Типы структура и функции антропогенных экосистем. Антропогенные экосистемы. Разнообразие естественных компонентов биосферы


Содержание

I . Антропогенные экосистемы

II . Понятие агроэкосистемы

III . Городские экосистемы
IV . Промышленное загрязнение среды

V . Загрязнение почвы

VI . Антропогенное воздействие на леса, лесопользование

Используемая литература

I. Антропогенные экосистемы

Отличительная черта антропогенных экосистем состоит в том, что доминирующий экологический фактор в них представлен сообществом людей и продуктами его производственной и общественной деятельности.

В антропогенной экосистеме искусственная среда преобладает над естественной.

Важнейшие современные антропогенные экосистемы: города, сельские поселения, транспортные коммуникации.

Города - особая среда обитания. Они возникли 7000 лет назад. К 1950 году проживало 28%, к 1970 - 40%, к 2000 - 70-90%. В настоящее время 1/3 горожан проживают в городах.

Несмотря на то, что урбанизация в целом явление прогрессивное (концентрация производства, увеличение производительности труда, организация быта, легче решаются вопросы трудоустройства, снабжения, мед. обслуживания, образования, быта), однако, возникает и целый ряд проблем:

1. Изменение природной среды.

2. Обилие отходов.

3. Создается благоприятная обстановка для распространения инфекционных и инверсионных заболеваний.

4. Сокращается длительность солнечного освещения.

5. Высокая плотность населения приводит к перенапряжению нервной системы.

6. Падение физической активности.

7. Разбалансировка питания.

II. Понятие агроэкосистемы
Понятие «экосистема» предложил англичанин Артур Тенсли в 1935 г. Знание законов организации экосистем позволяет использовать их или даже менять, не разрушая до конца систему возникших природных связей.
Понятие «агроэкосистема» как сельскохозяйственный вариант экосистемы появилось в 60-е гг. Им обозначают участок территории, сельскохозяйственный ландшафт, соответствующий хозяйству. Все его элементы связаны уже не только биологически и геохимически, но и экономически. Профессор Л. О. Карпачевский в предисловии к русскому переводу американской книги «Сельскохозяйственные экосистемы» подчеркнул двойственную социально-биологическую природу агро-экосистемы, структуру которой во многом определяет человек. По этой причине агроэкосистемы относятся к числу так называемых антропогенных (т.е. созданных человеком) экосистем. Однако она все же ближе к естественной экосистеме, чем, скажем, к другому варианту антропогенных экосистем - городских.
Агроэкосистемы это антропогенные (т.е. созданные человеком) экосистемы. Человек определяет их структуру и продуктивность: он распахивает часть земель и высевает сельскохозяйственные культуры, создает сенокосы и пастбища на месте лесов, разводит сельскохозяйственных животных.
Агроэкосистемы автотрофны: их основной источник энергии - солнце. Дополнительная (антропогенная) энергия, которую использует человек при обработке почвы и которая затрачена на производство тракторов, удобрений, пестицидов и т.д., не превышает 1 % солнечной энергии, усваиваемой агроэкосистемой.
Как и естественная экосистема, агроэкосистема состоит из организмов трех основных трофических групп: продуцентов, консументов и редуцентов.
Сельскохозяйственные экосистемы или агроэкосистемы (АгрЭС) относятся к числу антропогенных экосистем, которые наиболее близки к естественным. Эти ансамбли видов искусственны, так как состав выращиваемых растений и разводимых животных определяет человек, стоящий на вершине экологической пирамиды и заинтересованный в получении максимального количества сельскохозяйственной продукции: зерна, овощей, молока, мяса, хлопка, шерсти и т.д. В то же время АгрЭС, как и естественные экосистемы, автотрофны. Основным источником энергии для них является Солнце. Вся вводимая в АгрЭС антропогенная энергия, затрачиваемая на вспашку земли, удобрение, обогрев животноводческих помещений, называется антропогенной энергетической субсидией (АС). АС составляет не более 1% общего энергетического бюджета АгрЭС. Именно АС является причиной разрушения агроресурсов и загрязнения окружающей среды, что осложняет решение проблемы обеспечения FS. Снижение величины АС - основа обеспечения FS.
Величина АС в АгрЭС может меняться в самых широких пределах, и если соотнести ее с количеством энергии, содержащейся в готовом продукте, то это отношение будет меняться от 1/15 до 30/1. В первобытных (но еще сохранившихся) огородах папуасов на одну калорию мускульной энергии получается не менее 15 калорий пищи, но всего лишь одна калория пищи получается при вложении 20-30 калорий энергии в интенсивном сельском хозяйстве. Разумеется, такое интенсивное хозяйство позволяет получать по 100 ц зерна с 1 га, по 6000 л молока от одной коровы и более 1 кг ежесуточного привеса у животных, откармливаемых на мясо. Однако цена этих успехов слишком дорога. Разрушение агроресурсов, которое в последние 20-30 лет приняло угрожающие масштабы, вносит свой вклад в приближение грядущего экологического кризиса.
"Зеленая революция", произошедшая в 60-70-е годы нашего столетия, когда благодаря ее отцу - лауреату Нобелевской премии Н. Берлоугу на полях появились карликовые сорта с урожайностью, превышающей таковую в традиционных культурах в 2-4 раза, и новые породы скота - "биотехнологические монстры", нанесла наиболее ощутимый удар по биосфере. При этом к началу 80-х годов производство зерна стабилизировалось и даже наметилась тенденция его уменьшения из-за утери почвами естественного плодородия и снижения эффективности удобрений. Население планеты при этом продолжает бурно расти, и в итоге количество зерна, производимого в мире в пересчете на одного человека, начало снижаться.

