Почему результат эксперимента майкельсона морли. Опыт Майкельсона — Морли

Опыт Майкельсона

Схема опыта Майкельсона-Гэля

О́пыты Ма́йкельсона - класс физических экспериментов, исследующих зависимость скорости распространения света от направления. В настоящее время (2011 год) точность опытов позволяет найти относительные отклонения изотропности скорости света в единицы 10 −16 , однако на этом уровне отклонения не найдены. Опыты Майкельсона являются эмпирической основой принципа инвариантности скорости света , входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО) .

История

Предыстория

Теория распространения света, включающая в себя эфир, появилась в XVII веке. В 1727 году английский астроном Джеймсом Брэдли объяснил через неё аберрацию света . Эдуард Кеттелер и Т. Юнг несколько развили теорию эфира. В 1868 году Хук поставил опыт по проверке теории эфира на эффекте аберрации света от земного источника света. В 1871-1872 годах Эйри провёл серию точных опытов с астрономическим источником света, сделав из них вывод о том, что орбитальное движение Земли полностью увлекает эфир.

Эпоха Майкельсона

Впервые подобный опыт был поставлен Альбертом Майкельсоном на своём интерферометре в 1881 году , с целью измерения зависимости скорости света от движения Земли относительно эфира . Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой свет распространяется подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательным - смещения полос не совпадают по фазе с теоретическими, а колебания этих смещений только немного меньше теоретических.

Опыты Миллера

По мнению профессора Дэйтона К. Миллера (Кейсовская школа прикладных наук): - «Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект» .

В марте 1921 г. методика и аппарат были несколько изменены и получен результат в 10 км/с «эфирного ветра». Результаты были тщательно проверены на предмет возможного устранения погрешностей, связанных с магнитострикцией и тепловым излучением. Направление вращение аппарата не оказывало влияния на результат эксперимента .

Более поздние исследования результатов, полученных Д. Миллером, показали, что флюктуации, наблюдавшиеся им и интерпретированные как наличие «эфирного ветра» являются следствием статистических ошибок и неучёта температурных эффектов .

Опыты Кеннеди

Доктор Рой Кеннеди (Калифорнийский технологический институт) после публикаций результатов опыта Морли-Миллера видоизменяет опыт с целью проверки. Интерферометр помещается в металлический герметичный корпус, заполненный гелием под давлением 1 атм. Используя приспособление, способное различить очень малые смещения интерференционной картины, стало возможным сократить размер плеч до 4 м. Использовался поляризованный свет с целью исключить насколько возможно рассеяние света на зеркалах. Точность опыта соответствовала смещению полос на 2·10 −3 их ширины. На этом аппарате скорость 10 км/с, полученная Миллером, давала бы сдвиг, соответствующий 8·10 −3 длины волны зелёного цвета, что в четыре раза больше наименьшего определяемого значения. Эксперимент проводился в лаборатории Норман Бридж, в помещении с постоянной температурой, в различное время дня. Для проверки зависимости скорости эфирного ветра от высоты местности опыты проводились также на Маунт Вилсон в здании обсерватории. Эффект оказался не превышающим 1 км/с для эфирного ветра .

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьёзная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, т. е. повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности, я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода - Проф. Лоренц

Опыты Майкельсона и Гэля

В 1925 г. Майкельсоном и Гэлем у Клиринга в Иллинойсе на земле были уложены водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE направлены точно с запада на восток, EF, DA и CB - с севера на юг. DE=AF=613 м. EF=DA=CB=339.5 м. Одним общим насосом работающим в течение трех часов можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, регистрировали в различные дни при полной перестановке зеркал и различными людьми. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка .

Таким образом, перед нами снова положительный эффект, сам по себе с поразительной точностью подтверждающий предположение о неувлекаемом эфире, отстающим при суточном вращении Земли. - С.И. Вавилов т. IV

Современные варианты


Wikimedia Foundation . 2010 .

