Что такое движение тел. Школьная энциклопедия. Что такое относительность

Механическим движением тела называют измене­ние его положения в пространстве относительно других тел с течением времени. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля

Виды механического движения:

  • прямолинейные и криволинейные — по форме траектории;
  • равномерные и неравномерные — по закону движения.

Механическое движение относительно. Это проявляется в том, что форма траектории, перемещение, скорость и другие характеристики движения тела зависит от выбора системы отсчета.

Тело, относительно которого рассматривается движение, называется телом отсчета . Система ко­ординат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют си­стему отсчета , относительно которой и рассматривается движение тела.

Иногда размерами тела по сравнению с расстоянием до него можно пренебречь. В этих случаях тело считают материальной точкой.

Определение положения тела в любой момент времени является основной задачей механики .

Важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение. Линию, вдоль которой движется материальная точка, называют траекторией . Длина траектории называется путем (L). Единица измерения пути - 1м. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением (). Единица изме­рения перемещения-1м .

Простейший вид движения равномерное прямолинейное движение. Движение, при котором тело за любые равные промежутки вре­мени совершает одинаковы перемещения, назы­вают прямолинейным равномерным движением. Скорость () - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t . Единица изме­рения скорости - м/с . Измеряют скорость спидометром.

Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называют равноуско­ренным или равнопеременным.

физическая величина, характеризующая быстроту изменения скорости и численно равная отношению вектора изменения скорости за единицу времени. Единица ускорения в СИм/с 2 .

равноускоренным , если модуль скорости возрастает.— условие равноускоренного движения. Например, разгоняющиеся транспортные средства- автомобили, поезда и свободное падение тел вблизи поверхности Земли ( = ).

Равнопеременное движение называется равнозамедленным , если модуль скорости уменьшается. — условие равнозамедленного движения.

Мгновенная скорость равноускоренного прямолинейного движения

Сегодня мы поговорим о систематическом изучении физики и первом ее разделе - механике. Физика изучает разные виды изменений или процессов, происходящих в природе, а какие процессы в первую очередь интересовали наших предков? Конечно, это процессы, связанные с движением. Им было интересно, долетит ли копье, которое они бросили, и попадет ли оно в мамонта; им было интересно, успеет ли гонец с важной вестью добежать до заката к соседней пещере. Все эти виды движения и вообще механическое движение как раз и изучает раздел, который называется механика.

Куда бы мы ни посмотрели - вокруг нас масса примеров механического движения: что-то вращается, что-то прыгает вверх-вниз, что-то движется вперед-назад, а другие тела могут находиться в состоянии покоя, которое тоже является примером механического движения, скорость которого равна нулю.

Определение

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени (рис. 1).

Рис. 1. Механическое движение

Как физика делится на несколько разделов, так и механика имеет свои разделы. Первый из них называется кинематика. Раздел механики кинематика отвечает на вопрос, как движется тело. Прежде чем начать работать над изучением механического движения, необходимо определить и выучить основные понятия, так называемую азбуку кинематики. На уроке мы научимся:

Выбирать систему отсчета для изучения движения тела;

Упрощать задачи, мысленно заменяя тело материальной точкой;

Определять траекторию движения, находить путь;

Различать виды движений.

В определении механического движения особое значение имеет выражение относительно других тел . Нам всегда необходимо выбрать так называемое тело отсчета, то есть тело, относительно которого мы будем рассматривать движение исследуемого нами объекта. Простой пример: подвигайте рукой и скажите - движется ли она? Да, конечно, по отношению к голове, но по отношению к пуговице на вашей рубашке она будет недвижима. Поэтому выбор отсчета очень важен, ведь относительно некоторых тел движение совершается, а относительно других тел движения не происходит. Чаще всего телом отсчета выбирают тело, которое всегда есть под руками, точнее под ногами, - это наша Земля, которая является телом отсчета в большинстве случаев.

Издавна ученые спорили о том, Земля ли вращается вокруг Солнца или Солнце вращается вокруг Земли. На самом деле, с точки зрения физики, с точки зрения механического движения это всего лишь спор о теле отсчета. Если телом отсчета считать Землю, то да - Солнце вращается вокруг Земли, если телом отсчета считать Солнце - то Земля вращается вокруг Солнца. Поэтому тело отсчета - это важное понятие.

