Лучшие синтезаторы речи онлайн

– сервис распознавания и синтеза речи платформы Яндекс.Облако, открывающий разработчикам доступ к речевым технологиям Яндекса. В этой статье мы поговорим про синтез речи.

Технология синтеза речи позволяет переводить текст в речь (звуковой файл). Задача актуальна для озвучивания динамически обновляемой информации или быстро меняющихся данных, таких как остаток товаров на складе, репертуар кинотеатров и так далее. Технология синтеза речи Яндекса построена на базе скрытых марковских моделей (HMM). За счет применения статистического подхода в акустическом моделировании удается достичь естественных плавных интонаций. Технология позволяет достаточно быстро создавать новые голоса и синтезировать различные эмоции.

Синтез речи Яндекса позволяет выбрать:

  • мужской или женский голос для озвучивания;
  • эмоции: добрый, злой, нейтральный голос.

Документация по API распознавания и синтеза речи Yandex SpeechKit доступна на сайте https://cloud.yandex.ru/docs/speechkit/

Использование компонента

Начиная с версии Oktell 2.12, в служебных и IVR сценариях появился компонент "Синтез речи". Компонент озвучивает заданную фразу (синтезирует речь) с помощью сервиса Yandex SpeechKit. Позволяет сразу воспроизвести файл в линию, либо сгенерировать файл для последующего использования. В компоненте можно включить кэш, тем самым сохраняя все сгенерированные файлы в папку \Oktell\Server\LocalStorage\SynthesisCache. Так как каждый запрос к сервису Яндекс платный, то включенный кэш позволяет сэкономить ваши средства.

Техническая документация по компоненту:

Для использования системы синтеза речи Yandex SpeechKit выполните следующие действия:

  • Выполните шаги 1-5 инструкции по авторизации в API для получения идентификатора каталога
  • Войдите в ваш аккаунт на Яндексе или Яндекс.Коннекте
  • Получите OAuth-токен в сервисе Яндекс.OAuth. Для этого перейдите по ссылке , нажмите Разрешить и скопируйте полученный OAuth-токен.

Шаг 2. Перейдите в Администрирование / Общие настройки / Распознавание речи Yandex SpeechKit Cloud . Введите полученные значения OAuth-токен и Идентификатор каталога в соответствующие поля

Шаг 3 . Рассмотрим пример использования синтеза речи в IVR сценарии.

Компонент "Синтез речи ". Озвучивает приветствие абоненту и сохраняет выбор абонента в переменную.

  • Режим - Воспроизвести. В этом режиме компонент сразу воспроизводит сгенерированный файл в текущую линию.
  • Текст - строка "Здравствуйте! Вас приветствует компания Телефонные Системы! Для соединения с менеджерами нажмите 1. Для соединения с сотрудниками технической поддержки нажмите 2. ". Введенный текст будет передан на сервера Yandex для озвучивания.
  • Голос - Zahar. Настройка отвечает за синтезируемый голос: Zahar - мужской голос, Jane -женский. Возможно указание другого значения, если оно поддерживается сервисом Yandex SpeechKit.
  • Эмоция - По умолчанию. Настройка отвечает за используемую окраску голоса. Возможные варианты: good, neutral, evil, mixed.
  • Кэш - Использовать. Если использовать кэш, то система попытается найти файл с озвученным текстом среди сгенерированных ранее (находятся в папке \Oktell\Server\LocalStorage\SynthesisCache). Рекомендуется всегда включать в целях экономии средств.
  • Таймаут ожидания ответа, с - 5. Максимальное время ожидания ответа от серверов Яндекс.
  • Символы прерывания - строка "1, 2 ". Если абонент нажмет на указанные символы прерывания, компонент сохранит их в буфер и перейдет к следующему блоку.
  • Буфер для DTMF - переменная ввод (строковая). Переменная, в которую сохранится введенный символ прерывания.
  • Очистить буфер - Да. Указывает на то, что буфер предварительно будет очищен.

Компонент "Меню ". Маршрутизирует абонента на выбранную группу операторов.

