура вещества в центре звезды растет, что в какой-то момент вызывает катастрофический «взрыв внутрь» - процесс при этом сопровождается выделением колоссального количества энергии.

Бури, землетрясения, извержения вулканов - земным катаклизмам ничего не стоит уничтожить человеческую цивилизацию. Но даже самые грозные стихии никнут, когда на сцену выходит космическая катастрофа, способная взрывать планеты и тушить звезды — главная угроза Земле. Сегодня мы покажем, на что способна Вселенная во гневе.

Танец галактик раскрутит Солнце и выбросит в бездну

Начнем из самого масштабного бедствия - столкновения галактик. Уже через каких-то 3-4 миллиарда лет врежется в наш Млечный путь и поглотит его, превратившись в громадное яйцеобразное море звезд. В этот период ночное небо Земли побьет рекорд по количеству звезд - их станет в три-четыре раза больше. А вы знаете, ?

Само столкновение нам не грозит - если бы звезды были размером с мячик для настольного тенниса, то расстояние между ними в галактике составляло бы 3 километра.Наибольшую проблему представляет слабейшая, но одновременно самая мощная сила во Вселенной - гравитация.

Взаимное притяжение звезд в сливающихся Андромеде и Млечном Пути защитит Солнце от разрушения. Если две звезды сближаются, их гравитация разгоняет их и создает общий центр массы - они будут кружить возле него, как шарики по краям рулетки. То же самое произойдет с галактиками - прежде чем соединиться воедино, их ядра будут “танцевать” друг возле друга.

Как это выглядит? Смотрите на видео ниже:

Страх и ненависть в космической бездне

Эти танцы и принесут больше всего бед. Звезда на окраинах вроде Солнца сможет разогнаться до сотен и даже тысяч километров в секунду, что пробьет притяжение галактического центра - и наше светило улетит в межгалактическое пространство.

Земля и другие планеты останутся вместе с Солнцем - скорее всего, в их орбитах ничего не изменится. Правда Млечный Путь, что радует нас летними ночами, будет медленно отдаляться, а привычные звезды на небе сменятся светом одиноких галактик.

Но может и не повезти. В галактиках, кроме звезд, есть еще целые облака межзвездной пыли и газа. Солнце, оказавшись в таком облаке, начинает “поедать” его и набирать массу, следовательно, яркость и активность светила повысится, появятся нерегулярные сильные вспышки - настоящая космическая катастрофа для любой планеты.

Онлайн симулятор столкновения галактик

Чтобы смоделировать столкновение, щелкните левой кнопкой по черному участку и протяните курсор немного с зажатой кнопкой в сторону белой галактики. Так вы создадите вторую галактику и зададите ее скорость. Чтобы сбросить симуляцию, нажмите Reset внизу.

Кроме того, столкновения с облаками водорода и гелия вряд ли пойдут на пользу самой Земле. Если не повезет оказаться в массивном скоплении, можно оказаться внутри самого Солнца. А про такие вещи как жизнь на поверхности, вода и привычная атмосфера можно будет смело забыть.

Еще галактика Андромеда может попросту “отжать” Солнце и включить в свой состав. Сейчас мы живем в спокойном районе Млечного Пути, где мало сверхновых звезд, газовых потоков и прочих неспокойных соседей. Но никто не знает, куда “заселит” нас Андромеда - можно и вовсе угодить в , полный энергии самых диковинных объектов галактики. Там Земле не выжить.

Стоит ли бояться и собирать чемоданы в другую галактику?

Есть один старый русский анекдот. Идут две старушки мимо планетария и слышат как экскурсовод говорит:

— Итак, Солнце погаснет через 5 миллиардов лет.
В панике одна из старушек подбегает к экскурсоводу:
— Через сколько, через сколько погаснет?
— Через пять миллиардов лет, бабушка.
— Уф-ф-ф! Слава Богу! А мне показалось, что через пять миллионов.

Это же касается столкновения галактик - маловероятно, что человечество сумеет дожить до того момента, когда Андромеда начнет заглатывать Млечный Путь. Шансов будет мало даже в том случае, если люди очень постараются. Уже через миллиард лет Земля станет слишком горячей для существования жизни где-то помимо полюсов, а через 2-3 на ней не останется воды, как на .

Так что стоит бояться только катастрофы ниже - она куда опаснее и внезапнее.