Как же описывать изменение положения тела?

Чтобы точно задать положение интересующего нас тела относительно тела отсчета, надо связать с телом отсчета систему координат (рис. 2).

При движении тела координаты меняются, а для того чтобы описать их изменение, нам необходим прибор для измерения времени. Чтобы описывать движение, нужно иметь:

Тело отсчета;

Связанную с телом отсчета систему координат;

Прибор для измерения времени (часы).

Все эти объекты составляют вместе систему отсчета. До тех пор пока мы не выбрали систему отсчета, не имеет смысла описывать механическое движение - мы не будем уверены в том, как движется тело. Простой пример: чемодан, лежащий на полке в купе поезда, который движется, для пассажира просто покоится, а для человека, стоящего на перроне, движется. Как мы видим, одно и то же тело и движется, и покоится, вся проблема в том, что системы отсчета различны (рис. 3).

Рис. 3. Различные системы отчета

Зависимость траектории от выбора системы отсчета

Ответим на интересный и важный вопрос, зависит ли форма траектории и пройденный телом путь от выбора системы отсчета. Рассмотрим ситуацию, когда есть пассажир поезда, радом с которым на столе стоит стакан с водой. Какой же будет траектория стакана в системе отчета, связанной с пассажиром (телом отсчета является пассажир)?

Конечно, относительно пассажира стакан неподвижен. Это значит, что траектория является точкой, а перемещение равно (рис. 4).

Рис. 4. Траектория стакана относительно пассажира в поезде

Какой же будет траектория стакана относительно пассажира, который ожидает поезда на перроне? Для этого пассажира будет казаться, что стакан движется по прямой линии и у него ненулевой путь (рис. 5).

Рис. 5. Траектория стакана относительно пассажира на перроне

Из вышесказанного можно сделать вывод, что траектория и путь зависят от выбора системы отсчета.

Для того чтобы описывать механическое движение, в первую очередь необходимо определиться с системой отсчета.

Движение изучается нами для того, чтобыпредсказать, где окажется тот или иной объект в необходимый момент времени. Основная задача механики - определить положение тела в любой момент времени. Что же значит описать движение тела?

Рассмотрим пример: автобус едет из Москвы в Санкт-Петербург (рис. 6). Важны ли нам размеры автобуса по сравнению с расстоянием, которое он преодолеет?

Рис. 6. Движение автобуса из Москвы в Санкт-Петербург

Конечно же, размерами автобуса в данном случае можно пренебречь. Мы можем описывать автобус как одну движущуюся точку, по-другому ее называют материальной точкой.

Определение

Тело, размерами которого в данной задаче можно пренебречь, называют материальной точкой.

Одно и то же тело, в зависимости от условий задачи, может быть или не быть материальной точкой. При перемещении автобуса из Москвы в Санкт-Петербург автобус можно считать материальной точкой, ведь его размеры несопоставимы с расстоянием между городами. Но если в салон автобуса влетела муха и мы хотим исследовать ее движение, тогда в этом случае нам важны размеры автобуса, и он уже не будет являться материальной точкой.

Чаще всего в механике мы будем изучать именно движение материальной точки. При своем перемещении материальная точка последовательно проходит положение вдоль некоторой линии.

Определение

Линия, вдоль которой движется тело (или материальная точка), называется траекторией движения тела (рис. 7).

Рис. 7. Траектория точки

Иногда мы наблюдаем траекторию (например, процесс выставления оценки за урок), но чаще всего траектория - это какая-то воображаемая линия. При наличии средств измерения мы можем замерить длину траектории, вдоль которой двигалось тело, и определим величину, которая называется путь (рис. 8).

Определение

Путь , пройденный телом за некоторое время, - это длина участка траектории .

Рис. 8. Путь

Разделяют два основных вида движения - это прямолинейное и криволинейное движение.

Если траектория тела - это прямая линия, то движение называется прямолинейным. Если тело движется по параболе или по любой другой кривой - мы говорим о криволинейном движении. При рассмотрении движения не просто материальной точки, а движения реального тела различают еще два вида движения: поступательное движение и вращательное движение.

Поступательное и вращательное движение. Пример

Какие же движения называются поступательными, а какие - вращательными? Рассмотрим этот вопрос на примере колеса обозрения. Как движется кабина колеса обозрения? Отметим две произвольные точки кабины и соединим их прямой. Колесо вращается. Через некоторое время отметим те же точки и соединим их. Полученные прямые будут лежать на параллельных прямых (рис. 9).