Смотреть что такое "Опыт Майкельсона" в других словарях:

    Общий вид интерферометра в перспективе. Изображение из доклада А.Майкельсона по результатам его экспериментов, выполненных в 1881 г. Движение Земли вокруг Солнца и через эфир … Википедия

    опыт Майкельсона-Морлея - Maikelsono ir Morlio eksperimentas statusas T sritis fizika atitikmenys: angl. Michelson Morley experiment vok. Michelson Morley Versuch, m rus. опыт Майкельсона Морлея, m pranc. expérience de Michelson et Morley, f; expérience de Michelson… … Fizikos terminų žodynas

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон 1881). В классической физике опыт Майкельсона не нашел объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчета принимается как… … Большой Энциклопедический словарь

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон, 1881). В классической физике Майкельсона опыт не нашёл объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчёта принимается как … Энциклопедический словарь

    Поставлен амер. физиком А. А. Майкельсоном (A. A. Michelson) в 1881 с целью измерения влияния движения Земли на скорость света. В физике кон. 19 в. предполагалось, что свет распространяется в нек рой универсальной мировой среде эфире. При этом… … Физическая энциклопедия

    Опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории (См.… … Большая советская энциклопедия

    Майкельсона-Морли опыт - опыт, поставленный впервые в 1881 году американскими физиками Майкельсоном и Морли с целью обнаружения влияния орбитального движения Земли на скорость света, но не выявивший этого влияния (известен в науке как «отрицательный результат» опыта).… … Начала современного естествознания

Чтобы распространяться в пространстве, свет не нуждается в «светоносном эфире».

Трудно представить себе абсолютную пустоту — полный вакуум, не содержащий чего бы то ни было. Человеческое сознание стремится заполнить его хоть чем-то материальным, и на протяжении долгих веков человеческой истории считалось, что мировое пространство заполнено эфиром. Идея состояла в том, что межзвездное пространство заполнено какой-то невидимой и неосязаемой тонкой субстанцией. Когда была получена система уравнений Максвелла , предсказывающая, что свет распространяется в пространстве с конечной скоростью, даже сам автор этой теории полагал, что электромагнитные волны распространяются в среде, подобно тому, как акустические волны распространяются в воздухе, а морские — в воде. В первой половине XIX столетия ученые даже тщательно проработали теоретическую модель эфира и механику распространения света, включая всевозможные рычаги и оси, якобы способствующие распространению колебательных световых волн в эфире.

В 1887 году два американских физика — Альберт Майкельсон и Генри Морли — решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.

Майкельсон и Морли использовали интерферометр — оптический измерительный прибор, в котором луч света расщепляется надвое полупрозрачным зеркалом (стеклянная пластина посеребрена с одной стороны ровно настолько, чтобы частично пропускать поступающие на нее световые лучи, а частично отражать их; аналогичная технология сегодня используется в зеркальных фотоаппаратах). В итоге луч расщепляется и два получившихся когерентных луча расходятся под прямым углом друг к другу, после чего отражаются от двух равноудаленных от полупрозрачного зеркала зеркал-отражателей и возвращаются на полупрозрачное зеркало, результирующий пучок света от которого позволяет наблюдать интерференционную картину и выявлять малейшую десинхронизацию двух лучей (запаздывании одного луча относительно другого; см. Интерференция).

Опыт Майкельсона—Морли был принципиально направлен на то, чтобы подтвердить (или опровергнуть) существование мирового эфира посредством выявления «эфирного ветра» (или факта его отсутствия). Действительно, двигаясь по орбите вокруг Солнца, Земля совершает движение относительно гипотетического эфира полгода в одном направлении, а следующие полгода в другом. Следовательно, полгода «эфирный ветер» должен обдувать Землю и, как следствие, смещать показания интерферометра в одну сторону, полгода — в другую. Итак, наблюдая в течение года за своей установкой, Майкельсон и Морли не обнаружили никаких смещений в интерференционной картине: полный эфирный штиль! (Современные эксперименты подобного рода, проведенные с максимально возможной точностью, включая эксперименты с лазерными интерферометрами, дали аналогичные результаты.) Итак: эфирного ветра, а, стало быть, и эфира не существует.

