Ряд металлов в химии. Активные металлы. Гальванические элементы, их электродвижущая сила

Отправным пунктом при изучении ряда активности металлов следует взять периодическую систему элементов.

Устанавливается, что активность металла определяется степенью лёгкости отдачи атомом электронов: чем легче атомы металла отдают электроны, тем металл является активнее.

Рис. Трубка для опытов по вытеснению металлов водородом под давлением

О сравнительной активности металлов можно судить по их положению в периодической системе: внутри периодов при передвижении справа налево нарастает активность металлов, и самые активные ( , и ) стоят в начале периодов. В главных подгруппах при передвижении сверху вниз тоже нарастает активность металлов, в чём можно убедиться на примере тех же щелочных металлов.

Ряд бекетова

Но если стоят в разных периодах и в разных группах, как, например, и , на основе положения их в периодической системе быстро и правильно охарактеризовать их сравнительную активность довольно трудно. Это можно выполнить на основе ряда активности металлов, установленного русским учёным Н. Н. Бекетовым и впервые названного им «вытеснительным рядом металлов». Наиболее выдающимся трудом Н. Н. Бекетова являются его «Исследования над явлениями вытеснения одних элементов другими» (Харьков, 1865).

Для наиболее важных металлов ряд активности металлов имеет следующий вид:

1.В этом ряду расположены в определённой системе, а именно в порядке убывающей активности. Из двух металлов, стоящих рядом, легче отдают электроны атомы металла, стоящего левее.

2.Каждый металл этого ряда вытесняет все следующие за ним металлы из растворов их солей, иначе говоря, каждый металл окисляется ионами всех следующих за ним металлов, например:

При этом, как видно из уравнений, металл переходит в состояние иона, а ион - в состояние металла.

3.Если в ряду двигаться слева направо, т. е. от калия к золоту, способность атомов отдавать электроны будет убывать, т. е. будет убывать восстановительная способность атомов и нарастать окислительная способность ионов металлов. Таким образом, в приведённом ряду активности металлов атомы калия и натрия являются очень сильными восстановителями, а ионы серебра и золота - сильными окислителями.

4.Как следствие из изложенного вытекает, что из разбавленных кислот может вытеснять только металлы, которые в ряду стоят левее его. Металлы же, стоящие вправо от водорода, наоборот, вытесняются водородом, находящимся под давлением, из растворов их солей умеренных концентраций:

2Аl + 6НСl = 2АlСl 3 + 3Н 2 ;

H 2 +2AgNO 3 = 2Ag + 2HNO 3 .

Для определения места водорода в ряду активности металлов Н. Н. Бекетов производил такие опыты:

В колена изогнутой стеклянной трубки (рис.) помещались раздельно соли металла, кислота и . Трубка запаи валась, потом наклонялась так, что падал в кислоту и выделяющийся действовал под давлением на раствор соли. По явлениям, происходящим в колене трубки с раствором соли, можно было судить о том, вытесняется ли металл водородом или нет.

На основании подобных опытов Н. Н. Бекетов пришёл к выводу, что в «вытеснительном ряду» должен занимать место после свинца, а за водородом идут , и платиновые металлы.

5. Из двух металлов, образующих электроды гальванического элемента, отрицательным электродом, катодом, будет тот из них, который стоит левее в ряду, а положительным электродом, анодом, - тот, который стоит правее.

Окислительно-восстановительная реакция в гальваническом элементе протекает тем энергичнее, чем эти металлы дальше отстоят друг от друга в ряду активности металлов. Следует в заключение подчеркнуть, что ряд активности металлов нельзя рассматривать как абсолютную характеристику свойств металлов, действительную во всех случаях и при всяких условиях.

1)Так, например, в растворах цианистого калия он существенно отличается от обычного ряда, что видно из приводимого ниже сопоставления (при 10°):

а)Обычный ряд: Zn, Fe, Sn, Сu, Ag. Аu;

б)0,6% раствор KCN: Zn, Сu, Sn, Ag, Аu, Fe;

в)30% раствор KCN: Zn, Сu, Аu, Ag, Sn, Fe.