  • Аргумент - переменная Ввод
  • Значения -
1 - на компонент "Переключение 1" 2, прочее - на компонент "Переключение 2"

Настройка дальнейшей маршрутизации не рассматривается.

Чтобы использовать синтез речи для преднабора необходимо вначале сгенерировать файл с помощью компонента "Синтез речи" и сохранить путь к этому файлу в переменную (в соответствующем свойстве). Далее указать этот файл в компоненте "Воспроизведение с преднабором".

Это придаёт некоторую пикантность и если начинаю экспериментировать с другими движками получаю в комментариях хэштег #ВернитеДашку. Прикольно всё это наблюдать, но процесс не стоит на месте и многие компании разрабатывают собственные технологии. Например мне понравился голос , который также иногда впихиваю в видео.

Недавно наткнулся на комплекс речевых технологий Яндекса, включающий распознавание и синтез речи, голосовую активацию и выделение смысловых объектов в произносимом тексте. Речевые технологии научился распознавать голосовую активацию, с её помощью можно записывать sms сообщения и оставлять заметки голосом, не используя клавиатуру, напрямую обращаться к тому бэкэнду, который успешно применяется в мобильных приложениях Яндекса. Например SpeechKit Mobile SDK позволяет встроить распознавание и синтез речи, а также голосовую активацию Яндекса в мобильное приложение для iOS, Android (на данный момент русский, английский, турецкий и украинский языки) или Windows Phone (русский язык). Голосовое управление сделает ваше приложение более удобным для пользователя, особенно если у пользователя заняты руки. Не касаясь экрана, он сможет вызвать нужную функцию одной фразой.

Меня всегда привлекала технология синтеза речи, которая позволяет переводить текст в речь. Быстро набросал текст, озвучил его голосом (Milena TTS [Русский]) и впихнул в ролик, на любую тематику. Особенно это будет интересно пользователям имеющим проблемы с речью или тем кто по каким-либо причинам стесняется своего голоса.

Голоса от Яндекс показались своеобразными, симпатичными и легко воспринимаемыми человеческим ухом, особенно мужские голоса zahar и ermil. Женские голоса jane, oksana, alyss и omazh дико напугали и на мой взгляд не дотягивают до вершин SuperDazhki. Так как же услышать новые голоса на обычном домашнем компьютере? Для этого пришлось перелопатить интернет и решение было найдено в виде обычно скрипта.

1. Для начала нам нужно оказаться на странице и нажать на кнопку «Кабинет разработчика».


Сразу попадаете в личный кабинет и нажимаем кнопку «Получить ключ». Далее жмакаем по кнопке «SpeechKit Cloud».


Заполняем все поля помеченные красной звёздочкой и нажимаем кнопку «Отправить».


Ключ мгновенно будет получен, после чего его нужно скопировать.


Теперь перейдём по этой , где увидим различные параметры запроса, speaker (голос синтезированной речи), формат ответов и примеры URL. Эта Китайская грамота обычному пользователю покажется слишком сложной, поэтому упростим наши действия (или наоборот усложним) организовав простой скрипт.

2. Качаем программу Notepad++ на свой компьютер (). Устанавливаем.

3. Создадим файл index.html. У кого нет желания создавать в ручную, скачайте по этой .


Меняем имя файла: index.html. Тип файла: Все файлы. Кодировка: UTF-8. Нажимаем кнопку «Сохранить». Важно сохранить файл index.html в корне системного диска или в любой папке на системном диске.


Теперь сохранённый файл нужно отредактировать. Откройте файл при помощи Notepad++.


Собственно вот наш долгожданный скрипт (). Правильно отредактируйте свой файл: вставьте в нужное место свой ключ, поменяйте голос, сохраните и пользуйтесь.

В дальнейшем два раза щёлкаем по файлу index.html и в браузере получаем следующее.