Рис. 9. Поступательное движение кабины колеса обозрения

Если прямая, проведенная через любые две точки тела, при движении остается параллельной сама себе, то такое движение называют поступательным .

В противном случае мы имеем дело с вращательным движением. Если бы прямая не была параллельной сама тебе, то пассажир, скорее всего, вывалился бы из кабины колеса (рис. 10).

Рис. 10. Вращательное движение кабины колеса

Вращательным называют такое движение тела, при котором его точки описывают окружности, лежащие в параллельных плоскостях. Прямая, соединяющая центры окружностей, называется осью вращения .

Очень часто нам приходится сталкиваться с комбинацией поступательного и вращательного движения, так называемым поступательно-вращательным движением. Самый простой пример такого движения - это движение прыгуна в воду (рис. 11). Он выполняет вращение (сальто), но при этом центр его масс поступательно движется в направлении воды.

Рис. 11. Поступательно-вращательное движение

Мы сегодня изучили азбуку кинематики, то есть основные, самые важные понятия, которые в дальнейшем позволят нам перейти к решению главной задачи механики - определению положения тела в любой момент времени.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал «Av-physics.narod.ru» ().
  2. Интернет-портал «Rushkolnik.ru» ().
  3. Интернет-портал «Testent.ru» ().

Домашнее задание

Подумайте, что является телом отсчета, когда мы говорим:

  • книга неподвижно лежит на столике в купе движущегося поезда;
  • стюардесса после взлета проходит по пассажирскому салону самолета;
  • Земля вращается вокруг своей оси.

Что такое механическое движение и чем оно характеризуется? Какие параметры вводятся для понимания этого вида движения? Какими терминами при этом чаще всего оперируют? В данной статье мы ответим на эти вопросы, рассмотрим механическое движение с разных точек зрения, приведем примеры и займемся решением задач из физики соответствующей тематики.

Основные понятия

Еще со школьной скамьи нас учат тому, что механическое движение представляет собой изменение положения тела в любой момент времени относительно других тел системы. На самом деле все так и есть. Давайте примем обыкновенный дом, в котором мы находимся, за ноль координатной системы. Представьте визуально, что дом будет началом координат, а из него в любых направлениях будет выходить ось абсцисс и ось ординат.

В таком случае наше движение в пределах дома, а также за его пределами будет наглядно демонстрировать механическое движение тела в системе отсчета. Представьте, будто точка перемещается по системе координат, в каждый момент времени изменяя свою координату относительно как оси абсцисс, так и относительно оси ординат. Все будет просто и понятно.

Характеристика механического движения

Каким же может быть такой тип движения? Сильно углубляться в дебри физики мы не будем. Рассмотрим простейшие случаи, когда происходит движение материальной точки. Оно подразделяется на прямолинейное движение, а также на криволинейное движение. В принципе, из названия все уже должно быть понятно, но давайте на всякий случай поговорим об этом конкретнее.

Прямолинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, имеющий вид прямой линии. Ну, например, машина едет прямо под дороге, которая не имеет поворотов. Или по участку подобной дороги. Вот это и будет прямолинейное движение. При этом оно может быть равномерным или равноускоренным.

Криволинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, которая не имеет вид прямой линии. Траектория может представлять собой ломанную линию, а также замкнутую линию. То есть круговая траектория, эллипсоидная и так далее.

Механическое движение населения

Этот вид движения не имеет практически абсолютно никакого отношения к физике. Хотя, смотря с какой точки зрения мы его воспринимаем. Что, вообще, называется механическим движением населения? Им называется переселение индивидуумов, которое происходит в результате проведения миграционных процессов. Это может быть как внешняя, так и внутренняя миграция. По продолжительности механическое движение населения подразделяется на постоянное и временное (плюс маятниковое и сезонное).

Если мы будем рассматривать этот процесс с физической точки зрения, то можно сказать только одно: это движение будет прекрасно демонстрировать движение материальных точек в системе отсчета, связанной с нашей планетой - Землей.