При изменившихся условиях активность, например, железа резко снижается, активность меди заметно повышается и т. д.

2)Хотя в ряду активности стоит после водорода, но при нагревании металлического серебра в атмосфере хлористого водорода протекает обратимая реакция:

2Ag + 2HCl ⇄ 2AgCl + H 2 ,

причём вытеснение водорода серебром сопровождается выделением тепла. Если эту реакцию проводить в замкнутом сосуде под атмосферным давлением, при 600° газовая смесь содержит по объёму 92,8 % НСl и 7,2 Н 2 , а при 700° соответственно 95% и 5%. Подобным же образом протекает реакция при тех же условиях и с медью.

Несмотря на свой относительный характер и имеющиеся некоторые исключения, ряд активности металлов всё же очень важен в практическом отношении, так как в большинстве случаев он позволяет правильно ориентироваться в направлении окислительно-восстановительной реакции при взаимодействии металла с водным раствором того или иного электролита.

Статья на тему Ряд активности металлов

Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

    С кислородом большинство металлов образует оксиды – амфотерные и основные:

4Li + O 2 = 2Li 2 O,

4Al + 3O 2 = 2Al 2 O 3 .

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2 .

    С галогенами металлы образуют соли галогеноводородных кислот, например,

Cu + Cl 2 = CuCl 2 .

    С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

2Na + H 2 = 2NaH.

    С серой металлы образуют сульфиды – соли сероводородной кислоты:

    С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

3Mg + N 2 = Mg 3 N 2 .

    С углеродом образуются карбиды:

4Al + 3C = Al 3 C 4 .

    С фосфором – фосфиды:

3Ca + 2P = Ca 3 P 2 .

    Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

2Na + Sb = Na 2 Sb,

3Cu + Au = Cu 3 Au.

    Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

Сплавы

Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

Возможны следующие типы сплавов:

Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

Разность потенциалов, измеряемая в электрохимической ячейке, o бъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку. Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой. Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго. Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

- 0 +

Al Mn Zn Fe Sn Pb H 2 Cu Ag Au


Например, Cu отдает электроны легче Ag , но хуже Fe . В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:

2 Ag + + Cu Cu 2+ + 2 Ag

Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:

Fe + Cu 2+ Fe 2+ + Cu .

Можно говорить, что медь является катодным металлом относительно железа и анодным - относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 25 0 С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н + М 2+ + Н 2 .

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности)

Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)

Благородные

или катодные

Au-Au 3+

1,498

Pt-Pt 2 +

Pd-Pd 2 +

0,987

Ag-Ag +

0,799

Hg-Hg 2+

0,788

Cu-Cu 2+

0,337

Н 2 -Н +

Pb-Pb 2 +

0,126

Sn-Sn 2+

0,140

Ni-Ni 2+

0,236

Co-Co 2+

0,250

Cd-Cd 2+

0,403

Fe-Fe 2+

0,444

Cr-Cr 2+

0,744

Zn-Zn 2+

0,763

Активные
или анодные

Al-Al 2 +

1,662

Mg-Mg 2 +

2,363

Na-Na +

2,714

K-K +

2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый - отрицательным. Более реакционноспособный цинк теряет электроны:

Zn Zn 2+ + 2е - ; E °=+0,763 В.

Медь же является менее реакционноспособной и принимает электроны от цинка:

Cu 2+ + 2е - Cu ; E °=+0,337 В.

Напряжение на соединяющем электроды металлическом проводе составит:

0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду ( ГОСТ 9.005-72).

Металл

Стационарный потенциал, В

Металл

Стационарный потенциал, В

Магний

1,45

Никель (активное co стояние)

0,12

Магниевый сплав (6 % А l , 3 % Zn , 0,5 % Mn )

1,20

Медные сплавы ЛМцЖ-55 3-1

0,12

Цинк

0,80

Латунь (30 % Zn )

0,11

Алюминиевый сплав (10 % Mn )

0,74

Бронза (5-10 % Al )

0,10

Алюминиевый сплав (10 % Zn )

0,70

Томпак (5-10 % Zn )

