Принцип магнитной левитации. Принцип действия левитации

arky_titan в Магнитная левитация

Вот этот эффект я просто обожаю. На днях откопали среди шурушков застарелую таблетку иттрий-бариевого оксидного купрата (YBCO), которая, несмотря на ужасные условия хранения, сохранила немного сверхпроводящих свойств.

В связи с этим я незамедлительно провел серию экспериментов по подвешиванию магнитиков в воздухе (магнитной сверхпроводниковой левитации).

Зависает магнит следующим образом. Берётся тёплый сверхпроводник, находящийся при температуре выше критической. То есть выше той, при которой он переходит в состояние сверхпроводимости.

В этом состоянии он является очень плохим проводником тока с невероятно-слабыми магнитными свойствами. Силовые линии магнитного поляв внешнего магнита проходит через него практически без искажения.

Берутся так же магнитик и пласмасска определенной толщины. Магнит кладется на сверхпроводник (или наоборот), а между ними пластмасска. Затем сверхпроводник охлаждается жидким азотом. Температура кипения жидкого азота -195.8°С, а критическая температура YBCO около -184°C.

Сверхпроводимость характеризуется так назыаемым эффектом Мейснера - полным выталкиванием магнитного поля из толщи сверхпроводника. Так что магнитный поток, который до этого свободно проходил через сверхпроводник оказывается в необычном положении. Он достаточно силён, чтобы немного помешать полному переходу сверхпроводника в сверхпроводящее состояния при данной темепературе и не вытесниться из обёма полностью. Но недостаточно силён, чтобы разрушить сверхпроводимость полностью.

И тут происходит чудо. Внутри сверхпрводника возникает множество крохотных участков, которые не являются сверхпроводящими. В них стягиваются магнитные линии внешнего магнита. Но так как вокруг них весь остальной материал сверхпроводящий, вокруг этих зон начинают циркулировать токи, создающие точно такое же поле, только обратного направления, чтобы скомпенсировать внешнее поле и не позоволить ему проникнуть вглубь.

Силовые линии при этом стягиваются в эти точки, каждая из которых может пропустить через себя не какое-то произвольную, а строго квантованную величину магнитного потока. Квант магнитного потока - фундаментальная постоянная, определяемая постоянной Планка и зарядом электрона. Через каждую такую зону может проходить только кратное количество квантов. А из энергетических соображений в данном случае может проходить только один квант через каждый.

Эти структуры - с крохотной нормальной зоной, несущей квант магнитного потока и циркулирующий вокруг него незатухающий ток называются вихрями Абрикосова.

Чудо заключается в том, что т.к. токи незатухающие, то сверхпроводник "запоминает" профиль поля магнита и в точности его копирует. В силу сверхпроводимости, единожды образовавшись ток уже не затухает, поэтому сверхпроводник будет препятствовать изменению магнитного потока.

Иначе говоря, если вы придвините магнит ближе и попробуете вдавить больше силовых линий, он будет отталкиваться. Если же начнете удалять и, таким образом уменьшать магнитный поток, он будет притягиваться. Даже если с силой удалить магнит в который "вморозился" поток постоянного магнита, то когда вы вернете его на место, он впрыгнет туда же, где он изначально стоял.

Если же приблизить магнит достаточно близко и с силой, то можно "вдавить" немного магнитного поля в сверхпроводник, разрушив чуть больше сверхпроводимости. Тогда вихрей Абрикосова в объёме добавится и высота будет чуть ниже.

Когда вихрей абрикосова становится так много, что они оначинают перекрываться, это момент полного разрушения сверхпроводимости в сверхпроводнике второго рода внешним магнитным полем.

Церковные низкотехнологичные чудеса отдыхают:)

Сегодня для вас очередной эксперимент, который, надеемся, заставит вас задуматься. Это динамическая левитация в магнитном поле. В этом случае один кольцевой магнит располагается над таким-же, но большим по размеру. Продаются магниты дешевле в этом китайском магазине .

Это типичный левитрон, который уже был ранее показан (материал ). Большой магнит и маленький. Они направлены друг к другу одноименными полюсами, соответственно отталкиваются, за счет этого и происходит левитация. Присутствует, естественно, магнитная впадина, или потенциальная яма, в которую верхний магнитик садится. Другой момент, это то, что он вращается за счет гироскопического момента, он какое-то время не переворачивается, пока у него скорость не снизится.

В чем замысел эксперимента?