Равномерное механическое движение

Как ясно из названия, это такой тип движения, при котором скорость тела имеет определенное значение, сохраняемое постоянным по модулю. Иными словами, скорость тела, которое движется равномерно, не изменяется. В реальной жизни мы практически не можем заметить идеальных примеров равномерного механического движения. Вы можете вполне резонно возразить, мол, можно ехать на автомобиле со скоростью 60 километров в час. Да, безусловно, спидометр транспортного средства может демонстрировать подобное значение, но это не означает, что на самом деле скорость автомобиля будет равной именно шестидесяти километрам в час.

О чем идет речь? Как мы знаем, во-первых, все измерительные приборы имеют определенную погрешность. Линейки, весы, механические и электронные приборы - у всех у них есть определенная погрешность, неточность. Вы можете сами убедиться в этом, взяв с десяток линеек и приложив их одна к другой. После этого вы сможете заметить некоторые несовпадения между миллиметровыми отметками и их нанесением.

То же самое касается и спидометра. Он имеет определенную погрешность. У приборов неточность численно равна половине цены деления. В автомобилях неточность спидометра будет составлять 10 километров в час. Именно поэтому в определенный момент нельзя точно сказать, что мы движемся с той или иной скоростью. Вторым фактором, который будет вносить неточность, будут силы, действующие на автомобиль. Но силы неразрывно связаны с ускорением, поэтому на эту тему мы поговорим несколько позже.

Очень часто равномерное движение встречается в задачах математического характера, нежели физического. Там мотоциклисты, грузовые и легковые автомобили движутся с одной и той же скоростью, равной по модулю в разные моменты времени.

Равноускоренное движение

В физике такой вид движения встречается достаточно часто. Даже в задачах части “А” как 9-ого, так и 11-ого класса встречаются задания, в которых нужно уметь производить операции с ускорением. Например, “А-1”, где нарисован график движения тела в координатных осях и требуется вычислить, какое расстояние автомобиль прошел за тот или иной промежуток времени. Причем один из промежутков может демонстрировать равномерное движение, в то время как на втором необходимо вычислить сначала ускорение и только потом считать пройденное расстояние.

Как же узнать, что движение равноускоренное? Обычно в задачах информация об этом подается напрямую. То есть имеется либо численное указание ускорения, либо даются параметры (время, изменение скорости, дистанция), которые позволяют нам определить ускорение. Следует отметить, что ускорение - векторная величина. А значит она может быть не только положительной, но и отрицательной. В первом случае мы будем наблюдать ускорение тела, во втором - его торможение.

Но бывает, что информация о типе движения ученику преподается в несколько скрытной, если ее можно так назвать, форме. Например, говорится, что на тело ничего не действует или сумма всех сил равна нулю. Ну что же, в этом случае нужно четко понимать, что речь идет о равномерном движении либо о покое тела в определенной системе координат. Если вы вспомните второй закон Ньютона (в котором говорится о том, что сумма всех сил есть не что иное, как произведение массы тела на ускорение, сообщаемое под действием соответствующих сил), то легко заметите одну интересную вещь: если сумма сил равна нулю, то произведение массы на ускорение также будет равно нулю.

Вывод

Но ведь масса - это у нас величина постоянная, и она априори не может быть нулевой. В таком случае логичным будет вывод о том, что при отсутствии действия внешних сил (или при их компенсированном действии) ускорение у тела отсутствует. Значит, оно либо покоится, либо движется с постоянной скоростью.

Формула равноускоренного движения

Иногда встречается в научной литературе подход, согласно которому сначала даются легкие формулы, а потом с учетом некоторых факторов они усложняются. Мы сделаем все наоборот, а именно, рассмотрим сначала равноускоренное движение. Формула, согласно которой вычисляется пройденная дистанция, выглядит следующим образом: S = V0t + at^2/2. Здесь V0 - начальная скорость тела, a - ускорение (может быть отрицательным, тогда знак + изменится в формуле на -), а t - время, прошедшее с начала движения до остановки тела.

Формула равномерного движения

Если же мы будем говорить о равномерном движении, то вспомним, что при этом ускорение равно нулю (a = 0). Подставим ноль в формулу и получим: S = V0t. Но ведь скорость на всем участке пути у нас постоянна, если говорить грубо, то есть придется пренебречь силами, действующими на тело. Что, кстати, в кинематике практикуется повсеместно, поскольку кинематика не изучает причины возникновения движения, этим занимается динамика. Так вот, если скорость на всем участке пути у нас постоянна, то ее начальное значение совпадает с любым промежуточным, а также конечным. Поэтому формула расстояния будет выглядеть следующим образом: S = Vt. Вот и все.