III. Городские экосистемы
Городские экосистемы гетеротрофны, доля солнечной энергии, фиксированная городскими растениями или солнечными батареями, расположенными на крышах домов, незначительна. Основные источники энергии для предприятий города, отопления и освещения квартир горожан расположены за его пределами. Это - месторождения нефти, газа, угля, гидро- и атомные электростанции.
Город потребляет огромное количество воды, лишь незначительную часть которой человек использует для непосредственного употребления. Основную часть воды тратят на производственные процессы и на бытовые нужды. Личное потребление воды в городах составляет от 150 до 500 л в сутки, а с учетом промышленности на одного гражданина приходится до 1000 л в сутки.
Использованная городами вода возвращается в природу в загрязненном состоянии - она насыщена тяжелыми металлами, остатками нефтепродуктов, сложными органическими веществами, подобными фенолу, и т.д. В ней могут содержаться болезнетворные микроорганизмы. Город выбрасывает в атмосферу ядовитые газы, пыль, концентрирует на свалках токсичные отходы, которые с потоками весенней воды попадают в водные экосистемы.
Растения, в составе городских экосистем растут в парках, садах, на газонах, их главное назначение - регулирование газового состава атмосферы. Они выделяют кислород, поглощают диоксид углерода и очищают атмосферу от вредных газов и пыли, попадающих в неё при работе промышленных предприятий и транспорта. Растения имеют также большое эстетическое и декоративное значение.
Животные в городе представлены не только обычными в естественных экосистемах видами (в парках живут птицы: горихвостка, соловей, трясогузка; млекопитающие: полевки, белки и представители других групп животных), но и особой группой городских животных - спутников человека. В её составе - птицы (воробьи, скворцы, голуби), грызуны (крысы и мыши), и насекомые (тараканы, клопы, моль). Многие животные, связанные с человеком, питаются отбросами на помойках (галки, воробьи). Это санитары города. Разложение органических отходов ускоряют личинки мух и другие животные и микроорганизмы.
Главная особенность экосистем современных городов в том, что в них нарушено экологическое равновесие. Все процессы регулирования потоков вещества и энергии человеку приходится брать на себя. Человек должен регулировать как потребление городом энергии и ресурсов - сырья для промышленности и пищи для людей, так и количество ядовитых отходов, поступающих в атмосферу, воду и почву в результате деятельности промышленности и транспорта. Наконец, он определяет и размеры этих экосистем, которые в развитых странах, а последние годы и в России, быстро "расползаются" за счет загородного коттеджного строительства. Районы низкоэтажной застройки уменьшают площадь лесов и сельскохозяйственных угодий, их "расползание"
требует строительства новых шоссейных дорог, что уменьшает долю экосистем, способных производить продукты питания и осуществлять круговорот кислорода.

IV. Промышленное загрязнение среды
В городских экосистемах наиболее опасно для природы промышленное загрязнение.
Химическое загрязнение атмосферы. Этот фактор относится к числу наиболее опасных для жизни человека. Наиболее распространенные загрязнители - сернистый газ, оксиды азота, оксид углерода, хлор, и др. В некоторых случаях из двух или относительно нескольких относительно не опасных веществ, выброшенных в атмосферу, под влиянием солнечного света могут образоваться ядовитые соединения. Экологи насчитывают около 2000 загрязнителей атмосферы.
Главные источники загрязнения - ТЭС. Сильно загрязняют атмосферу также котельные, нефтеперерабатывающие предприятия и автотранспорт.
Химическое загрязнение водоемов. Предприятия сбрасывают в водоемы нефтепродукты, соединения азота, фенол и многие другие отходы промышленности. При добыче нефти водоемы загрязняются засоленными видами, нефть и нефтепродукты также разливаются при транспортировке. В России от нефтяного загрязнения более всего страдают озера Севера Западной Сибири. За последние годы возросла опасность для водных экосистем бытовых стоков городской канализации. В этих стоках повысилась концентрация моющих средств, которые микроорганизмы разлагают с трудом.
Пока количество загрязнителей, выбрасываемых в атмосферу или сбрасываемых в реки, невелико, экосистемы сами в состоянии справиться с ними. При умеренном загрязнении вода в реке становится практически чистой через 3-10 км от источника загрязнения. Если загрязнителей слишком много, экосистемы не могут с ними справиться и начинаются необратимые последствия. Вода становится непригодной для питья и опасной для человека. Не годится загрязненная вода и для многих отраслей промышленности.
Загрязнение поверхности почвы твердыми отходами. Городские свалки промышленного и бытового мусора занимают большие площади. В составе мусора могут оказаться ядовитые вещества, такие, как ртуть или другие тяжелые металлы, химические соединения, которые растворяются в дождевых и снеговых водах и затем попадают в водоемы и грунтовые воды. Могут попасть в мусор и приборы, содержащие радиоактивные вещества.
Поверхность почвы может быть загрязнена золой, оседающей из дыма ТЭЦ, работающих на угле, предприятий по производству цемента, огнеупорного кирпича и т.д. Для предотвращения этого загрязнения на трубах устанавливают специальные пылеуловители.
Химическое загрязнение грунтовых вод. Токи грунтовых вод перемещают промышленные загрязнения на большие расстояния, и не всегда можно установить их источник. Причиной загрязнения может быть вымывание токсичных веществ дождевыми и снеговыми водами с промышленных свалок. Загрязнение подземных вод происходит и при добыче нефти современными методами, когда для повышения отдачи нефтяных пластов в скважины повторно закачивают соленую воду, поднявшуюся на поверхность вместе с нефтью при её откачке. Засоленные воды попадают в водоносные горизонты, вода в колодцах приобретает горький вкус и оказывается не пригодной для питья.
Шумовое загрязнение. Источником шумового загрязнения может быть промышленное предприятие или транспорт. Особенно сильный шум производят тяжелые самосвалы и трамваи. Шум влияет на нервную систему человека, и потому в городах и на предприятиях проводятся мероприятия по шумозащите. Железнодорожные и трамвайные линии и дороги, по которым проходит грузовой транспорт, нужно выносить из центральных частей городов в малонаселенные районы и создавать вокруг них зеленые насаждения, хорошо поглощающие шум. Самолеты не должны летать над городами.
и т.д.................