Если мы вращаем волчок только для того, чтобы он не перевернулся, возникает вопрос. А зачем? Если можно взять какую-то спицу, например, деревянную. К ней жестко прикрепить верхний магнитик, а снизу повесить грузчик расположить эту конструкцию над вторым. Таким образом он тоже по идее должен висеть, а нижний грузик не будет давать ему переворачиваться.

Нужно будет очень точно выставить баланс массы этого волчка. Получилось бы магнитная левитация без затрат энергии.

Как это устроено?

Вот кольцевой магнит, в него жестко вставлена деревянная спица. Далее пластинка из пластика с отверстием для стабилизации спицы. И на конце – грузик. Кусочек пластилина для более удобной регулировки подбора массы. Можно откусывать по чуть-чуть и подобрать такую массу всей этой конструкции, чтобы маленький кольцевой магнитик попадал четко в зону левитации.

Давайте его аккуратно поместим внутрь нижнего магнита, он как бы зависает. Кусочком оргстекла можно попытаться стабилизировать его положение. Но вот стабилизации по горизонтали это ему почему-то не придает.

Если убрать пластинку и вернуть все обратно, то магнитик вместе с осью, на которой он покоится, будет сваливаться вбок. Когда он вращается, он почему-то в магнитной яме стабилизируется. Хотя, обратите внимание, при этом вращении он двигается со стороны в сторону, наверное, миллиметров на пять. Точно также он колеблется и в вертикальном положении сверху вниз. Создается такое впечатление, что это магнитная яма имеет определенный люфт. Стоит верхнему магниту попасть в яму, оне его захватывает и удерживает. Остается лишь гироскопическим моментом добиться того, чтобы этот магнит не переворачивался.

В чем была суть эксперимента?

Проверить, если мы сделаем показанную конструкцию с осью, она фактически она выполняет тоже самое, не давая магниту перевернуться. Она выводит его в зону потенциальной ямы, мы подбираем вес этой конструкции. Магнитик находится в яме, но, попадая в нее, почему-то не стабилизируется по горизонтали. Все равно это конструкция сваливается в сторону.

Проведя этот эксперимент, возникает главный вопрос: почему же такая несправедливость, когда этот магнит как волчок вращается, он зависает в потенциальной яме, все отлично стабилизируется и захватывается; а когда создаются те же условия, все тоже самое, то есть масса и высота, яма как будто пропадает. Он просто выталкивается.

Почему нет стабилизации верхнего магнита?

Предположительно, это происходит потому, что невозможно сделать магниты идеальными. Как по форме, так и по намагниченности. Поле имеет какие-то изьяны, перекосы и поэтому в нем не могут два наших магнита найти равновесное состояние. Они обязательно будут соскальзывать, поскольку между ними нет трения. А при вращении левитрона поля как бы сглаживаются, верхняя часть конструкции не успевает при вращении сойти в сторону.

Это понятно, но что мотивировало автора видео сделать этот эксперимент, это наличие потенциальной ямы. Была надежда, что у этой ямы есть какой-то запас прочности для удержания конструкции. Но, увы, этого почему-то не произошло. Хотелось бы почитать ваше мнение об этой загадке.

Есть еще материал на эту тему.

конспект презентации ПРОЕКТНОЙ РАБОТы по физике на тему «МАГНИТНАЯ ЛЕВИТАЦИЯ»

    с егодня я хочу представить свой проект, который называется «Магнитная левитация» . Мой проект является исследовательским, поэтому целью проекта является исследование магнитных явлений и возможностей их потенциального использования в современной технике. ( слайд 1-2 )

    Почему я выбрал эту тему? Очень давно, как только я узнал о свойствах магнитов притягиваться и отталкиваться, меня стал интересовать вопрос: можно ли использовать это свойство магнитов для удержания предметов в воздухе в состоянии «парения» над землёй? Например, можно ли создать диван, «висящий» в воздухе и мягко амортизирующий, когда вы садитесь на него? ( слайд 3 )

    С целью ответить на этот и другие похожие вопросы я поставил следующие задачи : ( слайд 4 )

    изучить магнитные свойства веществ;