0,08

Алюминиевый сплав К48-1

0,660

Медь

0,08

Алюминиевый сплав В48-4

0,650

Купроникель (30 % Ni )

0,02

Алюминиевый сплав АМг5

0,550

Бронза «Нева»

0,01

Алюминиевый сплав АМг61

0,540

Бронза Бр. АЖН 9-4-4

0,02

Алюминий

0,53

Нержавеющая сталь Х13 (пассивное состояние)

0,03

Кадмий

0,52

Никель (пассивное состояние)

0,05

Дюралюминий и алюминиевый сплав АМг6

0,50

Нержавеющая сталь Х17 (пассивное состояние)

0,10

Железо

0,50

Титан технический

0,10

Сталь 45Г17Ю3

0,47

Серебро

0,12

Сталь Ст4С

0,46

Нержавеющая сталь 1Х14НД

0,12

Сталь СХЛ4

0,45

Титан йодистый

0,15

Сталь типа АК и углеродистая сталь

0,40

Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю

0,17

Серый чугун

0,36

Монель-металл

0,17

Нержавеющие стали Х13 и Х17 (активное состояние)

0,32

Нержавеющая сталь Х18Н12М3 (пассивное состояние)

0,20

Никельмедистый чугун (12-15 % Ni , 5-7 % Си)

0,30

Нержавеющая сталь Х18Н10Т

0,25

Свинец

0,30

Платина

0,40

Олово

0,25

Примечание . Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Вспомните:

Простые вещества состоят из атомов одного химического элемента, их разделяют на металлы и неметаллы;

Для металлов характерны металлический блеск, электропроводность, пластичность и т. п.

Понятие о ряде активности металлов

Во многих химических реакциях принимают участие простые вещества, в частности металлы. Металлы могут взаимодействовать почти со всеми классами неорганических соединений, которые изучаются в школьном курсе химии. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, произойдет реакция или нет.

Чем больше активность металла, тем энергичнее он взаимодействует с другими веществами. По активности все металлы можно расположить в ряд, который называется рядом активности металлов (вытеснительным рядом металлов, рядом напряжений металлов, электрохимическим рядом напряжений металлов). Этот ряд впервые составил и изучил выдающийся украинский ученый Н. Н. Бекетов, поэтому у данного ряда есть еще одно название — ряд Бекетова.

Ряд активности металлов Бекетова выглядит так (более полный ряд см. на форзаце 2):

Русский и украинский химик, основатель украинской школы физической химии, академик Петербургской академии наук с 1886 г. Родился в семье морского офицера. Закончил Казанский университет, работал в Петербурге в Медико-химической лаборатории.

Преподавал химию цесаревичу — будущему императору Николаю II. С 1855 г. профессор императорского университета в Харькове, где по предложению ученого в 1864 г. было открыто первое в Украине физикохимическое отделение. Именно там впервые в мире он начал преподавать физическую химию как отдельную дисциплину. Бекетов открыл способ восстановления металлов из их оксидов, который и сегодня используют в металлургии, установил зависимость сродства элементов от порядкового номера, первым получил чистые оксиды щелочных элементов (Натрия, Калия), составил ряд активности металлов, который назван его именем, был автором первого в мире учебника по физической химии.

В этом ряду металлы расположены по уменьшению их химической активности в водных растворах. Таким образом, среди приведенных металлов наиболее активным является калий, а наименее активным — золото. С помощью этого ряда легко выяснить, какой металл активнее другого. Также в этом ряду находится водород. Конечно, водород не является металлом, но в данном ряду его активность принята за точку отсчета (своего рода ноль).

Взаимодействие металлов с кислотами

Металлы, расположенные в ряду активности слева от водорода, способны вступать в реакции с кислотами, в которых атомы металлических элементов замещают атомы Гидрогена в кислотах. При этом образуются соль соответствующей кислоты и водород H 2 (рис. 36.1, с. 194):

Чем левее расположен металл в ряду активности, тем более бурно он взаимодействует с кислотами. Наиболее интенсивно вытесняют водород из кислот те металлы, которые расположены в самом начале ряда. Так, магний взаимодействует очень бурно (жидкость словно

закипает), цинк взаимодействует значительно спокойнее, железо реагирует совсем слабо (пузырьки водорода едва образуются), а медь вовсе не взаимодействует с кислотой (рис. 36.2).