1. Понятие и классификация антропогенных экосистем

2. Классификация и особенности агроэкосистем

3. Круговорот веществ и потоки энергии в агроэкосистеме

1. Понятие и классификация антропогенных экосистем

Антропогенные экосистемы – это сообщества людей, находящихся в тесной взаимосвязи со средой обитания. К антропогенным экосистемам относят урбоэкосистемы (индустриально-городские), агроэкосистемы (сельскохозяйственные), транспорт и транспортные коммуникации, замкнутые пространства обитаемых космических кораблей и глубоководных аппаратов.

Урбосистемы (индустриально-городские) – искусственные системы (экосистемы), возникающие в результате развития городов, и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т.д. В их составе можно выделить следующие территории: промышленные зоны, где сосредоточены промышленные объекты различных отраслей хозяйства и являющиеся основными источниками загрязнения окружающей среды; селитебные зоны (жилые или спальные районы) с жилыми домами, административными зданиями, объектами быта, культуры и т.п.; рекреационные зоны, предназначенные для отдых людей (лесопарки, базы отдыха и т.п.); транспортные системы и сооружения, пронизывающие всю городскую систему (автомобильные и железные дороги, метрополитен, заправочные станции, гаражи, аэродромы и т.п.). Существование урбоэкосистем поддерживается за счет агроэкосистем и энергии горючих ископаемых и атомной промышленности.

2. Классификация и особенности агроэкосистем

Агроэкосистема (agros (греч.) – поле) – это искусственно созданная и поддерживаемая человеком экосистема, предназначенная для производства сельскохозяйственной продукции.

Согласно типизацииФАО, выделяют пять типов агроэкосистем:

1. Земледельческие или полевые.

2. Плантационно-садовые.

3. Пастбищные.

4. Смешанные, характеризующиеся сочетанием нескольких видов землепользования.

5. Агропромышленные экосистемы – территории интенсивного «индустриализированного» производства молока, мяса, яиц и другой продукции на основе преобладающих процессов снабжения системы веществом и энергией извне.

Отличия агроэкосистем от естественных экосистем:

1. Незначительное видовое разнообразие, которое резко снижено в результате действий человека для получения максимальной биомассы какого-то одного продукта;

2. Устойчивость агроэкосистем поддерживается человеком. Смена растительных сообществ происходит в результате замены одного вида культурного растения другим;

3. Короткие цепи питания (урожай–человек);

4. Неполный круговорот веществ (часть питательных элементов выносится из агроэкосистем с урожаем);

5. Регулярное изъятие биологической продукции восполняется соответствующей агротехникой (посевом семян, внесением удобрений, обработкой почвы);

6. Источником энергии является не только солнце, но и деятельность человека. Агроэкосистемы получают вспомогательную энергию в виде мышечных усилий человека или животных, а также мелиорации, орошения, применения удобрений, использования сельскохозяйственной техники;

7. Искусственный отбор (действие естественного отбора ослаблено, отбор осуществляет человек).

Как и естественные экосистемы, агроэкосиситемы состоят из абиотической части (биотопа) и биотической части (биоценоза). Абиотические условия (климат и почвенные условия) определяют характер агроэкосистем, т.е. биоценоз. В них, так же как и в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши т. д.) и редуценты (грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек, выступающий консументом 1 и 2 порядка.

Агроэкосистемы отличаются высокой биологической продуктивностью и доминированием одного или нескольких избранных видов (сортов, пород) растений или животных. Высокая продуктивность сельскохозяйственных культур обусловлена также использованием эффекта высокой продуктивности раннесукцессионных сообществ, функция сельскохозяйственного производителя – поддержание данного сообщества на ранних сукцессионных этапах.

Повышение устойчивости агробиоценозов – это еще один путь повышения их продуктивности. Оно тесно связано с правильным использованием агротехнических приемов, т.е. с химизацией с/х, механизацией, мелиорацией. Путями повышения устойчивости агробиоценозов являются: создание и использование сортов устойчивых к вредителям, выращивание культур, соответствующим почвенно-климатическим условиям данного района (т.е. районированных), увеличение разнообразия видов и сортов в агробиоценозах.

Урбосистемы

Агроэкосистемы (сельскохозяйственные экосистемы, агроценозы) – искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека (пашни, сенокосы, пастбища). Агроэкосистемы создаются человеком для получения высокой чистой продукции автотрофов (урожая). В них, так же как и в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши и т.д.) и редуценты (грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек.

Отличия агроценозов от естественных биоценозов:

Незначительное видовое разнообразие;

Короткие цепи питания;

Неполный круговорот веществ (часть питательных веществ уносится с урожаем);

Источником энергии является не только Солнце, но и деятельность человека (мелиорация, орошение, применение удобрений);

Искусственный отбор (действие естественного отбора ослаблено, отбор осуществляет человек);

Отсутствие саморегуляции (регуляцию осуществляет человек) и др.

Таким образом, агроценозы являются неустойчивыми системами и способны существовать только при поддержке человека.