    исследовать возможность магнитной левитации и

    выявить потенциальные области применения магнитной левитации

    В ходе исследований я выяснил, что все вещества в природе в большей или меньшей степени обладают магнитными свойствами. При этом одни из них при внесении в магнитное поле втягиваются в него и располагаются по направлению магнитных линий внешнего магнитного поля. Такие вещества называются парамагнетиками . Например, платина, марганец, хром . Другие вещества, напротив, располагаются поперек магнитных линий внешнего магнитного поля и выталкиваются из него. Такие вещества называются диамагнетиками . К ним относятся медь, алюминий, серебро и особенно висмут и сурьма . Это разделение веществ на парамагнетики и диамагнетики предложил в 1845 году Майкл Фарадей . Вещества, которые обладают особо выраженными свойствами парамагнетиков («сверхпарамагнетики»), такие, как железо, никель и кобальт , позднее получили название ферромагнетики . ( слайд5 )

    Кроме того есть вещества, которые сами создают магнитное поле, так называемые постоянные магниты . В постоянных магнитах элементарные кольцевые токи вокруг атомов и молекул ориентированы одинаково. Усиливая друг друга, они создают в веществе и вокруг него магнитное поле. Постоянные магниты встречаются в природе в виде оксидов железа – например, магнетит или сплавов других веществ, как, например, неодимовый магнит – редкоземельный постоянный очень мощный магнит, состоящий из сплава неодима, бора и железа . Так же постоянные магниты люди научились создавать искуственно , сплавляя некоторые ферромагнетики с пара- и диамагнетиками. ( слайд 6 )

    Почему же магниты притягиваются или отталкиваются? Дело в том, что каждый магнит имеет два полюса : северный и южный . Между этими полюсами проходят линии магнитного поля – это суммарное направление элементарных кольцевых токов. Так вот, если направление магнитных линий совпадает, т.е. магниты совмещаются разноимёнными полюсами , то они притягиваются . Одноимённые же полюса , напротив, отталкиваются . ( слайд 7 )

    Самые мощные магниты, которые удалось создать человеку, это – электромагниты . Каждый провод, по которому течёт электрический ток, создаёт вокруг себя магнитное поле. Магнитное поле можно усилить, если свернуть провод в виде винтовой спирали. Полученную катушку с током называют соленоидом . При увеличении витков в катушке магнитное поле также возрастает в силе. Ещё большего усиления магнитного поля можно достичь, если вставить в соленоид железный стержень (сердечник ). Соленоид с железным сердечником внутри называется электромагнитом . ( слайд 8 )

    Первым создателем электромагнита был Вильям Стерджен . 4 мая 1825 года он продемонстрировал первый в мире электромагнит грузоподъёмностью 36Н . В 1830 году работу над электромагнитами продолжил ученик Стерджена Джоуль, который сумел создать электромагнит, способный поднять 5500Н . уже через год американский ученый Дж. Генри обогнал его, построив электромагнит, поднимавший 10000Н . А в 1840 году Джоуль создал магнит собственной конструкции, который удерживал на весу 12000Н . Современные электромагниты поднимают грузы в несколько десятков тонн ! Электромагниты нашли широкое применение в сельском хозяйстве для очистки зерна и на заводах для подъёма тяжестей. ( слайд 9 )

    Итак, можно ли заставить магнит левитировать? Ведь если магниты поднести друг к другу одноименными полюсами, отталкиваясь, они тут же стремятся повернуться друг к другу разноимёнными полюсами, вследствие чего тут же притягиваются! Теорема Ирншоу доказывает, что используя только ферромагнетики, невозможно устойчиво удерживать объект в гравитационном поле. Несмотря на это, с помощью сервомеханизмов, диамагнетиков, сверхпроводников и систем с вихревыми токами левитация возможна ! ( слайд 10 )

    В некоторых случаях подъёмная сила обеспечивается магнитной левитацией, но при этом есть механическая поддержка, дающая устойчивость. В этих случаях явление называется псевдолевитация . Безопорная устойчивая магнитная левитация возможна благодаря магнитным ямам , возникающим в магнитном поле, которые можно выстраивать с помощью нескольких магнитов. ( слайд 11 )

    Следующий фактор устойчивой магнитной левитации это – гироскопический эффект – устойчивость оси вращения объекта в пространстве (многим знакомый с детства эффект «волчка» - юлы). Для большей наглядности можно посмотреть трёхминутный видеосюжет Игоря Белецкого «Магнитная левитация». ( слайд 12 )

    Итак, магнитная левитация возможна! Где и как можно использовать это магнитное свойство? Первое : поезд на магнитной подущке– магнитоплан или маглев. Второе : магнитные подшипники. Третье : показ продукции ( слайд 13 )

    Немного подробнее о магнитоплане. Маглев – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного поля. ( слайд 14 )