Осталось в большом окне написать стихотворение и zahar (или любой другой выбранный персонаж) вам его прочитает. Не спорю возможно, что я здесь разложил по полочками никому и завтра не нужно, просто мне был интересен сам процесс синтеза речи от Яндекс на своём компьютере, чем с вами и поделился.

Помогите проекту в его развитии:
Карта Сбербанка: 676280139020834994
Яндекс.Деньги: 410012054992141
Webmoney: WMR-кошелёк R429054927097
WMZ-кошелёк Z401294377967

Сегодня наше приложение Диктовка для интерактивного написания и редактирования текста голосом появилось в AppStore и Google Play . Его главная задача - продемонстрировать часть новых возможностей комплекса речевых технологий Яндекса. Именно о том, чем интересны и уникальны наши технологии распознавания и синтеза речи, я хочу рассказать в этом посте.

Пара слов, чтобы вы понимали, о чём пойдёт речь. Яндекс уже давно предоставляет бесплатное мобильное API , которое можно использовать, например, для распознавания адресов и голосовых запросов к поиску. За этот год мы смогли довести его качество почти до того же уровня, на котором такие запросы и реплики понимают сами люди. И теперь мы делаем следующий шаг - модель для распознавания свободной речи на любую тему.

Кроме этого, наш синтез речи поддерживает эмоции в голосе. И, насколько нам известно, это пока первый коммерчески доступный синтез речи с такой возможностью.

Обо всём этом, а также о некоторых других возможностях SpeechKit: об активации голосом, автоматической расстановке пунктуационных знаков и распознавании смысловых объектов в тексте - читайте ниже.

Всеядное ASR и качество распознавания

Система распознавания речи в SpeechKit работает с разными видами текста, и последний год мы работали над расширением сферы её применения. Для этого мы создали новую языковую модель, пока самую большую, для распознания коротких текстов на любую тему.

За прошедший год относительная доля ошибочно распознанных слов (Word Error Rate) понизилась на 30%. Например, сегодня SpeechKit правильно распознаёт 95% адресов и географических объектов, вплотную приблизившись к человеку, который понимает 96–98% услышанных слов. Полнота распознавания новой модели для диктовки разных текстов сейчас составляет 82%. С таким уровнем можно создать полноценное решение для конечных пользователей, что мы и хотели показать на примере Диктовки.

Изначально SpeechKit работал только для поисковых запросов: общей тематики и геонавигационных. Хотя уже тогда мы задумывали сделать не просто дополнительный инструмент ввода, «голосовую» клавиатуру, а универсальный интерфейс, который полностью заменит любое взаимодействие с системой живым разговором.

Для этого нужно было научиться распознавать любую речь, тексты на произвольную тему. И мы начали работать над отдельной языковой моделью для этого, которая была в несколько раз крупнее имеющихся геонавигационной и общепоисковой моделей.

Такой размер модели ставил новые условия с точки зрения вычислительных ресурсов. Для каждого фрейма рассматриваются несколько тысяч вариантов распознавания - и чем больше мы успеваем, тем выше качество. А работать система должна в потоке, в режиме реального времени, поэтому все расчёты нужно оптимизировать динамически. Экспериментировали, пробовали, искали подход: ускорения добились, например, сменой библиотеки линейной алгебры.

Но важнее и сложнее всего было собрать достаточно правильных данных, пригодных для обучения потоковой речи. Сейчас для тренировки акустической модели используются около 500 часов вручную транскрибированной речи. Это не такая уж большая база - для сравнения, популярный научный корпус Switchboard , который часто используют в исследовательских целях, содержит примерно 300 часов живых, спонтанных разговоров. Безусловно, увеличение базы способствует росту качества обучаемой модели, но мы делаем упор на правильную подготовку данных и аккуратнее моделируем транскрипции, что позволяет с приемлемым качеством обучаться на относительно небольшой базе.

Пара слов о том, как устроен модуль распознавания (подробно мы об этом рассказывали некоторое время назад). Поток записанной речи нарезается на фреймы по 20 мс, спектр сигнала масштабируется и после ряда преобразований для каждого фрейма получаются MFCC .