Урбосистемы (урбанистические системы) – искусственные экосистемы, возникающие в результате развития городов, и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т.д. В их составе можно выделить следующие территории:

- промышленные зоны , где сосредоточены промышленные объекты различных отраслей хозяйства и являющиеся основными источниками загрязнения окружающей среды;

- селитебные зоны (жилые или спальные районы) с жилыми домами, административными зданиями, объектами культуры и т.п.;

- рекреационные зоны, предназначенные для отдыха людей (лесопарки, базы отдыха и т.п.);

- транспортные системы и сооружения , пронизывающие всю городскую систему (автомобильные и железные дороги, метрополитен, заправочные станции, гаражи, аэродромы и т.п.).



Существование урбоэкосистем поддерживается за счет агроэкосистем и энергии горючих ископаемых и атомной промышленности.

Динамика экосистем

Изменения в сообществах могут быть циклическими и поступательными.

Циклические изменения – периодические изменения в биоценозе (суточные, сезонные, многолетние), при которых биоценоз возвращается к исходному состоянию.

Поступательные изменения – изменения в биоценозе, в конечном счете, приводящие к смене этого сообщества другим.

Сукцессия – последовательная смена биоценозов (экосистем), выраженная в изменении видового состава и структуры сообщества. Последовательный ряд сменяющих друг друга в сукцессии сообществ называется сукцессионной серией . К сукцессиям относятся опустынивание, зарастание озер, образование болот и др.

В зависимости от причин, вызвавших смену биоценоза, сукцессии делят на природные и антропогенные, аутогенные и аллогенные.

Природные сукцессии происходят под действием естественных причин, не связанных с деятельностью человека. Антропогенные сукцессии обусловлены деятельностью человека.

Аутогенные сукцессии (самопорождающиеся) возникают вследствие внутренних причин (изменением среды под действием сообщества). Аллогенные сукцессии (порожденные извне) вызваны внешними причинами (например, изменение климата).

В зависимости от первоначального состояния субстрата, на котором развивается сукцессия, различают первичные и вторичные сукцессии. Первичные сукцессии развиваются на субстрате, не занятом живыми организмами (на скалах, обрывах, сыпучих песках, в новых водоемах и т.п.). Вторичные сукцессии происходят на месте уже существующих биоценозов после их нарушения (в результате вырубки, пожара, вспашки, извержения вулкана и т.п.).

В своем развитии экосистема стремится к устойчивому состоянию. Сукцессионные изменения происходят до тех пор, пока не сформируется стабильная экосистема, производящая максимальную биомассу на единицу энергетического потока . Сообщество, находящееся в равновесии с окружающей средой, называется климаксным .

Типы связей и взаимоотношений между организмами

В экосистемах

Живые организмы определенным образом связаны друг с другом. Различают следующие типы связей между видами: трофические, топические, форические, фабрические. Наиболее важными являются трофические и топические связи, так как именно они удерживают организмы разных видов друг возле друга, объединяя их в сообщества.

Трофические связи возникают между видами, когда один вид питается другими: живыми особями, мертвыми остатками, продуктами жизнедеятельности. Трофическая связь может быть прямой и косвенной. Прямая связь проявляется при питании львов живыми антилопами, гиен трупами зебр, жуков-навозников пометом крупных копытных и т.д. Косвенная связь возникает при конкуренции разных видов за один пищевой ресурс (см. раздел «Трофические цепи» ).

Топические связи проявляются в изменении одним видом условий обитания другого вида. Например, под хвойным лесом, как правило, отсутствует травянистый покров.

Форические связи возникают, когда один вид участвует в распространении другого вида. Перенос животными семян спор, пыльцы растений называется зоохория , а мелких особей – форезия.

Фабрические связи заключаются в том, что один вид использует для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, птицы при постройке гнезд используют ветки деревьев, траву, пух и перья других птиц.

Природные экосистемы – это открытые системы: они должны получать и отдавать вещества и энергию. Запасы веществ, усвояемые организмами, в природе не безграничны. Если бы эти вещества не использовались многократно, то жизнь на Земле была бы невозможна. Такой вечный круговорот биогенных компонентов возможен лишь при наличии функционально различных групп организмов, способных осуществлять и поддерживать поток веществ, извлекаемых из окружающей среды.

Как правило, в любой экосистеме можно выделить три функциональные группы организмов. Одни из них производят про­дукцию, другие потребляют, третьи преобразуют ее в неорганиче­скую форму. Их называют соответственно: продуценты, консументы и редуценты (рис. 4.4).

Рис. 4.4. Схема переноса вещества (сплошная линия) и энергии

(пунктирная линия) в природных экосистемах

Первая группа организмов - продуценты (лат. producers -соз­дающий, производящий), или автотрофные организмы (zp.autos - сам, trophe -пища). Они подразделяются на фото- и хемоавтотрофов.

Фотоавтотрофы используют в качестве источника энергии солнечный свет, а в качестве питательного материала - неорганические вещества, в основном углекислый газ и воду. К этой группе организ­мов относятся все зеленые растения и некоторые бактерии (например, зеленые серобактерии, пурпурные серобактерии). В качестве жизне­деятельности они синтезируют на свету органические вещества - уг­леводы, или сахара (СН 2 О) n , выделяя при этом кислород СО 2 +Н 2 О= (СН 2 0) n + 0 2 ,

Хемоавтотрофы используют энергию, выделяющуюся при химических реакциях. К этой группе принадлежат, например, нитрифицирующие бактерии, окисляющие аммиак до азотистой и затем азот­ной кислоты:

2NН 3 + 30 2 = 2HN0 2 + 2Н 2 0 + Q, 2HN0 2 + О 2 = 2HN0 3 + Q 2 .

Химическая энергия (Q), выделенная при этих реакциях, используется бактериями для восстановления СО 2 до углеводов.