    Основные достоинства маглева. 1) самая высокая скорость из всех видов общественного наземного транспорта (до 603 км/ч); 2) низкое потребление электроэнергии (энергия у маглева расходуется в три раза эффективнее, чем у автомобиля и в 5 раз – чем у самолёта); 3) снижение эксплуатационных затрат в связи со значительным уменьшением трения деталей; 4) огромные перспективы по достижению скоростей, многократно превышающих скорости, используемые в реактивной авиации (при уменьшении аэрдинамического сопротивления путём помещения состава в вакуумный тоннель); 5) в связи с этим прорабатываются проекты по использованию магнитных ускорителей в качестве средства вывода полезной нагрузки в космос; 6) низкий шум; 7) КПД данного поезда выше в сравнении с КПД современных поездов. ( слайд 15 )

    Разумеется, у маглевов есть и свои недостатки, но их гораздо меньше, чем достоинств: 1) высокая стоимость создания и обслуживания колеи; 2) в отличие от рельсовых путей для скоростных поездов, которые остаются доступными и для обычных пассажирских и пригородных поездов, путь маглева ни для ечго другого не пригоден. ( слайд 16 )

    Тем не менее, маглевы постепенно завоевывают пути сообщения. Так в 1984 году в Германии (Эмсланд) был построен первый испытательный трек общей длиной 31,5 км. В настоящее время дорога используется для проведения испытаний и в качестве аттракциона для туристов. Через пять лет в Германии (Берлин) была открыта дорога для движения пассажиров. Проезд был бесплатный, вагоны управлялись автоматически без машиниста, дорога работала только по выходным дням. В это же время (с 1984 по 1995 ) в Великобритании нескоростной магле-челнок ходил от Бирменгемского аэропорта до ближайшей железнодорожной станции. В СССР в 1987 году было начато строительство первой магнитной железной дороги в Армении. Однако спитакское землетрясение и военные события стали причиной замораживания объекта. В Китае Шанхайская маглев-трасса открыта в 2002 году. Её протяженность сотавляет 30 км. 16 апреля 2015 года маглев Японской компании установил новый рекорд скорости, разогнавшись до 590 км/ч. В настоящее время в Южной Корее строится дорога, относящаяся к типу городского маглева. ( слайд 17 )

Давайте подробнее рассмотрим принцип действия левитации: создается очень мощное силовое поле, в которое помещают человека, который обладает собственным энергетическим полем, или некий предмет. Левитация не будет наблюдаться, если линии направленности энергетических полей совпадут. Если же силовые поля и линии не совпадут, то мы сможем наблюдать эффект левитации. Как результат, мы получаем предмет (или человека) опирающийся на энергетическое поле Земли. При повышении своей энергетики, мы создаем и расширяем вокруг себя дополнительное энергополе.
Существует такое понятие как «смена полярности» . Этот процесс заключается в следующем. Как давно известно, магнит имеет два противоположных полюса «+» и «-» . Так и человек имеет две стороны — духовную и материальную.

Человек, живущий материальным, никогда не сможет «парить». Потому, что у него большая сила притяжения к Земле (гравитация); то есть направленности полей совпадают. Если же в человеке превышает духовное начало, он стремиться к чему-то возвышенному, то постепенно будет «терять вес».

Многие случаи левитации были в моменты прорывов сознания, экстаза, связи с абсолютной силой.

Магнитная левитация

Ранее мы уже говорили немного о левитации магнитов. Сейчас вы узнаете об этом ещё больше.

Магнитная левитация – это метод, который состоит в том, что подъём предмета производиться с помощью только магнитного поля. Чаще всего используется в физике.
Левитация возможна при использовании диамагнетиков, сверхпроводников, сервомеханизмов, систем с вихревыми токами. Магнитные системы и материалы притягивают и отталкивают друг друга с такой силой, которая зависит от магнитного поля, а также от поверхности магнита.

Магнитная левитация используется в транспорте. Её ещё называют маглев.

Маглев — способ транспортирования, который направляет, приводит и подвешивает в движение транспортные средства, при этом используя магнитную левитацию. Такой способ тихий и быстрый. Максимальная скорость, которая была зафиксирована у Маглева, равна 581 км/ч (Япония, 2003 г.).

Магнитная левитация была продемонстрирована на живых объектах и подтверждена опытами.