Если металл расположен в ряду активности справа от водорода, то он не способен вытеснять водород из растворов кислот, и потому реакция не происходит (табл. 12, с. 197):

Обратите внимание на уравнения реакций металлов с кислотами, приведенные выше: в этих реакциях атомы металлических элементов из простого вещества замещают атомы Гидрогена в кислотах. Такие реакции называют реакциями замещения.

Реакции замещения — это реакции, в которых атом элемента простого вещества вытесняет атом другого элемента из сложного вещества.

Взаимодействие нитратной и концентрированной сульфатной кислот с металлами происходит по другой схеме. В таких реакциях водород почти не выделяется, а выделяются другие продукты реакции, о чем вы узнаете в следующих классах.

Взаимодействие металлов с водой

Металлы, расположенные в ряду активности слева от водорода, способны вытеснять водород не только из растворов кислот, но и из воды. Как и в случае с кислотами, активность взаимодействия металлов с водой зависит от расположения металла в ряду активности (рис. 36.3).

Металлы, расположенные в ряду активности слева от магния, взаимодействуют с водой при обычных условиях. В таких реакциях образуются щелочи и водород:


Литий взаимодействует с водой очень бурно (рис. 36.4):

Калий реагирует с водой так бурно, что иногда случается взрыв: во время реакции выделяется настолько большое количество теплоты, что выделяемый водород загорается и вызывает воспламенение самого металла.

Кальций и натрий взаимодействуют с водой так же бурно, но без взрыва:

То, что в результате реакции активных металлов с водой образуются щелочи, можно доказать, добавив раствор фенолфталеина, который приобретает характерную малиновую окраску (рис. 36.5, с. 196).



Магний взаимодействует с водой по такой же схеме, что и активные металлы, но вместо щелочи образуется нерастворимое основание. Реакция протекает настолько медленно, что сначала при добавлении магния к воде никакой реакции не наблюдается — пузырьки водорода начинают выделяться лишь спустя некоторое время (рис. 36.6). Для инициирования реакции воду следует немного подогреть или проводить реакцию в кипящей воде.

Большинство других металлов, расположенных между магнием и водородом в ряду активности, также могут взаимодействовать с водой (вытеснять из нее водород), но это происходит при более «жестких» условиях: для этого через раскаленные металлические опилки пропускают перегретый водяной пар. Конечно, при таких условиях гидроксиды разлагаются (на оксид и воду), поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Никель, олово и свинец пассивируются водой, поэтому ни при каких условиях с водой не реагируют.

Таблица 12. Зависимость химических свойств металлов от положения в ряду активности

K Ca Na Mg

Al Zn Fe

Ni Sn Pb

Cu Ag Hg Au

^ Активность металлов увеличивается

Реагируют с кислотами с образованием соли и водорода

Не реагируют с кислотами

Реагируют с водой при обычных условиях

Вытесняют водород из воды при высокой температуре, образуют оксиды

С водой не взаимодействуют

Из водного раствора соли металл вытеснить невозможно

Металл можно получить вытеснением его более активным металлом из раствора соли

Взаимодействие металлов с солями

Если соль растворима в воде, то металлический элемент в ней может быть вытеснен более активным металлом:

Например, если погрузить в раствор купрум(П) сульфата железную пластинку, через определенное время на ней выделится медь в виде красного налета:

Со временем железная пластинка покрывается довольно плотным слоем порошка меди, а раствор светлеет, что свидетельствует об уменьшении в нем концентрации купрум(П) сульфата (рис. 36.7).

Железо расположено в ряду активности слева от меди, поэтому атомы Феррума могут вытеснить атомы Купрума из соли. Но если в раствор купрум(П) сульфата погрузить серебряную пластину, то реакция не происходит:

CuSO 4 + Ag ф

Медь можно вытеснить из соли любым металлом, расположенным слева от меди в ряду активности металлов. При этом

Рис. 36.8. Менее активное, чем медь, серебро оседает на поверхности медной проволоки. Раствор приобретает голубую окраску благодаря образованию на нем соли Купрума

медь будет вытеснять из растворов других солей любой металл, который расположен в ряду активности справа от нее (рис. 36.8):

Наиболее активные металлы, расположенные в самом начале ряда,— натрий, калий — не вытесняют другие металлы из растворов солей, поскольку они такие активные, что взаимодействуют не с растворенной солью, а с водой, в которой эта соль растворена.