Главная роль в синтезе органических веществ принадлежит зеле­ным растительным организмам. Роль хемосинтезирующих бактерий в этом процессе относительно невелика. Каждый год фотосинтезирующими организмами на Земле создается около 150 млрд т органическо­го вещества, аккумулирующего солнечную энергию.

Вторая группа организмов - консументы (лат. consume -потреб­лять), или гетеротрофные организмы (гр. heteros -другой, trophe - пища), осуществляют процесс разложения органических веществ.

Эти организмы используют органические вещества в качестве источника и питательного материала, и энергии. Их делят на фаготрофов (гр. phagos -пожирающий) и сапротрофов (гр. sapros -гнилой).

Фаготрофы питаются непосредственно растительными или животными организмами.

Сапротрофы используют для питания органические вещества мертвых остатков.

Третья группа организмов - редуценты (лат. reducens -возвращающий). Они участвуют в последней стадии разложения - минера­лизации органических веществ до неорганических соединений (СО 2 , Н 2 0 и др.). Редуценты возвращают вещества в круговорот, превращая их в формы, доступные для продуцентов. К редуцентам относятся главным образом микроскопические организмы (бактерии, грибы и др.).

Роль редуцентов в круговороте веществ чрезвычайно велика. Без редуцентов в биосфере накапливались бы груды органических остат­ков; иссякли бы запасы минеральных веществ, необходимых проду­центам.

Жизнь на Земле существует за счет солнечной энергии. Свет -единственный на Земле пищевой ресурс, энергия которого в соедине­нии с углекислым газом и водой рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т. д., в конечном итоге растения «кормят» весь остальной живой мир, т. е. солнечная энергия через растения как бы передается организмам.

Энергия передается от организма к организму, создающим пище­вую или трофическую цепь: от автотрофов, продуцентов (создате­лей) к гетеротрофам, консументам (пожирателям) и так четыре-шесть раз с одного трофического уровня на другой.

Трофический уровень -это место каждого звена в пищевой цепи. Первый трофический уровень - это продуценты. Все остальные уров­ни - консументы. Второй трофический уровень -это растительнояд­ные консументы; третий -плотоядные консументы, питающиеся растительноядными формами; четвертый -консументы, потребляю­щие других плотоядных и т. д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т. д.

Четко распределяются по уровням лишь консументы, специали­зирующиеся на определенном виде пище. Однако есть виды, которые питаются мясной и растительной пищей (человек, медведь и др.), ко­торые могут включаться в пищевые цепи на любом уровне.

Нельзя забывать еще и мертвую органику, которой питается зна­чительная часть гетеротрофов. Среди них есть и сапрофаги и сапро­фиты (грибы), использующие энергию, заключенную в детрите. По­этому различают два вида трофических цепей: цепи выедания , или пастбищные , которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения , которые начинаются с остатков отмерших растений, трупов и экскрементов животных. По­этому, входя в экосистему, поток лучистой энергии разбивается на две части, распространяясь по двум видам трофических сетей, но источ­ник энергии общий - солнечная (рис. 4.5).


Рисунок 4.5. Поток энергии через пастбищную пищевую цепь

(все цифры даны в кДж/м 2 ·год)

Поддержание жизнедеятельности организмов и круговорот веще­ства в экосистемах, т.е. существование экосистем, зависит от посто­янного притока энергии, необходимой всем организмам для их жизне­деятельности и самовоспроизведения.

В отличие от вещества, непрерывно циркулирующего по разным блокам экосистемы, которые всегда могут повторно использоваться, входить в круговорот, энергия может быть использована один раз, т. е. имеет местолинейный поток энергии через экосистему(от автотрофов к гетеротрофам).

Односторонний приток энергии как универсальное явление при­роды происходит в результате действия законов термодинамики.

Согласнопер­вому закону термодинамики, энергия может превращаться из одной формы (например, света) в другую (например, потенциальную энергию пи­щи), но не может быть создана или уничтожена.

Соответственно второму закону , не может быть ни одного процесса, связанного с превраще­нием энергии, без потерь некоторой ее части. Определенное количест­во энергии в таких превращениях рассеивается в недоступную тепло­вую энергию, и, следовательно, теряется. Отсюда не может быть пре­вращений, к примеру, пищевых веществ в вещество, из которого со­стоит тело организма, идущих со 100-процентной эффективностью.

Таким образом, живые организмы являются преобразователями энергии . Пища, поглощаемая консументами, усваивается не полно­стью - от 12 до 20 % у некоторых растительноядных, до 75 % и более у плотоядных. Энергетические затраты связаны прежде всего с под­держанием метаболических процессов, которые называют тратой на дыхание , оцениваемая общим количеством С0 2 , выделенного орга­низмом. Значительно меньшая часть идет на образование тканей и не­которого запаса питательных веществ, т. е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и, особенно, при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в те­пловую и рассеивается в окружающей среде.

Следовательно, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется . Приблизи­тельно потери составляют около 90 %: на каждый следующий уровень передается не более 10 % энергии от предыдущего уровня . Так, если калорийность продуцента 1000 Дж, то при попадании в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т. е. 0,1 % от ка­лорийности растительной пищи.

Однако такая строгая картина перехода энергии с уровня на уро­вень не совсем реальна, поскольку трофические цепи экосистем слож­но переплетаются, образуя трофические сети . Но конечный итог: рас­сеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.

В результате, пищевые цепи можно представить в виде экологических пирамид . Экологическая пирамида - графические изображение соотношения между продуцентами, консументами и редуцентами в экосистеме.

Правило экологической пирамиды - закономерность, согласно которой количество растительного вещества, служащего основой цепи питания, примерно в 10 раз больше, чем масса растительноядных животных, и каждый последующий пищевой уровень также имеет массу, в 10 раз меньшую. Упрощенный вариант экологической пирамиды приведен на рис. 4.6.