Впервые на себе испытала эффект левитации мышь. Учёные из NASA заставили лабораторную мышь левитировать над поверхностью благодаря созданному магнитному полю достаточной силы. То есть F >P, где F – это сила поля, а P – вес мыши. Созданный магнит работает при комнатной температуре. Это удивительный факт, ведь раньше такого добиться не удавалось. До этого такие опыты проводились на меньших животных (лягушках, жуках).

Исследователи из США, Университет Райса зашли ещё дальше. Они утверждают, что при помощи магнитной левитации можно вырастить искусственные органы. Ведь тогда они имели бы трехмерную структуру. Это помогло б проводить разные эксперименты. И был создан «воздушный капилляр».

Акустическая левитация

Ещё один эксперимент левитации человека основывается на помощи звука, эффекте стоячих волн.

Акустическая левитация – феномен, при котором силе тяжести противодействуют звуковые волны, это позволяет предмету парить в воздухе. Образуются стоячие волны с помощью звуковых разрядов. Подъём произойдёт тогда, когда частота волн совпадёт с частотой объекта.

Может казаться, что это невероятно, ведь как звук может поднять предмет. Но это очень реальное явление, известное ещё в древности.
Исследованиями акустических возможностей человека занимается Институт Ксана. Они основаны на знаниях о воздухе, свойствах звука и гравитации.

Звук – это вибрации; они происходят во всякой среде (газ, жидкость, твердой). Звуковые волны идут от источника, который может менять форму. Пример: от удара заставляет колокол вибрировать в воздухе. Звук не будет распространяться, если нет молекул (как в вакууме).

Акустическая левитация состоит из двух частей:

  1. Преобразователь (поверхность, производит волны);
  2. Отражатель (пластина, отражает волну).

Если правильно использовать стоячие звуковые волны, то можно подвесить каплю воды прямо в воздухе.
Принцип действия такой левитации: звуковые волны производится в закрытой области; за счёт этого образуются области разного уровня давления.

В чём же всё-таки состоит секрет левитации? Тут точки зрения расходятся, и точный ответ не найден. Одни говорят, что люди неким образом умеют уменьшать вес своего тела; другие объясняют этот феномен существованием в человеке сил «подъёма», они действуют только в состоянии транса (йоги).

Но существует ещё и такая теория: человек – это потомок инопланетных существ; от них мы получили способность преодолевать гравитацию. Нужно, чтобы у каждого человека просто проснулась генная память, тогда все мы сможем летать, и левитация не будет чем-то необычным и загадочным.

Сейчас существует масса фокусов, секретов, которые нам показывают на сцене. Крис Энджел – и фокусник, и иллюзионист, и каскадёр – проделал такой трюк, в котором он показывает свою способность левитировать (пролетает над домами). Такой известный иллюзионист как Дэвид Коперфильд неоднократно показывал полет над сценой, во время своих блестящих выступлений. Секрет их выступлений довольно простой. Много кто думал о магнитном поле, которое образовано с помощью огромных магнитов, которые находятся под сценой. Но всё оказалось ещё проще. Коперфильд летает благодаря проволке; металлические нити тонкие и их очень трудно заметить, особенно из зала.

Тема левитации стала очень популярной. Её описывают в литературе, снимают фильмы об этом феномене. Например, сериал «Зачарованные» — Фиби, младшая из сестёр, обладает левитацией; сериал «Kyle XY» — левитирует сам главный герой; сериал «Герои» — этим феноменом одарены братья Петрелли, Вест Розен и Сайлар.

Как говорят многие учёные «Рождённый ползать – летать не будет». Вы можете верить в магическую левитацию или наоборот доказывать, что возможна лишь магнитная левитация. Но вывод один – этот феномен действительно реален и его стоит исследовать глубже.

Наука не стоит на месте, эксперименты будут продолжаться.

Но каждый из вас должен помнить, что первый шаг к левитации – это повышение собственной энергетики! Пусть духовное начало превышает над материальным, умейте владеть своими эмоциями, стремитесь освободиться от земной суеты, если хотите лететь ввысь.

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием "Air Bonsai", действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, "плавающую" над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита - пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: "Пропорционально-интегрально-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования."

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера : в автомобиле у нас три значения (Вход, Установка, выход) будут - скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение - это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал - скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino . Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.


Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого - увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Распиновка модулей:

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a - это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: "Неодим - химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения."

Неодим - это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный - это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание ! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет ! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер - здорово. У вас есть возможность сделать все с помощью него. Если принтера нет - не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше - файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные - для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой - к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг - собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.