Взаимодействие металлов с оксидами

Оксиды металлических элементов также способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов. Но, в отличие от взаимодействия металлов с солями, чтобы реакция осуществилась, оксиды необходимо расплавить:

Для получения металла из оксида можно применять любой металл, который расположен в ряду активности левее, даже самые активные натрий и калий, ведь в расплавленном оксиде воды нет:

Вытеснение металлов из солей или оксидов более активными металлами иногда применяют в промышленности для получения металлов.

Многие кислоты и другие вещества алхимики называли «спиртами» (от латин. spiritus — «дух», «запах»). Так, был spiritus sale — соляный спирт, или хлоридная кислота, spiritus nitrate — нитратная кислота и т. д. В современном химическом языке от этих названий остались только spiritus ammonia — нашатырный спирт, который является раствором аммиака NH 3 , и spiritus vini — винный, или этиловый, спирт.

Горящие активные металлы (магний, натрий и др.) невозможно погасить водой. Причина заключается в том, что при контакте с водой горящий магний реагирует с ней, вследствие чего выделяется водород, который только усиливает горение.

. «Царской водкой» химики называют кислоту, которая является смесью концентрированных нитратной и хлоридной кислот. Такое название эта смесь получила потому, что с ней взаимодействует даже золото.

Взаимодействие хлоридной кислоты с металлами

Оборудование: штатив с пробирками.

Реактивы: гранулированные образцы металлов: железо, цинк, олово, алюминий, медь; хлоридная кислота.

Правила безопасности:

Остерегайтесь попадания реактивов на одежду, кожу, в глаза; в случае попадания кислоты ее следует немедленно смыть большим количеством воды и протереть место разбавленным раствором соды.

1. В отдельные пробирки поместите выданные вам кусочки металлов (железо, цинк, олово, алюминий, медь).

2. Прилейте в каждую пробирку по 1-2 мл хлоридной кислоты. Что вы наблюдаете? С каким металлом выделение водорода проходит наиболее интенсивно?

3. Запишите свои наблюдения в тетрадь.

4. Сделайте вывод о возможности взаимодействия металлов с кислотами. Сопоставьте активность этого взаимодействия с положением металла в ряду активности.

Взаимодействие металлов с солями в водном растворе

Оборудование: штатив с пробирками.

Реактивы: растворы купрум(П) сульфата, плюмбум(П) нитрата; железная и цинковая пластинки.

Правила безопасности:

Используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на одежду, кожу, в глаза; в случае попадания вещества его следует немедленно смыть водой.

1. В первую пробирку налейте раствор купрум(П) сульфата, во вторую — раствор плюмбум(П) нитрата.

2. В первую пробирку с купрум(П) сульфатом погрузите железную пластину, а во вторую — цинковую. Что наблюдаете? Изменятся ли признаки реакции, если в раствор купрум(П) сульфата опустить цинковую пластину, а в раствор плюмбум(П) нитрата — железную пластину? А если бы в обоих случаях использовали серебряную пластину?

3. Запишите свои наблюдения. Составьте соответствующие уравнения реакций.

4. Сделайте вывод, в котором обоснуйте возможность взаимодействия солей с металлами с точки зрения положения металлов в ряду активности.

Выводы

1. Все металлы, расположенные в один ряд по уменьшению их активности, образуют ряд активности металлов. В него также добавлен водород как вещество, относительно которого определяют активность металлов.

2. Металлы, расположенные в ряду активности слева от водорода, вытесняют его из кислот и воды. Чем левее расположен металл, тем активнее он вступает в реакции. Металлы слева от магния взаимодействуют с водой при обычных условиях, образуя соответствующие гидроксиды и водород, а металлы, расположенные от магния до водорода, взаимодействуют с водой при высокой температуре с образованием оксидов.