Механика – раздел физики, в котором изучают механическое движение.

Механику подразделяют на кинематику, динамику и статику.

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения. Кинематика изучает способы описания движения и связь между величинами, характеризующими эти движения.

Задача кинематики: определение кинематических характеристик движения (траектории движения, перемещения, пройденного пути, координаты, скорости и ускорения тела), а также получение уравнений зависимости этих характеристик от времени.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно , выражение «тело движется» лишено всякого смысла, пока не определено, относительно чего рассматривается движение. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета . Покой тоже относителен (примеры: пассажир в покоящемся поезде смотрит на проходящий мимо поезд)

Главная задача механики уметь вычислять координаты точек тела в любой момент времени.

Чтобы решить эту надо иметь тело, от которого ведется отсчет координат, связать с ним систему координат и иметь прибор для измерения промежутков времени.

Система координат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют систему отсчета , относительно которой и рассматривается движение тела.

Системы координат бывают:

1. одномерная – положение тела на прямой определяется одной координатой x.

2. двумерная – положение точки на плоскости определяется двумя координатами x и y.

3. трехмерная – положение точки в пространстве определяется тремя координатами x, y и z.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным.

Поступательно движутся, например, кабины в аттракционе «Гигантское колесо», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь .

Понятие материальной точки играет важную роль в механике. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.

Пример. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись.

Характеристики механического движения: перемещение, скорость, ускорение.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Линия, по которой движется точка тела, называется траекторией движения.

Длина траектории называется пройденным путем.

Обозначается l, измеряется в метрах . (траектория – след, путь – расстояние)

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь скалярная величина .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Обозначается S , измеряется в метрах.(перемещение – вектор, модуль перемещения – скаляр)

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Обозначается v

Формула скорости: или

Единица измерения в СИ – м/с .

На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Измеряют скорость спидометром .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Ускорение измеряют акселерометром

Единица измерения в СИ м/с 2

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение, скорость и ускорение. Путь l является скалярной величиной. Перемещение, скорость и ускорение – величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

«) примерно в V в. до н. э. Видимо, одним из первых объектов ее исследования была механе-подъёмная машина, применявшаяся в театре для подъема и опускания актеров, изображавших богов. Отсюда и произошло название науки.

Люди уже давно заметили, что они живут в мире Движущихся предметов - качаются деревья, летят птицы, плывут корабли, поражают цели стрелы, выпущенные из лука. Причины подобных загадочных тогда явлений занимали умы древних и средневековых ученых.

В 1638 г. Галилео Галилей писал: «В природе нет ничего древнее движения, и о нем философы написали томов немало и немалых». Древние и особенно ученые средневековья и эпохи Возрождения ( , Н. Коперник, Г. Галилей, И. Кеплер, Р. Декарт и др.) уже правильно толковали отдельные вопросы движения, однако в целом ясного понимания законов движения во времена Галилея не было.

Учение о движении тел впервые предстает как строгая, последовательная наука, построенная, как и геометрия Евклида, на истинах, не требующих доказательств (аксиомах), в фундаментальном труде Исаака Ньютона «Математические начала натуральной философии», изданном в 1687 г. Оценивая вклад в науку ученых-предшественников, великий Ньютон сказал: «Если мы видели дальше других, то это потому, что стояли на плечах гигантов».

Движения вообще, движения, безотносительного к чему-либо, нет и быть не может. Движение тел может происходить только относительно других тел и связанных с ними пространств. Поэтому в начале своего труда Ньютон решает принципиально важный вопрос о пространстве, относительно которого будет изучаться движение тел.

Чтобы придать конкретность этому пространству, Ньютон связывает с ним систему координат, состоящую из трех взаимно перпендикулярных осей.

Ньютон вводит понятие абсолютное пространство, которое определяет так: «Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным». Определение пространства как неподвижного тождественно предположению о существовании абсолютно неподвижной системы координат, относительно которой рассматривается движение материальных точек и твердых тел.