Пример: Пусть одного человека в течение года можно прокормить 300 форелями. Для их питания требуется 90 тысяч головастиков лягушек. Чтобы прокормить этих головастиков, необходимы 27 000 000 насекомых, которые потребляют за год 1 000 тонн травы. Если человек будет питаться растительной пищей, то все промежуточные ступени пирамиды можно выкинуть и тогда 1 000 т биомассы растений сможет прокормить в 1 000 раз больше людей.

Различают три основных типа экологических пирамид.

Пирамида чисел (пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана – имеет перевернутый характер, что связано с быстрым потреблением фитопланктона консументами.

Пирамида энергии (продукции) имеет универсальный характер и отражает уменьшение количества энергии, содержащейся в продукции, создаваемой на каждом следующем трофическом уровне.

Таким образом, жизнь может рассматриваться как процесс непрерывного извлечения некоторой системой энергии из окружающей среды, преобразования и рассеивания этой энергии при передаче от одного звена к другому.

Антропогенные экосистемы, как правило, оказываются весьма далёкими от естественного равновесия. При этом возможны несколько типичных ситуаций.

Прежде всего, это эксплуатируемые человеком природные экосистемы, находящиеся под большой антропогенной нагрузкой. Если антропогенная нагрузка снимается, то, предоставленные самим себе, они возвращаются в равновесное состояние. В таком положении находятся леса, систематически подвергающиеся массовой рубке, многие пастбищные угодья. После уничтожения значительной части природной растительности человек покидает эти территории с тем, чтобы вернуться, когда в результате сукцессии растительность восстановится.

Однако при чрезмерной нагрузке экосистема теряет устойчивость, и в таких случаях бездумная эксплуатация природных ресурсов зачастую ведёт к экологическим катастрофам. Страшный пример такого рода - судьба Аральского моря. Это огромное озеро питалось всегда водами двух больших рек, - Амударьи и Сырдарьи, - и вместе с ними образовывало устойчивую систему. Во второй половине XX века воды этих рек стали разбирать на орошение хлопковых плантаций, Аральское море стало быстро высыхать, и к настоящему времени его экосистема практически погибла. Это в свою очередь привело к социальной и гуманитарной катастрофе в окрестностях Арала. Другой пример подобного рода - строительство гидроэлектростанций без учёта последствий для водных экосистем. В результате нерестилища ценных пород рыб оказываются уничтоженными, а окружающие земли - подтопленными. В этих и других подобных случаях на месте зрелых природных равновесных экосистем обычно возникают бедные малопродуктивные незрелые сообщества, далекие от естественного равновесия. Наконец, заброшенные карьеры и места открытых разработок полезных ископаемых оказываются зачастую пустынными территориями, на которых происходит первичная сукцессия.

Другой тип антропогенных биогеоценозов - искусственно созданные и удерживаемые в неравновесном положении системы. Это - пахотные земли и другие сельскохозяйственные угодья, которые иногда называют агроценозами. Как правило, они засеваются одной культурой. Для получения максимального урожая человек стремится сохранить только два трофических уровня - собственно культурное растение-продуцент и детритофагов и редуцентов в почве, необходимых для поддержания плодородия. Видовое разнообразие становится минимальным, а экологическая ниша культивируемых растений - максимальной. Понятно, что эта ситуация крайне неустойчива. Культивируемые растения не способны захватить полностью экологическую ёмкость системы, и фитофаги стараются заполнить пустующие ниши, а дикорастущие растения - конкурировать с выращиваемыми культурами. Человек называет первых «сельскохозяйственными вредителями», а вторых - «сорняками» и вступает с ними в тяжёлую борьбу, длящуюся с переменным успехом уже несколько тысячелетий.

Третий тип антропогенных экосистем - большие города, мегаполисы и целые урбанизированные территории. Экологически эти системы абсолютно неустойчивы, и равновесие здесь может существовать только за счёт огромных затрат труда, энергии и материалов. Невозможно предсказать, как пойдёт сукцессия подобных систем, если прекратится их искусственная поддержка. По счастью, полномасштабные опыты такого рода пока не проводились, а ограниченные «эксперименты», проведённые во время мировых войн, были ужасны, но не репрезентативны. На практике представители дикой природы очень редко способны существовать в урбанизированных районах, так как обычно сразу по многим факторам они оказываются вне своего диапазона толерантности. Загрязнение воздуха, отсутствие доступа к чистой воде, дефицит пищи и шум - это только наиболее очевидные из этих факторов. Так происходит и тогда, когда человек был бы только рад сосуществованию с данным видом. Достаточно посмотреть на угнетённые деревья в городских скверах и на оживлённых улицах. Вместе с тем, города заселяются нежелательными для человека соседями, очень комфортно там себя чувствующими: крысами, мышами, тараканами и даже «птицами мира» - голубями, которые становятся настоящим бедствием. Ситуацию обычно пытаются исправить с помощью зачастую весьма дорогостоящих, но экологически совершенно безграмотных мер. Желая избавиться от грызунов, рассыпают отраву, вместо того, чтобы тщательно убирать мусор, особенно пищевой. Возле вновь посаженых деревьев оставляются слишком маленькие площадки открытой, не покрытой асфальтом почвы, и деревья гибнут, не получая влаги. Тратятся большие средства на посев газонов и цветов, но экономятся деньги на их полив. Список можно расширять до бесконечности. Проблема состоит в том, что человек, будучи биологическим видом, в больших городских агломерациях тоже, по-видимому, оказывается вне своего диапазона толерантности. Свидетельствует об этом тот факт, что большие города быстро бы вымерли, если бы их население не подпитывалось за счёт неурбанизированных регионов.