Космическая катастрофа: вспышка сверхновой

Когда Солнце истратит свой запас звездного топлива-водорода, его верхние слои сдует в окружающее пространство, и от него останется только маленькое горячее ядро, белый карлик. Но Солнце - это желтый карлик, ничем не примечательная звезда. А большие звезды, массивнее нашего светила в 8 раз, уходят с космической сцены красиво. Они взрываются, разнося мелкие частицы и излучение на сотни световых лет.

Как и в случае со столкновениями галактик, здесь приложила руку гравитация. Она сжимает состарившиеся массивные звезды до такой степени, что все их вещество детонирует. Интересный факт - если звезда больше Солнца в двадцать раз, она превращается в . И перед этим она тоже взрывается.

Однако не обязательно быть большим и массивным, чтобы в один прекрасный день воссиять сверхновой. Солнце - звезда-одиночка, но есть множество звездных систем, где светила вращаются друг возле друга. Звезды-братья часто стареют с разной скоростью, и может оказаться так, что “старшее” светило выгорает до белого карлика, а младшее все еще в расцвете сил. Тут-то и начинается беда.

Когда “младшая” звезда постареет, она начнет превращаться в красного гиганта - ее оболочка расширится, а температура уменьшится. Этим и воспользуется старый белый карлик - поскольку в нем уже нет ядерных процессов, ему ничего не мешает подобно вампиру “высасывать” внешние слои своего брата. Причем высасывает он их столько, что ломает гравитационный предел собственной массы. Поэтому и взрывается сверхновой как большая звезда.

Сверхновые - это кузнецы Вселенной, ведь именно сила их вспышек и сжатие порождает элементы тяжелее железа, вроде золота и урана (по другой теории, они возникают в нейтронных звездах, но их появление невозможно без сверхновой). Еще считается, что вспышка звезды по соседству с Солнцем помогла образоваться , нашей Земле в том числе. Скажем же ей спасибо за это.

Не спешите любить сверхновые

Да, вспышки звезд бывают очень полезными - в конце концов, сверхновые являются естественной частью жизненного цикла звезд. Но для Земли они ничем хорошим не закончатся. Самая уязвимая часть планеты для сверхновых - это . Азот, с которого преимущественно состоит в воздух, под воздействием частиц сверхновой начнет соединяться с озоном

А без озонового слоя все живое на Земле станет уязвимым для ультрафиолетового излучения. Помните, что на ультрафиолетовые кварцевые лампы нельзя смотреть? А теперь представьте, что все небо превратилось в одну громадную синюю лампу, которая выжигает все живое. Особенно плохо придется морскому планктону, который производит большую часть кислорода в атмосфере.

Реальна ли угроза Земле?

Какова вероятность того, что сверхновая нас накроет? Посмотрите на следующую фотографию:

Это - останки уже отсветившей свое сверхновой. Она была столь яркой, что в 1054 году ее было видно как очень яркую звезду даже днем - и это при том, что сверхновую и Землю разделяет шесть с половиной тысяч световых лет!

Диаметр туманности составляет 11 . Для сравнения, наша Солнечная система от края до края занимает 2 световых года, а к самой близкой звезде, Проксима Центавре, 4 световых года. В пределах 11 световых лет вокруг Солнца есть как минимум 14 звезд - каждая из них может взорваться. А “боевой” радиус сверхновой составляет 26 световых лет. Такое событие случается не больше 1 раза в 100 миллионов лет, что очень часто в космических масштабах.

Гамма-всплеск — если бы Солнце стало термоядерной бомбой

Существует еще одна космическая катастрофа, куда опаснее сотни сверхновых одновременно — всплеск гамма-излучения. Это самый опасный вид радиации, который проникает через любую защиту — если забраться в глубокий подвал с металлобетона, облучение уменьшится в 1000 раз, но не исчезнет полностью. А какие-либо костюмы и вовсе неспособны спасти человека: гамма-лучи ослабевают всего в два раза, проходя сквозь лист свинца толщиной в сантиметр. Но свинцовый скафандр — неподъемная ноша, в десятки раз тяжелее рыцарского доспеха.