В качестве такой системы координат Ньютон принимал гелиоцентрическую систему , начало которой он помещал в центр , а три воображаемых взаимно перпендикулярных оси направлял к трем «неподвижным» звездам. Но сегодня известно, что в мире нет ничего абсолютно неподвижного - вращается вокруг своей оси и вокруг Солнца, Солнце движется относительно центра Галактики, Галактика - относительно центра мира и т. д.

Таким образом, если говорить строго, то абсолютно неподвижной системы координат не существует. Однако движение «неподвижных» звезд относительно Земли настолько медленное, что для большинства задач, решаемых людьми на Земле, этим движением можно пренебречь и считать «неподвижные» звезды действительно неподвижными, а абсолютно неподвижную систему координат, предложенную Ньютоном, действительно существующей.

По отношению к абсолютно неподвижной системе координат Ньютон сформулировал свой первый закон (аксиому): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными изменять это состояние».

С тех пор предпринимались и предпринимаются попытки редакционно улучшить формулировку Ньютона. Один из вариантов формулировок звучит так: «Тело, движущееся в пространстве, стремится сохранить величину и направление своей скорости» (имеется в виду, что покой - это движение со скоростью, равной нулю). Здесь уже вводится понятие одной из важнейших характеристик движения - поступательной, или линейной, скорости. Обычно линейная скорость обозначается V.

Обратим внимание на то, что в первом законе Ньютона говорится только о поступательном (прямолинейном) движении. Однако всем известно, что в мире существует и другое, более сложное движение тел - криволинейное, но о нем позже…

Стремление тел «удерживаться в своем состоянии» и «сохранять величину и направление своей скорости» называется инертностью , или инерцией , тел. Слово «инерция» латинское, в переводе на русский оно означает «покой», «бездействие». Интересно отметить, что инерция - органическое свойство материи вообще, «врожденная сила материи», как говорил Ньютон. Она свойственна не только механическому движению, но и другим явлениям природы, например электрическим, магнитным, тепловым. Инерция проявляется и в жизни общества, и в поведении отдельных людей. Но вернемся к механике.

Мерой инерции тела при его поступательном движении является масса тела, обозначаемая обычно m. Установлено, что при поступательном движении на величину инерции не влияет распределение массы внутри объема, занимаемого телом. Это дает основание при решении многих задач механики отвлечься от конкретных размеров тела и заменить его материальной точкой, масса которой равна массе тела.

Местоположение этой условной точки в объеме, занимаемом телом, называется центром масс тела , или, что почти то же самое, но более знакомо, центром тяжести .

Мерой механического прямолинейного движения, предложенной еще Р. Декартом в 1644 г., является количество движения, определяемое как произведение массы тела на его линейную скорость: mV.

Как правило, движущиеся тела не могут продолжительное время сохранять неизменным величину количества своего движения: расходуются в полете запасы топлива, уменьшая массу летательных аппаратов, тормозят и разгоняются поезда, изменяя свою скорость. Какая же причина вызывает изменение количества движения? Ответ па этот вопрос дает второй закон (аксиома) Ньютона, который в современной формулировке звучит так: скорость изменения количества движения материальной точки равна силе, действующей на эту точку.

Итак, причиной, вызывающей движение тел (если вначале mV=0) или изменяющей их количество движения (если вначале mV не равно О) относительно абсолютного пространства (других пространств Ньютон не рассматривал), являются силы. Эти силы позже получили уточняющие названия - физические , или Ньютоновы , силы. Они обычно обозначаются F.

Сам Ньютон дал следующее определение физическим силам: «Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения». Существует много других определений силы. Л. Купер и Э. Роджерс - авторы замечательных популярных книг по физике, избегая скучноватых строгих определений силы, с известной долей лукавства вводят свое определение: «Силы - это то, что тянет и толкает». До конца не ясно, но какое-то представление о том, что такое сила, появляется.

К физическим силам относятся: силы , магнитные (см. статью « «), силы упругости и пластичности, силы сопротивления среды, света и многие другие.

Если во время движения тела его масса не меняется (только этот случай будет рассматриваться в дальнейшем), то формулировка второго закона Ньютона значительно упрощается: «Действующая на материальную точку сила равна произведению массы точки на изменение ее скорости».

Изменение линейной скорости тела или точки (по величине или направлению - запомним это) называется линейным ускорением тела или точки и обозначается обычно а.

Ускорения и скорости, с которыми тела движутся относительно абсолютного пространства, называются абсолютными ускорениями и скоростями .