3. Металлы могут вытеснять друг друга из соли или оксида: более активный металл всегда вытесняет менее активный. Для проведения таких реакций с водными растворами солей нельзя использовать металлы, расположенные в ряду активности до магния, поскольку они будут взаимодействовать с водой, а не с растворенной в ней солью.

Контрольные вопросы

1. Какую информацию содержит ряд активности металлов Бекетова? По какому принципу в нем расположены металлы?

2. Какие металлы вытесняют водород из кислот? Приведите примеры.

3. Какие металлы взаимодействуют с водой? Какие из них взаимодействуют при обычных условиях, а какие — при высокой температуре?

4. По какому принципу необходимо отбирать металлы для вытеснения других металлов из растворов солей? из расплавов оксидов?

Задания для усвоения материала

1. При каких условиях кислоты реагируют: а) с металлами; б) основаниями; в) солями? Ответ подтвердите уравнениями реакций.

2. При каких условиях соли реагируют: а) с кислотами; б) металлами; в) основаниями? Ответ подтвердите уравнениями реакций.

3. Кусочки магния и олова поместили в раствор хлоридной кислоты. В каком случае реакция протекает интенсивнее? Составьте уравнения этих реакций.

4. Образцы натрия, кальция и цинка залили водой. Что наблюдается в каждом случае? Составьте соответствующие уравнения реакций.

5. В раствор никель(И) сульфата погрузили свинцовую и железную пластины. В каком случае реакция происходит? Ответ обоснуйте.

6. Почему для получения меди из раствора купрум(П) сульфата нельзя использовать натрий и калий, ведь они активнее меди? Можно ли их использовать для добывания меди из расплава купрум(И) оксида?

7. Калий взаимодействует с водой настолько бурно, что выделяемый водород загорается. Какое вещество образуется в растворе? Составьте уравнение реакции.

8. Предложите, как с помощью химических реакций разделить смесь меди и железа.

9. Какие вещества образуются при взаимодействии воды: а) с активными металлами; б) оксидами активных металлических элементов; в) оксидами неметаллических элементов? Приведите примеры.

10. Составьте уравнения возможных реакций:

11. С какими из данных веществ взаимодействует сульфатная кислота: NaNO 3 , CO 2 , NaOH, AgNO 3 , Zn, Ba, CaCO 3 , Cu(OH) 2 , Zn(OH) 2 , HCl, SiQ 2 , Fe 2 O 3 , Hg? Составьте уравнения реакций.

12. Какие из указанных веществ взаимодействуют с водой: Na, Ba, Fe, Fe 2 O 3 , H 2 SO 4 , NaOH, CaO, ZnО? Ответ подтвердите уравнениями реакций.

13. При погружении цинковой пластины в раствор купрум(іі) нитрата на пластине выделилась медь массой 3,2 г. Определите массу цинка, который растворился в результате реакции.

14. Вычислите массу олова, которое можно получить в результате взаимодействия станнум(іі) оксида с алюминием массой 0,54 кг.

15. Какой объем водорода (н. у.) выделится, если цинк массой 97,5 г полностью прореагирует с хлоридной кислотой?

16. Какое количество вещества сульфатной кислоты необходимо для взаимодействия с магнием массой 12 г? Какая масса соли при этом образуется? Какой объем газа (н. у.) выделится?

17. Какое количество вещества меди можно выделить из раствора купрум(іі) сульфата, содержащего 32 г этой соли?

18. Смесь магния массой 6 г и железа массой 16,8 г обработали достаточным количеством раствора сульфатной кислоты. Какой объем водорода (н. у.) выделился в результате реакции?

19. В раствор аргентум(І) нитрата массой 85 г с массовой долей соли 2 % погрузили цинковую пластинку. Вычислите массу серебра, которое выделится на пластинке после окончания реакции. Определите, как изменится масса пластинки по сравнению с ее исходной массой.