Однако даже во время взрыва атомной электростанции энергия гамма-лучей небольшая — нет такой массы вещества, чтобы их напитать. Зато такие массы есть в космосе. Это сверхновые очень тяжелых звезд (вроде звезд Вольфа-Райе, о которых мы написали ), а также слияние нейтронных звезд или черных дыр — недавно такое событие зафиксировали по гравитационным волнам. Сила гамма-вспышки таких катаклизмов может достичь 10 54 эрг, которые излучаются за период от миллисекунд до часа.

Единица измерения — взрыв звезды

10 54 эрг — много ли это? Если бы вся масса Солнца стала термоядерным зарядом и взорвалась, энергия взрыва составила бы 3×10 51 эрг — как у слабой гамма-вспышки. Но если такое событие произойдет на расстоянии 10 световых лет, угроза Земле будет не иллюзорной — эффект был бы как у взрыва ядерной бомбы на каждом условном гектаре неба! Это уничтожило бы жизнь на одном полушарии моментально, а на другом — спустя считанные часы. Расстояние не очень уменьшит угрозу: даже если гамма-излучение вспыхнет на другом конце галактики, до нашей планеты дойдет по атомной бомбе на 10км 2 .

Ядерный взрыв — не самое ужасное, что может случиться

Ежегодно регистрируется около 10 тысяч гамма-всплесков — они видны на расстояниях в миллиарды лет, с галактик на другом . В пределах одной галактики всплеск происходит приблизительно раз в один миллион лет. Возникает логический вопрос —

Почему мы еще живы?

Спасает Землю механизм образования гамма-всплеска. Энергию взрыва сверхновой ученые называют “грязной”, так как в ней участвуют миллиарды тонн частиц, которые разлетаются во все стороны. Гамма-всплеск же “чистый” — это выброс одной лишь энергии. Он происходит в виде сконцентрированных лучей, отходящих от полюсов объекта, звезды или черной дыры.

Помните звезды в аналогии с шариками для настольного тенниса, которые удалены друг от друга на 3 километра? Теперь давайте представим, что к одному из шариков прикрутили лазерную указку, светящую в произвольном направлении. Какой шанс, что лазер попадет в другой шарик? Очень и очень мал.

Но не стоит расслабляться. Ученые считают, что гамма-всплески уже однажды достигали Земли — в прошлом они могли вызвать одно из массовых вымираний. Узнать наверняка, доберется до нас излучение или нет, можно будет только на практике. Однако строить бункеры тогда будет уже поздно.

Напоследок

Сегодня мы прошлись лишь по самым глобальным космическим катастрофам. Но существует много других угроз Земле, например:

  • Удар астероида или кометы (мы написали о , где можно узнать о последствиях недавних падений)
  • Превращение Солнца в красного гиганта.
  • Вспышка на Солнце (их можно ).
  • Миграция планет-гигантов в Солнечной системе.
  • Остановка вращения .

Как защитить себя и предупредить трагедию? Следите за новостями науки и космоса, и исследуйте Вселенную с надежным гидом. А если осталось что-то неясное, или хотите узнать больше — пишите в чате, комментариях и заходите в

Пятнадцатого февраля исполнилось пять лет со дня появления в небе над Челябинском крупного метеороида, вызвавшего переполох в городе и привлекшего к себе интерес астрономов всего мира. Что произошло в тот день? Может ли подобное повториться? Что человечество делает и может сделать, чтобы такие события, как минимум, не происходили внезапно, и чтобы мы, как максимум, нам научились парировать подобные угрозы? С этими вопросами редакция N + 1 обратилась к астроному Леониду Еленину, сотруднику Института прикладной математики РАН, для которого происшествие над Челябинском имело особое значение.

Пятнадцатое февраля 2013 года началось для меня неожиданно - в 7:30 утра мне позвонили из одной из госструктур с вопросом: «Что произошло над Челябинском?» Когда пришло понимание, что же все-таки произошло, главным вопросом стал другой: почему мы заблаговременно не обнаружили это тело? Пикантности ситуации добавляло и то, что в этот же день мимо Земли, но на безопасном расстоянии от нее, должен был пролететь известный околоземной астероид 2012 DA14, а за день до описываемых событий, выступая на пресс-конференции, я заверил собравшихся, что ни один из известных астероидов в ближайшем будущем нам не угрожает. Первый же беглый анализ данных с видеокамер показал, что болид не имеет никакого отношения к астероиду 2012 DA14, и стало понятно, почему этот метеороид подкрался к нам незамеченным... Но обо всем по порядку.