Общие представления об антропогенных экосистемах

1.1 Типы экосистем

Опираясь на энергетические особенности существующих систем, можно их классифицировать, приняв энергию за основу, и выделил четыре фундаментальных типа экосистем:

1. природные: движимые Солнцем, несубсидируемые;

2. природные, движимые Солнцем, субсидируемые другими естественными источниками;

3. движимые Солнцем и субсидируемые человеком;

4. индустриально-городские, движимые топливом (ископаемым, другим органическим и ядерным).

Эта классификация принципиально отличается от биомной, основанной на структуре экосистем, так как она основана на свойствах среды. Тем не менее, она хорошо дополняет ее. Первые два типа - это природные экосистемы, а третий и четвертый следует отнести к антропогенным.

К первому типу экосистем относятся океаны, высокогорные леса, являющиеся основой жизнеобеспечения на планете Земля.

Ко второму типу экосистем относятся эстуарии в приливных морях, речные экосистемы, дождевые леса, т.е. те, которые субсидируются энергией приливных волн, течений и ветра.

Экосистемы первого типа занимают громадные площади - одни океаны - это 70% территории земного шара. Ими движет энергия только самого Солнца, и они являются основой, стабилизирующей и поддерживающей жизнеобеспечивающие условия на планете.

Экосистемы второго типа обладают высокой естественной плодородностью. Эти системы «производят» столько первичной биомассы, что ее хватает не только на собственное содержание, но часть этой продукции может выноситься в другие системы или накапливаться.

Таким образом, природные экосистемы «работают» на поддержание своей жизнедеятельности и собственного развития без всяких забот и затрат со стороны человека, более того, в них создается и заметная доля пищевых продуктов и других материалов, необходимых для жизни самого человека. Но главное именно здесь очищаются большие объемы воздуха, возвращается в оборот пресная вода, формируется климат и др.

Совсем иначе работают антропогенные экосистемы. К ним можно отнести третий тип - это агроэкосистемы, аквакультуры, производящие продукты питания и волокнистые материалы, но уже не только за счет энергии Солнца, а и дотации ее в форме горючего, поставляемого человеком.

Эти системы походят на природные, поскольку саморазвитие культурных растений в период вегетации - это процесс природный и вызван к жизни природной солнечной энергией. Но подготовка почв, сев, уборка урожая и др. - это уже энергетические затраты человека. Более того, человек практически целиком меняет природную экосистему, что выражается, прежде всего, в ее упрощении, т.е. снижении видового разнообразия вплоть до сильно упрощенной монокультурной системы (таблица 1).

Таблица 1

Сравнение природной и упрощенной антропогенной экосистем (по Миллеру, 1993)

Природная экосистема

(болото, луг, лес)

Антропогенная экосистема

(поле, завод, дом)

Получает, преобразует, накапливает солнечную энергию.

Потребляет энергию ископаемого и ядерного топлива.

Продуцирует кислород и потребляет диоксид углерода.

Потребляет кислород и продуцирует диоксид углерода при сгорании ископаемого топлива.

Формирует плодородную почву.

Истощает или представляет угрозу для плодородных почв.

Накапливает, очищает и постепенно расходует воду.

Расходует много воды, загрязняет ее.

Создает местообитания различных видов дикой природы.

Разрушает местообитания многих видов дикой природы.

Бесплатно фильтрует и обеззараживает загрязнители и отходы.

Производит загрязнители и отходы, которые должны обеззараживаться за счет населения.

Обладает способностью самосохранения и самовосстановления.

Требует больших затрат для постоянного поддержания и восстановления.

Современное сельское хозяйство позволяет постоянно из года в год удерживать экосистемы на ранних стадиях сукцессий, добиваясь максимальной первичной продуктивности одной или нескольких растений. Крестьянам удается добиваться высоких урожаев, но дорогой ценой, а цена эта обуславливается затратами на борьбу с сорняками, на минеральные удобрения, на образование почв и т.д.

Устойчивое появление новых видов, например, травянистых растений, есть результат естественного сукцессионного процесса.

Животноводство - это также путь к упрощению экосистемы; охраняя полезных ему сельскохозяйственных животных, человек уничтожает диких животных: травоядных, как конкурентов в пищевых ресурсах, хищников - как уничтожающих домашний скот.

Вылов ценных видов рыб упрощает экосистемы водоемов. Загрязнение воздушной и водной сред также ведет к гибели деревьев и рыб и «обирает» природные экосистемы.

По мере роста народонаселения, люди будут вынуждены преобразовывать все новые зрелые экосистемы в простые молодые продуктивные. На поддержание этих систем в «молодом» возрасте увеличивается использование топливо-энергетичеких ресурсов. Кроме того, произойдет утрата видового (генетического) разнообразия и природных ландшафтов (таблица 1).

Молодая, продуктивная экосистема очень уязвима из-за монотипного видового состава, так как в результате какой-то экологической катастрофы (засухи), ее уже не восстановить вследствие разрушения генотипа. Но для жизни человечества они необходимы, поэтому наша задача - сохранить баланс между упрощенными антропогенными и соседствующими с ним более сложными, с богатейшим генофондом, природными экосистемами, от которых они зависят.

Энергетические затраты в сельском хозяйстве велики - природные плюс субсидируемые человеком и, тем не менее, самое продуктивное сельское хозяйство находится примерно на уровне продуктивных природных экосистем.

Продуктивность и тех и других основана на фотосинтезе действительное различие между системами лишь в распределении энергии: в антропогенной она поглощается лишь несколькими (одним-двумя) видами, а в природной - многими видами и веществами.

В экосистемах четвертого типа, к которым относятся индустриально-городские системы - энергия топлива полностью заменяет солнечную энергию. По сравнению с потоком энергии в природных экосистемах - здесь ее расход на два-три порядка выше.