Коэффициенты поступают на вход акустической модели, которая вычисляет распределение вероятностей для примерно 4000 сенонов в каждом фрейме. Сенон - это начало, середина или конец фонемы.

Акустическая модель SpeechKit построена на комбинации скрытых Марковских моделей и глубокой нейронной сети прямого распространения (feedforward DNN). Это уже проверенное решение, и в прошлой статье мы рассказывали, как отказ от гауссовых смесей в пользу DNN дал почти двукратный скачок в качестве.

Затем вступает первая языковая модель: несколько WFST - взвешенных конечных трансдьюсеров - превращают сеноны в контекстно-зависимые фонемы, а из них уже с помощью словаря произношений строятся целые слова, причём для каждого слова получаются сотни гипотез.

Финальная обработка происходит во второй языковой модели. К ней подключена RNN , рекуррентная нейронная сеть, и эта модель ранжирует полученные гипотезы, помогая выбрать самый правдоподобный вариант. Сеть рекуррентного типа особенно эффективна для языковой модели. Определяя контекст каждого слова, она может учитывать влияние не только ближайших слов, как в нейронной сети прямого распространения (скажем, для триграммной модели - это два предшествующих слова), но и дальше отстоящих, как бы «запоминая» их.

Распознавание длинных связных текстов доступно в SpeechKit Cloud и SpeechKit Mobile SDK - для использования новой языковой модели в параметрах запроса нужно выбрать тему «notes».

Голосовая активация

Вторая ключевая составляющая голосового интерфейса - это система активации голосом, которая запускает нужное действие в ответ на ключевую фразу. Без неё не получится в полной мере «развязать руки» пользователю. Для SpeechKit мы разработали свой модуль голосовой активации. Технология очень гибкая - разработчик, использующий библиотеку SpeechKit, может сам выбрать любую ключевую фразу для своего приложения.

В отличие от, например, решения Google - их разработчики используют для распознавания коронной фразы «Окей, Google» глубокую нейронную сеть. DNN даёт высокое качество, но система активации при этом ограничена единственной командой, и для обучения нужно огромное количество данных. Скажем, модель для распознавания всем знакомой фразы обучалась на примере более чем 40 тысяч пользовательских голосов, которые обращались к своим смартфонам с Google Now.

При нашем подходе модуль голосовой активации - это, по сути, система распознавания в миниатюре. Только работает она в более жёстких условиях. Во-первых, распознавание команды должно происходить на самом устройстве, без обращения к серверу. А вычислительные мощности смартфона сильно ограничены. Критично и энергопотребление - если обычный модуль распознавания включается только на определённое время для обработки конкретного запроса, то модуль активации работает постоянно, в режиме ожидания. И при этом не должен сажать батарею.

Впрочем, есть и послабление - для системы активации нужен совсем небольшой словарь, ведь ей достаточно понимать несколько ключевых фраз, а всю остальную речь можно просто игнорировать. Поэтому языковая модель активации гораздо компактнее. Большинство состояний WFST соответствуют определённой части нашей команды - например, «началу четвёртой фонемы». Есть также «мусорные» состояния, описывающие тишину, посторонний шум и всю остальную речь, отличную от ключевой фразы. Если полноценная модель распознавания в SpeechKit имеет десятки миллионов состояний и занимает до 10 гигабайт, то для голосовой активации она ограничена сотнями состояний и умещается в несколько десятков килобайт.

Поэтому модель для распознавания новой ключевой фразы строится без труда, позволяя быстро масштабировать систему. Есть одно условие - команда должна быть достаточно длинной (желательно - более одного слова) и нечасто встречаться в повседневной речи, чтобы исключить ложные срабатывания. «Пожалуйста» плохо подойдёт для голосовой активации, а «слушай мою команду» - вполне.

Вместе с ограниченной языковой моделью и «лёгкой» акустической, распознавание команд по силам любому смартфону. Остаётся разобраться с энергопотреблением. В систему встроен детектор голосовой активности , который следит за появлением во входящем звуковом потоке человеческого голоса. Остальные звуки игнорируются, поэтому в фоновом режиме энергопотребление модуля активации ограничено только микрофоном.