Для начала давайте разберемся, что это вообще за объекты, откуда они берутся, как их обнаруживают и почему челябинский гость физически не мог быть обнаружен существующими средствами контроля космического пространства.

Телескопы наизготовку

Первый астероид, сближающийся с Землей (АСЗ), был обнаружен в 1898 году. Впоследствии он получил номер 433 и имя - Эрос. Да, да, это тот астероид из сериала «Пространство» ("The Expanse"). В то время его орбита казалась уникальной, ведь большинство астероидов обращаются вокруг Солнца в Главном поясе астероидов, между орбитами Марса и Юпитера.

Спустя примерно 100 лет в области фиксации изображений произошла революция - фотопластинки ушли в историю, а на их место стали внедрять ПЗС -камеры. Переход от аналоговой информации к «цифре» произвел революцию и в астрономии, в том числе в области позиционных наблюдений малых тел Солнечной системы, к коим и относятся астероиды и кометы. Новая техника позволила быстро и с высокой точностью определять координаты небесных объектов, рассчитывать их орбиты и автоматизировать процесс обнаружения новых объектов на полученных кадрах, ведь раньше этим занимались вручную на устройствах, называемых блинк-компараторами.

Постепенно у астрономов появилось понимание, что объекты, подобные Эросу, достаточно распространены в Солнечной системе и что по теории вероятности они могут сталкиваться с планетами. Это был лишь первый шажок на пути к пониманию проблемы астероидно-кометной опасности (АКО).

В 1980 году ученые - отец и сын Альваресы - сформулировали теорию столкновения Земли с крупным небесным телом (диаметром 8–10 километров) в далеком прошлом и связали образование гигантского кратера Чиксулуб в Мексиканском заливе с вымиранием динозавров. Дальше - больше. Так, в 1983 году всего в 4,67 миллиона километров от Земли пролетела только что открытая комета C/1983 H1 (IRAS-Araki-Alcock). Размер ее ядра был сопоставим с телом, столкнувшимся с Землей 65 миллионов лет назад.

Последней каплей стало столкновение кометы P/1993 F2 (Shoemaker-Levy 9), а точнее цепочки ее осколков, c Юпитером. Комета была обнаружена в 1993 году, уже разорванной притяжением планеты-гиганта, и вопрос столкновения с планетой был лишь вопросом времени. Седьмого июля 1994 года 21 фрагмент кометы, каждый размером до двух километров, вошел в атмосферу Юпитера. Общее энерговыделение составило около 6 миллионов мегатонн, что в 750 раз больше всего ядерного потенциала, накопленного на Земле!


Рисунок 1. Количество открытых за последние десятилетия астероидов, сближающихся с Землей (АСЗ). Красным цветом обозначены объекты диаметром от километра и больше, оранжевым - 140 метров и более, синим - все остальные.


После всех этих событий в США была принята государственная программа поиска опасных небесных тел, сближающихся с Землей. В 1998 году первый обзорный телескоп заступил на дежурство. В течение нескольких лет по этой теме начали работать еще несколько инструментов, и результат не заставил себя ждать. На рисунке 1 изображена статистика открытий АСЗ с 1980 года, которая говорит сама за себя.

В настоящий момент по тематике АКО работают несколько выделенных инструментов с диаметром главных зеркал до 1,8 метра. Многие телескопы, начинавшие свою работу 20 лет назад, прошли модернизацию - на них были установлены новые ПЗС-камеры колоссальных размеров. Например, мозаика ПЗС-чипов телескопа Pan-STARRS имеет диаметр полметра. Назревает вопрос: ну сейчас-то мы бы уже смогли заблаговременно открыть челябинский метеороид? Нет! И вот почему.


Траектория движения метеороида над Челябинском

Трудно обнаружить

Все околоземные астероиды делятся на три семейства, в зависимости от их орбиты. Все они имеют афелии (наиболее удаленная от Солнца точка орбиты) вне орбиты Земли, поэтому их удается обнаруживать. Но ученые задались вопросом: а нет ли таких же объектов, обращающихся вокруг Солнца внутри орбиты Земли и опасно сближающихся с нашей планетой вблизи своего афелия?