Кроме абсолютной системы координат, можно представить себе (конечно, с какими-то допущениями) другие системы координат, которые движутся относительно абсолютной прямолинейно и равномерно. Поскольку (согласно первому закону Ньютона) покой и равномерное прямолинейное движение эквивалентны, то в таких системах справедливы законы Ньютона, в частности первый закон - закон инерции . По этой причине системы координат, движущиеся равномерно и прямолинейно относительно абсолютной системы, получили название инерциальных систем координат .

Однако в большинстве практических задач людей интересует движение тел не относительно далекого и неосязаемого абсолютного пространства и даже не относительно инерциальных пространств, а относительно других более близких и вполне материальных тел, например пассажира относительно кузова автомобиля. Но эти другие тела (и связанные с ними пространства и системы координат) сами движутся относительно абсолютного пространства непрямолинейно и неравномерно. Системы координат, связанные с такими телами, получили название подвижных . Впервые подвижные системы координат использовал для решения сложных задач механики Л. Эйлер (1707-1783).

С примерами движения тел относительно других подвижных тел мы постоянно встречаемся в нашей жизни. Плывут по морям и океанам корабли, перемещаясь относительно поверхности Земли, вращающейся в абсолютном пространстве; движется относительно стен мчащегося пассажирского вагона проводник, разносящий чай по купе; выплескивается чай из стакана при резких толчках вагона и т. д.

Для описания и изучения столь сложных явлений вводятся понятия переносного движения и относительного движения и соответствующих им переносных и относительных скоростей и ускорений.

В первом из приведенных примеров вращение Земли относительно абсолютного пространства будет переносным движением, а перемещение корабля относительно поверхности Земли - относительным движением.

Чтобы изучить движение проводника относительно стен вагона, нужно прежде принять, что вращение Земли существенного влияния на движение проводника не оказывает и поэтому Землю в данной задаче можно считать неподвижной. Тогда движение пассажирского вагона - движение переносное , а движение проводника относительно вагона — движение относительное . При относительном движении тела воздействуют друг на друга или непосредственно (соприкасаясь), или на расстоянии (например, магнитные и гравитационные взаимодействия).

Характер этих воздействий определяется третьим законом (аксиомой) Ньютона. Если вспомнить, что физические силы, приложенные к телам, Ньютон назвал действием, то третий закон может быть сформулирован так: «Действие равно противодействию». Следует отметить, что действие приложено к одному, а противодействие - к другому из двух взаимодействующих тел. Действие и противодействие не уравновешиваются, а вызывают ускорения взаимодействущих тел, причем с большим ускорением движется то тело, масса которого меньше.

Напомним также, что третий закон Ньютона в отличие от первых двух справедлив в любой системе координат, а не только в абсолютной или инерциальных.

Кроме прямолинейного движения, в природе широко распространено криволинейное движение, простейшим случаем которого является движение по окружности. Только этот случай мы и будем рассматривать в дальнейшем, называя движение по окружности круговым движением. Примеры кругового движения: вращение Земли вокруг своей оси, движение дверей и качелей, вращение бесчисленных колес.

Круговое движение тел и материальных точек может происходить либо вокруг осей, либо вокруг точек.

Круговое движение (так же, как и прямолинейное) может быть абсолютным, переносным и относительным.

Как и прямолинейное, круговое движение характеризуется скоростью, ускорением, силовым фактором, мерой инерции, мерой движения. Количественно все эти характеристики в очень сильной степени зависят от того, на каком расстоянии от оси вращения находится вращающаяся материальная точка. Это расстояние называется радиусом вращения и обозначается r .

В гироскопической технике момент количества движения принято называть кинетическим моментом и выражать его через характеристики кругового движения. Таким образом, кинетический момент есть произведение момента инерции тела (относительно оси вращения) на его угловую скорость.

Естественно, законы Ньютона справедливы и для кругового движения. В применении к круговому движению эти законы несколько упрощенно могли бы быть сформулированы так.

  • Первый закон: вращающееся тело стремится сохранить относительно абсолютного пространства величину и направление своего момента количества движения (т. е. величину и направление своего кинетического момента).
  • Второй закон: изменение во времени момента количества движения (кинетического момента) равно приложенному моменту сил.
  • Третий закон: момент действия равен моменту противодействия.