В отсутствие эфирного ветра и эфира, как такового, стал очевиден неразрешимый конфликт между классической механикой Ньютона (подразумевающей некую абсолютную систему отсчета) и уравнениями Максвелла (согласно которым скорость света имеет предельное значение, не зависящее от выбора системы отсчета), что и привело в итоге к появлению теории относительности . Опыт Майкельсона—Морли окончательно показал, что «абсолютной системы отсчета» в природе не существует. И, сколько бы Эйнштейн впоследствии ни утверждал, что вообще не обращал внимания на результаты экспериментальных исследований при разработке теории относительности, сомневаться в том, что результаты опытов Майкельсона — Морли способствовали быстрому восприятию столь радикальной теории научной общественностью всерьез, вряд ли приходится.

Эдвард Уильямс МОРЛИ
Edward Williams Morley, 1838–1923

Американский физик и химик. Родился в Ньюарке, штат Нью-Джерси в семье церковнослужителя-конгрегационалиста. По причине слабого здоровья школу не посещал, а учился дома, причем отец готовил его к продолжению служения церкви, однако мальчик предпочел естественные науки и занялся изучением химии и природоведения. В конце концов, из него получился непревзойденный экспериментатор. Именно Морли удалось с непревзойденной точностью определить удельные массы водорода и кислорода в составе чистой воды. Когда же судьба свела его с Альбертом Майкельсоном, его навыки экспериментатора оказались просто незаменимыми, и теперь имена двух этих ученых неразрывно связаны благодаря их знаменитому опыту.


Albert Abraham Michelson, 1852–1931

Американский физик, немец по национальности (на снимке). Родился в местечке Стрельно (ныне Стшельно) на территории современной Польши (в те годы входившей в состав Российской империи). В возрасте двух лет вместе с родителями эмигрировал в США. Вырос в Калифорнии в эпоху знаменитой «золотой лихорадки», однако отец будущего ученого занимался не поисками золота, а мелкооптовой торговлей в городах, охваченных этим недугом. Поступил в Академию ВМФ США по особой рекомендации некоего конгрессмена от своего штата, был принят на действительную службу, прошел полный курс строевой подготовки, после чего был назначен преподавателем физики. Благодаря этому у него появилась возможность заниматься оптикой и, в частности, строительством прибора для определения скорости света.

После выхода в отставку с действительной службы в 1881 году стал преподавателем Школы прикладных наук им. Кейса (Case School of Applied Sciences) в Кливленде, штат Огайо, где и продолжил свои исследования. В 1907 году Майкельсон был удостоен Нобелевской премии по физике «за создание прецизионных оптических инструментов и за выполненные с их помощью исследования», а именно, за точное определение длины стандартного метра и скорости света в вакууме.

В 1881 г. Майкельсон осуществил знаменитый опыт, с помощью которого он рассчитывал обнаружить движение Земли относительно эфира (эфирный ветер). В 1887 г. Майкельсон повторил свой опыт совместно с Морли на более совершенном приборе. Установка Майкельсона - Морли изображена на рис. 150.1. Кирпичное основание поддерживало кольцевой чугунный желоб с ртутью. На ртути плавал деревянный поплавок, имеющий форму нижней половины разрезанного вдоль бублика. На этот поплавок устанавливалась массивная квадратная каменная плита. Такое устройство позволяло плавно поворачивать плиту вокруг вертикальной оси прибора. На плите монтировался интерферометр Майкельсона (см. рис. 123.1), видоизмененный так, что оба луча, прежде чем вернуться к полупрозрачной пластинке, несколько раз проходили туда и обратно путь, совпадающий с диагональю плиты. Схема хода лучей показана на рис. 150.2. Обозначения на этом рисунке соответствуют обозначениям на рис. 123.1.

В основе опыта лежали следующие соображения. Предположим, что плечо интерферометра (рис. 150.3) совпадает с направлением движения Земли относительно эфира. Тогда время, необходимое лучу чтобы пройти путь до зеркала и обратно, будет отлично от времени, необходимого для прохождения пути лучом 2.

В результате, даже при равенстве длин обоих плеч, лучи 1 и 2 приобретут некоторую разность хода. Если повернуть прибор на 90°, плечи поменяются местами и разность хода изменит знак. Это должно привести к смещению интерференционной картины, величину которого, как показали произведенные Майкельсоном расчеты, вполне можно было бы обнаружить.