1.2 Сельскохозяйственные экосистемы (агроэкосистемы)

Главная цель создаваемых сельхозсистем - рациональное использование тех биологических ресурсов, которые непосредственно вовлекаются в сферу деятельности человека - источники пищевых продуктов, технологического сырья, лекарственных препаратов.

Агроэкосистемы создаются человеком для получения высокого урожая - чистой продукции автотрофов.

Обобщая все уже сказанное об агроэкосистемах подчеркнем следующие их основные отличия от природных (таблица 2).

1. В агроэкосистемах резко снижено разнообразие видов:

· снижение видов культивируемых растений снижает и видимое разнообразие животного населения биоценоза;

· видовое разнообразие разводимых человеком животных ничтожно мало по сравнению с природным;

· культурные пастбища (с посевом трав) по видовому разнообразию похожи на сельскохозяйственные поля.

2. Виды растений и животных, культивируемых человеком, «эволюционируют» за счет искусственного отбора и неконкурентоспособны в борьбе с дикими видами без поддержки человека.

3. Агроэкосистемы получают дополнительную энергию, субсидируемую человеком, кроме солнечной.

4. Чистая продукция (урожай) удаляется из экосистемы и не поступает в цепи питания биоценоза, а частичное ее использование вредителями, потери при уборке, которые тоже могут попасть в естественные трофические цепи. Всячески пресекаются человеком.

5. Экосистемы полей, садов, пастбищ, огородов и других агроценозов - это упрощенные системы, поддерживаемые человеком на ранних стадиях сукцессии, и они столь же неустойчивы и неспособны к саморегуляции, как и природные пионерные сообщества, а потому не могут существовать без поддержки человека.

Таблица 2

Сравнительная характеристика природных экосистем и агроэкосистем.

Природные экосистемы

Агроэкосистемы

Первичные естественные элементарные единицы биосферы, сформировавшиеся в ходе эволюции.

Вторичные трансформированные человеком искусственные элементарные единицы биосферы.

Сложные системы со значительным количеством видов животных и растений, в которых господствуют популяции нескольких видов. Им свойственно устойчивое динамическое равновесие, достигаемое саморегуляцией.

Упрощенные системы с господством популяций одного вида растения и животного. Они устойчивы и характеризуются непостоянством структуры своей биомассы.

Продуктивность определяется приспособленными особенностями организмов, участвующих в круговороте веществ.

Продуктивность определяется уровнем хозяйственной деятельности и зависит от экономических и технических возможностей.

Первичная продукция используется животными и участвует в круговороте веществ. «Потребление» происходит почти одновременно с «производством».

Урожай собирают для удовлетворения потребностей человека и на корм скоту. Живое вещество некоторое время накапливается, не расходуясь. Наиболее высокая продуктивность развивается лишь на короткое время.

Упрощение природного окружения человека, с экологических позиций, очень опасно. Поэтому нельзя превращать весь ландшафт в агрохозяйственный, необходимо сохранять и умножать его многообразие, оставляя нетронутые заповедные участки, которые могли бы быть источником видов для восстанавливающихся в сукцессионных рядах сообществ.

Анализ проблемы использования лесных ресурсов

Лесной пожар - это стихийное, неуправляемое распространение огня по лесным площадям. Причины возникновения пожаров в лесу принято делить на естественные и антропогенные...

Воздействие человека на природу

Система (греч. systema - целое, составленное из частей) - множество элементов, находящихся в связях и отношениях друг с другом, образующих определённую целостность, единство. Главное, что определяет систему...

Зависимость жизнедеятельности живых существ от их биоритмов

Всех людей по динамике работоспособности можно условно разделить на: Совы (представители этого типа людей наиболее эффективно работают в вечернее, и даже ночное время). Рекомендуется самую напряженную работу выполнять в 5-6 часов вечера...

Исследование методов и аппаратов для очистки выбросов ТЭС в атмосферу

В зависимости от мощности ТЭС, зольности топлива, физико-химических свойств золы, санитарно-гигиенических условий в районе расположения электростанций выбирается тип золоуловителей...

Ленточные леса Алтая и их рекреационное использование

Леса Западной Сибири и их экологическая роль

Изучение типов леса в Западной Сибири началось давно. Уже вполне определенные термины использовались лесоводами при съемке и лесоустройстве Алтайских лесов в XVIII--начале XIX в. (например, на картах Бровцына, Кузнецова, Фролова, Колычева и др.)...

Отношения организмов в агросистемах

Агроэкосистемы, как и естественные экосистемы, состоят из множества взаимосвязанных биологических, физических и химических компонентов...

Пищевые цепи и трофические уровни

Существует 2 основных типа трофических цепей -- пастбищные и детритные. В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон...

Среди большого разнообразия судовых инсинераторов можно рассмотреть следующие: Ш Инсинератор GS-500. Ш Инсинератор СП-10 и инсинератор СП-50. Ш ИН-50. Ш Инсинератор VTH-30. Инсинератор GS-500 (Норвежского производства). Установка состоит из двух камер...

Строение биосферы. Загрязнение экосистем. Проведение экологической экспертизы

Промышленные сточные воды загрязняют экосистемы самыми разнообразными компонентами (табл.1) в зависимости от специфики отраслей промышленности. Следует заметить...

Экология и историческое развитие человечества

История развития и распространения человечества по планете говорит о том, что люди достаточно легко приспосабливаются (адаптируются) к новым условиям среды...

Ядерное оружие: типы, физика, поражающие факторы, экологические последствия

Ядерное оружие основано на использовании внутренней энергии, выделяющейся при цепных реакциях деления тяжелых ядер или при термоядерных реакциях синтеза...