Если орбита небесного тела находится внутри земной орбиты, то наблюдать его достаточно сложно, даже если это планета. Не зря Венеру называют «утренней звездой». Она видна на нашем небе в сумерках, вечером или утром. Но это очень яркий объект, а как же обнаружить небольшие астероиды на еще не темном, сумеречном небе? Такой опыт был поставлен. Телескоп, установленный высоко в горах, наводили на области над самым горизонтом, когда Солнце уже погружалось за него. Проницание телескопов (способность обнаруживать тусклые объекты) на светлом небе катастрофически снижается, но даже в таких условиях удалось открыть несколько объектов, которые отнесли к новому семейству околоземных астероидов. Этот опыт показал, что, если мы не видим какие-то объекты, это не значит, что их нет (эффект наблюдательной селекции).

Сразу отвечу на вопрос про применение радиотелескопов. Да, они могут работать и днем, но в настоящий момент их диаграмма направленности (угол зрения) очень мал и не позволяет осуществлять поиск объектов на больших расстояниях. Сейчас для лоцирования астероидов часто необходима оптическая поддержка - телескопы уточняют орбиту небесного тела и радиотелескоп наводится по уже уточненным координатам.

Челябинский метеороид не относился к этому семейству внутренних АСЗ (семейство Атиры), но приближался к нам со стороны Солнца, и в этом была главная причина того, что он не был обнаружен. Другая причина связана с его малым размером. До входа в атмосферу его диаметр составлял примерно 17 метров. Характерное время упреждения при обнаружении объектов такого размера - менее суток, когда они совсем близко подходят к Земле и современные телескопы могут их детектировать.

Кстати, челябинское событие достаточно сильно встряхнуло умы ученых, занимающихся проблематикой АКО. Ранее считалось, что объект менее 50–80 метров в диаметре не сможет причинить большого вреда людям, так как сгорит в атмосфере. События над Челябинском показали, что это не так. Все разрушения были вызваны не столкновением самого тела с поверхностью Земли, а с воздушным взрывом на высоте примерно 19 километров. Напомню, что пострадало более тысячи человек. Если бы это произошло над густонаселенными районами Европы или Японии, пострадавших было бы значительно больше. Так что сейчас ученые понимают, что поиск астероидов декаметрового размера (десятки метров в поперечнике) является важной задачей АКО.

Для такого поиска стали привлекать крупные телескопы, работающие по астрофизическим и космологическим задачам. Например, модернизированный 4-метровый телескоп, занимающийся поиском темной энергии, - Dark Energy Camera (DECam). Через несколько лет в Чили должен заработать обзорный телескоп нового поколения - Large Synoptic Survey Telescope (LSST), с диаметром главного зеркала 8,3 метра! Этот инструмент намного расширит область обнаружения небольших околоземных объектов. Но все это не решит проблему внутренних АСЗ.


Рисунок 2. Либрационные точки (точки Лагранжа). Точки L1, L4, L5 особенно удобны для того, чтобы, переместившись к ним, оценивать угрозу Земле со стороны летящих к ней астероидов.


Для ее эффективного решения необходимо запускать поисковые телескопы в космос, и не просто в космос, а подальше от Земли. Например, в либрационные точки (точки Лагранжа) L1, L4, L5 (рисунок 2). В этом случае мы будем смотреть на Землю как бы сбоку, что позволит обнаруживать опасные объекты, приближающиеся к нашей планете со стороны Солнца. По теоретическим расчетам, еще большую эффективность обнаружения даст размещение космических аппаратов на орбите Венеры или Меркурия.

Техническая реализация таких проектов осложнятся необходимостью передачи больших объемов данных на огромные расстояния. Для точки L1 это 1,5 миллиона километров, для L4/L5 - 150 миллионов километров, ну а для орбиты Венеры оно колеблется от 38 до 261 миллиона километров. Здесь потребуется найти баланс между двумя подходами. Что лучше, передавать «сырые» кадры на Землю и уже тут, на мощных компьютерах, выжимать из них максимум информации - в нашем случае детектировать даже самые тусклые объекты - или передавать только измерения, а всю упрощенную обработку вести на борту? Скорее всего, будет применен симбиоз обоих подходов. И это только одна из многих сложных технических задач, которые придется решить ученым и инженерам.