Чтобы вычислить ожидаемое смещение интерференционной картины, найдем времена прохождения соответствующих путей лучами 1 и 2. Пусть скорость Земли относительно эфира равна .

Если эфир не увлекается Землей и скорость света относительно эфира равна с (показатель преломления воздуха практически равен единице), то скорость света относительно прибора будет равна с - v для направления и с + v для направления Следовательно, время для луча 2 определяется выражением

(скорость движения Земли по орбите равна 30 км/с, поэтому

Прежде чем приступить к вычислению времени , рассмотрим следующий пример из механики. Пусть катеру, который развивает скорость с относительно воды, требуется пересечь реку, текущую со скоростью v, в направлении, точно перпендикулярном к ее берегам (рис 150.4). Для того чтобы катер перемещался в заданном направлении, его скорость с относительно воды должна быть направлена так, как показано на рисунке. Поэтому скорость катера относительно берегов будет равна Такова же будет (как предполагал Майкельсон) скорость луча 1 относительно прибора.

Следовательно, время для луча 1 равно

Подставив в выражение значения (150.1) и (150.2) для получим разность хода лучей 1 и 2:

При повороте прибора на 90° разность хода изменит знак. Следовательно, число полос, на которое сместится интерференционная картина, составит

Длина плеча I (учитывая многократные отражения) составляла 11 м. Длина волны света в опыте Майкельсона и Морли равнялась 0,59 мкм. Подстановка этих значений в формулу (150.3) дает полосы.

Прибор позволял обнаружить смещение порядка 0,01 полосы. Однако никакого смещения интерференционной картины обнаружено не было. Чтобы исключить возможность того, что в момент измерений плоскость горизонта окажется перпендикулярной к вектору орбитальной скорости Земли, опыт повторялся в различное время суток. Впоследствии опыт производился многократно в различное время года (за год вектор Орбитальной скорости Земли поворачивается в пространстве на 360°) и неизменно давал отрицательные результаты. Обнаружить эфирный ветер не удавалось. Мировой эфир оставался неуловимым.

Было предпринято несколько попыток объяснить отрицательный результат опыта Майкельсона, не отказываясь от гипотезы о мировом эфире. Однако все эти попытки оказались несостоятельными. Исчерпывающее непротиворечивое объяснение всех опытных фактов, в том числе и результатов опыта Майкельсона, было дано Эйнштейном в 1905 г. Эйнштейн прншел к выводу, что мирового эфира, т. е. особой среды, которая могла бы служить абсолютной системой отсчета, не существует. В соответствии с этим Эйнштейн распространил механический принцип относительности на все без исключения физические явления. Далее Эйнштейн постулировал в соответствии с опытными данными, что скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.

Принцип относительности и принцип постоянства скорости света образуют основу созданной Эйнштейном специальной теории относительности (см. главу VIII 1-го тома).

За двадцать лет до начала этого периода, однако, фундамент всего построения уже дал трещину, и, хотя наверху строительство продолжалось, основы уже нуждались в ремонте и укреплении.

Мы уже несколько раз подчеркивали, что всякий решающий эксперимент, ставящий целью подтверждение теории неподвижного эфира, должен быть достаточно точным, чтобы учесть величины второго порядка по Лишь в этом случае можно достичь уверенности в вопросе о том, действительно ли всякое быстро движущееся тело встречает некий эфирный ветер, сдувающий с него световые волны, как требует того теория.

Майкельсон и Морли (1881 г.) впервые успешно осуществили важнейший эксперимент такого рода. Они пользовались интерферометром Майкельсона (гл. IV, § 4, стр. 102), который им удалось усовершенствовать до состояния точного прибора колоссальных возможностей.

При исследовании влияния движения Земли на скорость света (гл. IV, § 9, стр. 129) было обнаружено, что время, необходимое световому лучу для прохождения расстояния параллельно движению Земли туда и обратно, отличается лишь на величину второго порядка от значения, которое это время имело бы, если бы Земля покоилась. Мы установили раньше, что это время составляет

его можно записать и иначе:

Если бы его можно было настолько точно измерить, что долю

удалось бы отличить от 1, несмотря на чрезвычайно малое значение величины то мы получили бы средство обнаружения эфирного ветра.