Синтез речи

Третий основной компонент речевой технологии - это синтез речи (text-to-speech). TTS -решение SpeechKit позволяет озвучить любой текст мужским или женским голосом, да ещё и задав нужную эмоцию. Ни у одного из известных нам голосовых движков на рынке нет такой возможности.

Есть несколько принципиально разных технологий синтеза речи, и в большинстве современных систем используется конкатенативный синтез методом «unit selection». Заранее записанный образец голоса режется на определенные составные элементы (например, контекстно-зависимые фонемы), из которых составляется речевая база. Затем любые нужные слова собираются из отдельных юнитов. Получается правдоподобная имитация человеческого голоса, но воспринимать его тяжело - скачет тембр, возникают неестественные интонации и резкие переходы на стыках отдельных юнитов. Особенно это заметно при озвучивании длинного связного текста. Качество такой системы можно повышать, увеличивая объём речевой базы, но это долгий и кропотливый труд, требующий привлечения профессионального и очень терпеливого диктора. И полнота базы всегда остаётся узким местом системы.

В SpeechKit мы решили использовать статистический (параметрический) синтез речи на базе скрытых Марковских моделей. Процесс, по сути, аналогичен распознаванию, только происходит в обратном направлении. Исходный текст передаётся в модуль G2P (grapheme-to-phoneme), где преобразуется в последовательность фонем.

Затем они попадают в акустическую модель, которая генерирует векторы, описывающие спектральные характеристики каждой фонемы. Эти числа передаются вокодеру, который и синтезирует звук.

Тембр такого голоса несколько «компьютерный», зато у него естественные и плавные интонации. При этом гладкость речи не зависит от объёма и длины читаемого текста, а голос легко настраивать. Достаточно указать в параметрах запроса один ключ, и модуль синтеза выдаст голос с соответствующей эмоциональной окраской. Разумеется, никакая система unit selection на такое не способна.

Чтобы модель голоса смогла построить алгоритмы, соответствующие различным эмоциям, потребовалось правильным образом обучить её. Поэтому во время записи наша коллега Евгения, чей голос и можно услышать в SpeechKit, произносила свои реплики по очереди нейтральным голосом, радостным и, наоборот, раздражённым. В ходе обучения система выделила и описала параметры и характеристики голоса, соответствующие каждому из этих состояний.

Не все модификации голоса построены на обучении. Например, SpeechKit позволяет также окрасить синтезированный голос параметрами «drunk» и «ill». Наши разработчики пожалели Женю, и ей не пришлось напиваться перед записью или бегать на морозе, чтобы хорошенько простудиться.

Для пьяного голоса специальным образом замедляется речь - каждая фонема звучит примерно в два раза медленнее, что и даёт характерный эффект. А для больного повышается порог озвученности - фактически моделируется то, что происходит с голосовыми связками человека при ларингите. Озвученность разных фонем зависит от того, проходит ли воздух через голосовой тракт человека свободно или же на пути его оказываются вибрирующие голосовые связки. В режиме «болезни» каждая фонема озвучивается с меньшей вероятностью, что и делает голос сиплым, посаженным.

Статистический метод также позволяет быстро расширять систему. В модели unit selection для добавления нового голоса нужно создать отдельную речевую базу. Диктор должен записать много часов речи, при этом безупречно выдерживая одинаковую интонацию. В SpeechKit для создания нового голоса достаточно записать хотя бы два часа речи - примерно 1800 специальных, фонетически-сбалансированных предложений.

Выделение смысловых объектов

Слова, которые произносит человек, важно не только перевести в буквы, но и наполнить смыслом. Четвёртая технология, которая в ограниченном виде доступна в SpeechKit Cloud, не касается напрямую работы с голосом - она начинает работать уже после того, как произнесённые слова распознаны. Но без неё полный стек речевых технологий не сделать - это выделение смысловых объектов в естественной речи, которое на выходе даёт не просто распознанный, а уже размеченный текст.