Теоретические проработки таких миссий ведутся, в том числе и в России. Только после того как мы сможем массово обнаруживать внутренние АСЗ и изучать их популяцию, мы сможем закрыть один из вопросов АКО в части обнаружения опасных объектов. Но это еще не все. Хорошо, спросите вы, мы обнаружили объект, летящий на столкновительной траектории к Земле, а что дальше?


Микроскопические исследования челябинского метеорита

Еще труднее «сбить»

Если говорить реально, то пока мы можем лишь рассчитать время и место падения. То есть, оповестить специальные службы и постараться эвакуировать население из опасного района. Для этого нужно увеличивать характерное время упреждения с нескольких часов до нескольких суток. Если говорить о парировании угрозы, то тут все не так просто. Если это экстренный случай и опасность грозит нам в самом ближайшем будущем, то выбор невелик - это либо чисто кинетическое воздействие (удар болванкой), либо взрывное, вкупе с кинетическим (заглубляем заряд и подрываем его).

Вроде бы все красиво и даже достаточно реализуемо. Малые тела мы уже успешно бомбардировали, заряд есть, дежурные носители-перехватчики можно создать, но есть не несколько «но».

Во-первых, этот подход касается только сравнительно небольших объектов. Хорошая новость заключается в том, что подавляющее большинство больших АСЗ мы уже знаем и реальной угрозы, на горизонте пары сотен лет, они собой не представляют. Но остаются еще неизвестные кометы, которые, как мы видим, могут приближаться к Земле.

Во-вторых, чтобы попасть в объект, надо хорошо знать его орбиту, а для этого требуется длительное время наблюдения (наблюдательная дуга). Если же объект обнаружен за несколько суток до столкновения, даже если у нас перехватчик стоит под парами, то можем и не попасть.

И в-третьих, описанные выше методы не контролируемые - то есть, разрушив один большой объект, мы можем получить облако осколков, которые войдут в атмосферу, и далеко не все из них сгорят. И тут еще вопрос, что лучше: один большой объект или рой его осколков. Или мы можем кинетическим воздействием сдвинуть астероид не так, как нам хотелось бы, переместив его, к примеру, на орбиту с еще большей вероятностью столкновения. Поскольку мы не пишем сценарий нового блокбастера, то все может пойти далеко не так, как задумано…

Если объект опасен для нас в среднесрочной перспективе, на интервале десятков лет, то тут можно использовать методы мягкого и, что немаловажно, контролируемого воздействия. Для неподготовленного человека они могут показаться достаточно странными, но они действительно могут сработать, если у нас в запасе есть десятки лет. Например, мы можем разместить вблизи астероида небольшой космический аппарат, который будет притягивать астероид - так же как и астероид будет притягивать к себе аппарат, но, конечно, с большей силой, ведь огромная глыба намного массивнее. В этом случае мы можем очень точно рассчитать воздействие и предсказуемо, очень медленно, изменить орбиту небесного тела.

Можно посадить космический аппарат на поверхность астероида и менять его орбиту двигателями малой тяги. Посадка на астероид или ядро кометы давно не фантастика - это уже было реализовано. Можно даже покрасить астероид! Да-да, покрасить одну сторону астероида в белый цвет, чтобы она отражала солнечный свет, а вторая, неокрашенная сторона при этом нагревалась, излучая тепловую энергию, способную придать астероиду дополнительное ускорение (эффект Ярковского). Зная форму астероида и параметры его вращения вокруг своей оси, можно рассчитать, как именно необходимо его окрасить для достижения требуемого результата.

Таков краткий обзор проблематики АКО, хотя, конечно, эта тема намного обширнее и глубже. Есть те, кто говорит, что эта проблема не заслуживает внимания, ведь вероятность крупного столкновения очень мала. Да, это так, и задача настоящих ученых - не пугать, а предупреждать. Пусть вероятность и правда очень мала, но и цена бездействия - миллионы и миллиарды жизней, а может, и судьба всей цивилизации. У человечества есть все для того, чтобы не пойти по печальному пути динозавров (хотя для нас падение небесного тела в Мексиканском заливе оказалось счастливым событием - первые млекопитающие вытянули тогда свой счастливый билет).

Поэтому нам необходимо сделать все, чтобы сохранить наш мир, и это относится, конечно, не только к астероидно-кометной опасности. Всем добра и почаще смотрите на ночное небо - оно очень красиво и таит еще много загадок, которые нам предстоит разгадать!


Леонид Еленин