Однако, вне всякого сомнения, невозможно измерить короткий интервал времени, который затрачивает свет для того, чтобы пересечь определенное расстояние. Интерферометрические методы дают просто разности времен, затрачиваемых светом на прохождение различных, не равных друг другу расстояний между двумя заданными точками. Но зато эти разности они дают с поразительной точностью.

Фиг. 109. Путь луча света в опыте Майкельсона.

Поэтому Майкельсон и Морли заставляли второй луч проходить расстояние равное одной и той же величине I, вперед и назад, но в обоих случаях по перпендикуляру к направлению движения Земли по орбите (фиг. 109). Когда свет движется от А до В, Земля проходит короткое расстояние вперед, так что точка В перемещается в точку В в эфире. Таким образом, истинное расстояние, пройденное светом в эфире, равно если свету потребовалось время для того, чтобы покрыть это расстояние, то За то же время точка А перемещается в положение А со скоростью и; следовательно, Применяя теперь теорему Пифагора к прямоугольному треугольнику мы получаем

На обратный путь свету требуется то же время, поскольку Земля смещается на аналогичный отрезок так, что исходная точка светового луча А перемещается из положения

Таким образом, на путь туда и обратно свет затрачивает время

Разность времен, затрачиваемых светом на прохождение параллельного и перпендикулярного направлению движения Земли расстояний, составляет

Следовательно, с достаточной степенью точности можно записать

Итак, запаздывание одной световой волны по сравнению с другой представляет собой величину второго порядка.

Это запаздывание можно измерить с помощью интерферометра Майкельсона (фиг. 110). В этом приборе свет, идущий от

источника разделяется полупрозрачным зеркалом на два луча, которые движутся по перпендикулярным друг другу направлениям к зеркалам! и отражаясь от которых они направляются обратно к зеркалу От полупрозрачного зеркала лучи идут параллельно к окуляру где наблюдается их интерференция. Если расстояния равны и если одно плечо прибора расположить в направлении движения Земли, то мы как раз получаем модель рассмотренного выше случая. Таким образом, два луча в интерферометре Майкельсона достигают плоскости зрения с разностью времен

Фиг. 110. Интерферометр Майкельсона.

Поэтому интерференционные полосы расположены не точно так, как они были бы расположены, если бы Земля покоилась. Однако если теперь повернуть весь прибор на 90° и совместить с направлением движения Земли второе плечо прибора, то интерференционные полосы должны сместиться на равную величину в противоположном направлении. Следовательно, наблюдая положение интерференционных полос при двух разных положениях прибора, можно измерить смещение, соответствующее удвоенному времени запаздывания

Если период колебаний используемой световой волны, то отношение времени запаздывания к периоду колебаний равно

откуда, используя формулу (35), согласно которой длина волны наше искомое соотношение можно записать как

Итак, при поворачивании прибора два интерферирующих пакета волн испытывают относительное смещение, отношение которого к длине волны равно (фиг. 111). Интерференционные полосы сами по себе возникают вследствие того, что лучи, покидающие источник в различных направлениях, должны

мистер Олимпия 17 августа 2015 в 13:46

Опыт Майкельсона-Морли

  • Физика

Опытом Майкельсона-Морли я заинтересовался еще во времена моей учебы в университете – давно это было. Здесь у меня подборка из интернета – несколько «нарезок» в сокращенном виде:

Специальная теория относительности была разработана Альбертом Эйнштейном и его предшественниками на основе, главным образом, опыта Майкельсона-Морли (1881, 1887 гг.), не выявившего эфирного дрейфа (ether drift) - эксперимента по определению скорости движения Земли относительно светоносной среды (эфира).

Суть опыта Майкельсона-Морли заключалась в том, что в интерферометре использовался расщепленный световой луч, который проходил прямой и обратный путь в продольном и поперечном направлениях по отношению к движению поверхности Земли. Результирующий пучок света, возвратившегося на полупрозрачное зеркало, позволял наблюдать интерференционную картину смещения интерференционных полос и выявлять малейшую десинхронизацию двух лучей - запаздывание одного луча относительно другого.