20 5 . Алюминий — достаточно активный металл, но изделия из алюминия хранятся на воздухе без видимых признаков порчи. Если зачищенное изделие из алюминия, например ложку или вилку, на некоторое время поместить в раствор меркурий(іі) нитрата, оно покроется серебристым налетом. Обработанное таким образом изделие при хранении на воздухе за довольно короткое время превращается в серый порошок, среди которого можно наблюдать серебристые шарики. Объясните с химической точки зрения, почему могут происходить такие изменения. Составьте соответствующие уравнения реакций.

Это материал учебника

металлов

В многих химических реакциях участвуют простые вещества, в частности металлы. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, будет протекать реакция или нет.

Чем большая активность металла, тем энергичнее он реагирует с другими веществами. По активностью все металлы можно расположить в ряд, который называют рядом активности металлов, или вытеснительный ряд металлов, или рядом напряжений металлов, а также электрохимическим рядом напряжений металлов. Этот ряд впервые исследовал выдающийся украинский ученый М. М. Бекетов, поэтому этот ряд называют также рядом Бекетова.

Ряд активности металлов Бекетова имеет такой вид (приведены наиболее употребительные металлы):

К > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > >H 2 > Cu > Hg > Ag > Au.

В этом ряду металлы расположены с уменьшением их активности. Среди приведенных металлов наиболее активный калий, а наименее активный - золото. С помощью этого ряда можно определить, какой металл активнее от другого. Также в этом ряде присутствует водород. Конечно же, водород не является металлом, но в этом ряду его активность принята за точку отсчета (своеобразный ноль).

Взаимодействие металлов с водой

Металлы способны вытеснять водород не только из растворов кислот, но и из воды. Так же, как и с кислотами, активность взаимодействия металлов с водой увеличивается слева направо.

Металлы, стоящие в ряду активности до магния, способны реагировать с водой при обычных условий. При взаимодействии этих металлов образуются щелочи и водород, например:

Другие металлы, стоящие до водорода в ряду активностей, также могут взаимодействовать с водой, но это происходит в более жестких условиях. Для взаимодействия через раскаленные металлические опилки пропускают перегретый водяной пар. В таких условиях гидроксиды уже существовать не могут, поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Зависимость химических свойств металлов от места в ряду активности

активность металлов увеличивается

Вытесняют водород из кислот

Не вытесняют водород из кислот

Вытесняют водород из воды, образуют щелочи

Вытесняют водород из воды при высокой температуре, образуют оксиды

3 водой не взаимодействуют

С водного раствора соли вытеснить невозможно

Можно получить вытеснением более активным металлом из раствора соли или из расплава оксида

Взаимодействие металлов с солями

Если соль растворима в воде, то атом металлического элемента в ней может быть замещен атомом более активного элемента. Если погрузить в раствор купрум(ІІ) сульфата железную пластинку, то через некоторое время на ней выделится медь в виде красного налета:

Но если в раствор купрум(ІІ) сульфата погрузить серебряную пластину, то никакой реакции происходить не будет:

Купрум можно вытеснить любым металлом, который стоит левее в ряду активности металлов. Однако металлы, которые стоят в самом начале ряда,- натрий, калий и т.д. - для этого не пригодны, потому что они настолько активны, что будут взаимодействовать не с солью, а с водой, в которой эта соль растворена.

Вытеснение металлов из солей более активными металлами очень широко используют в промышленности для извлечения металлов.

Взаимодействие металлов с оксидами

Окислы металлических элементов способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов:

Но, в отличие от взаимодействия металлов с солями, в этом случае оксиды необходимо расплавить, чтобы реакция произошла. Для добыча металла из оксида можно использовать любой металл, что расположен в ряду активности левее, даже наиболее активный натрий и калий, ведь в расплавленном оксиде вода не содержится.

Взаимодействие металлов с оксидами используют в промышленности для извлечения других металлов. Наиболее практичный для этого метода металл - алюминий. Он достаточно широко распространен в природе и дешевый в производстве. Можно также использовать и более активные металлы (кальций, натрий, калий), но они, во-первых, дороже алюминия, а во-вторых, через сверхвысокую химическую активность их очень сложно сохранять на заводах. Такой способ извлечения металлов с использованием алюминия называют алюмінотермією.