Этот опыт был проведён в конце XIX в и позднее, у разных экспериментаторов показав либо «нулевые» (или «отрицательные»), либо положительные результаты с определённым звёздным апексом. Различные специалисты, вплоть до нобелевских лауреатов, подвергают критике как саму постановку экспериментов, подобных опытам Майкельсона-Морли, так и полученные на их основе теоретические выкладки.

Это и не удивительно, ведь по результатам эксперимента Майкельсона–Морли была создана специальная теория относительности. Значение эксперимента действительно трудно переоценить, ибо он должен был подтвердить наличие светоносной среды – эфира, гипотезу которого после этого эксперимента релятивисты отвергли и приняли теорию относительности. И хотя отсутствие, согласно опытам Майкельсона-Морли, «эфирного ветра» еще не доказывало отсутствие эфира, релятивисты из своего позитивистского идеалистического понимания «простоты» научной концепции, решили от него избавиться. В то время позитивисты объявили субстанциональные понятия вроде «материи» пережитками метафизики.

Искушенный читатель понимает, что для обожествления идеи требуются совершенно иные качества психики, чем строгий научный подход. Механизмы генезиса и экспансии релятивизма ничем особенным не отличаются от аналогичных процессов зарождения и распространения, скажем, религиозных верований и мифов.

Я, признаюсь, когда интересовался этим опытом , никаких доказательств теории относительности в нем не нашел – мозги, наверное, устроены не так как у гениев. Речь там шла о попытках замера скорости света в направлениях вдоль и поперек движения поверхности Земли. Эта скорость, согласно интерпретации результатов замеров в опытах Майкельсона-Морли и их последователей, оказалась одинаковой, т.е. постоянной. Ну и что? Скорость звука в неподвижном воздухе тоже постоянна во всех направлениях – в стране слепых из этого факта могли бы тоже соорудить какую-то сногсшибательную теорию. Да и вообще, с какого перепугу скорость света не должна быть постоянной в пределах Земли. Разве инертная масса, которой обладают и частицы света, зависит от перемещения вдоль или поперек движению Земли, или есть хотя бы гипотеза на этот счет?

Семиков С.А. Доклад по дисциплине "История и методология науки " от 20.12.2008

Был мир земной кромешной тьмой окутан.
Да будет свет – и вот явился Ньютон.
Но Сатана недолго ждал реванша:
Пришёл Эйнштейн. И стало всё как раньше.

Что же привело к столь радикальному пересмотру классической механики? Началось всё в 1881 г. с опыта Майкельсона. В опыте делалась попытка установить скорость движения Земли в эфире – среде, в которой согласно электродинамике распространялся свет. Для этого сравнивали времена движения луча света в интерферометре Майкельсона-Морли вдоль и поперёк скорости движения Земли. Понятно, что скорость света в эфире вдоль и поперёк получилась бы разная и разными бы вышли времена движения. Но опыт обнаружил равенство времён, что говорило о ложности теории эфира и основанной на нём максвелловской электродинамики. Однако учёные уже настолько уверовали в электродинамику, что предпочли видоизменить механику, дабы подогнать результат опыта под электродинамику.

Четверостишие, приведенное выше, если не ошибаюсь, это две эпиграммы в переводе Самуила Маршака. Не имея возражений против воззрений автора доклада, я позволю себе придраться к фактору использования языка – раздел ведь относится к терминологии: раздел сайта я имею ввиду. Так вот, правильное использование языка предполагает, с моей точки зрению, и правильную интерпретацию сообщений, сооруженных посредством слов. А с этой точки зрения никакой такой скорости света или «равенства времен» в опыте Майкельсона-Морли не замерялось. Фиксировались лишь результаты интерференции волн, по которой судили о скорости света. При этом делалась масса произвольных, хотя и более-менее правдоподобных допущений. Допущений о том, что скорость света в прямом и обратном направлениях его движения одинакова; о том, что частота света в этих направлениях тоже одинакова; о том, что временем отражения света можно пренебречь; о том, что процесс взаимодействия прибора со световым лучом не вносит искажения в интерференцию, и прочая.

В моих примечаниях по поводу опыта Майкельсона-Морли так и было записано: Опыт обнаружил не «равенство времен», а лишь результат замеров, который, в частности, можно интерпретировать как равенство времен.

Теги: опыт Майкельсона-Морли, классическая механика