Сейчас в SpeechKit реализовано выделение дат и времени, ФИО, адресов. В гибридной системе сочетаются контекстно-свободные грамматики, словари ключевых слов и статистические данные поиска и разных сервисов Яндекса, а также алгоритмы машинного обучения. Например, во фразе «поехали на улицу Льва Толстого» слово «улица» помогает системе определить контекст, после чего в базе данных Яндекс.Карт находится соответствующий объект.

В Диктовке мы построили на этой технологии функцию редактирования текста голосом. Подход к выделению сущностей принципиально новый, и упор сделан на простоту конфигурации - чтобы настроить систему, не нужно владеть программированием.

На вход системы подаётся список разных типов объектов и примеры фраз из живой речи, их описывающих. Далее из этих примеров методом Pattern Mining формируются паттерны. В них учитываются начальная форма, корни, морфологические вариации слов. Следующим шагом даются примеры употребления выбранных объектов в разных сочетаниях, которые помогут системе понимать контекст. На основе этих примеров строится скрытая Марковская модель, где наблюдаемыми состояниями становятся выделенные в реплике пользователя объекты, а скрытыми - соответствующие им объекты из предметного поля с уже известным значением.

Например, есть две фразы: «вставить „привет, друг“ в начало» и «вставить из буфера». Система определяет, что в первом случае после «вставить» (действие редактирования) идёт произвольный текст, а во втором - известный ей объект («буфер обмена»), и по-разному реагирует на эти команды. В традиционной системе это потребовало бы написания правил или грамматик вручную, а в новой технологии Яндекса анализ контекста происходит автоматически.

Автопунктуация

Диктуя что-либо, в получившемся тексте ожидаешь увидеть знаки препинания. И появляться они должны автоматически, чтобы не приходилось разговаривать с интерфейсом в телеграфном стиле: «Дорогой друг - запятая - как поживаешь - вопросительный знак». Поэтому дополняет SpeechKit система автоматической расстановки знаков препинания.

Роль пунктуационных знаков в речи играют интонационные паузы. Поэтому изначально мы пытались построить полноценную акустическую и языковую модель для их распознавания. Каждому знаку пунктуации назначили фонему, и с точки зрения системы в распознаваемой речи появлялись новые «слова», полностью состоящие из таких «пунктуационных» фонем - там, где возникали паузы или определённым образом менялась интонация.

Большая сложность возникла с данными для обучения - в большинстве корпусов уже нормализованные тексты, в которых знаки препинания опущены. Также почти нет пунктуации и в текстах поисковых запросов. Мы обратились к «Эху Москвы», которые вручную расшифровывают все свои эфиры, и они разрешили нам использовать свой архив. Быстро выяснилось, что для наших целей эти транскрипции непригодны - они сделаны близко к тексту, но не дословно, а поэтому для машинного обучения не годятся. Следующая попытка была сделана с аудиокнигами, но в их случае, наоборот, качество оказалось слишком высоким. Хорошо поставленные голоса, с выражением декламирующие текст, слишком далеки от реальной жизни, и результаты обучения на таких данных никак не удавалось применить в спонтанной диктовке.

Вторая проблема заключалась в том, что выбранный подход отрицательно сказывался на общем качестве распознавания. Для каждого слова языковая модель рассматривает несколько соседних, чтобы правильно определить контекст, и дополнительные «пунктуационные» слова его неизбежно сужали. Несколько месяцев экспериментов не привели ни к чему.

Начать пришлось с чистого листа - мы решили расставлять знаки препинания уже на этапе пост-обработки. Начали с одного из простейших методов, который, как ни странно, показал в итоге вполне приемлемый результат. Паузы между словами получают одну из меток: пробел, точка, запятая, вопросительный знак, восклицательный знак, двоеточие. Чтобы предсказать, какая метка соответствует конкретной паузе, используется метод условных случайных полей (CRF - conditional random fields). Для определения контекста учитываются три предшествующих и два последующих слова, и эти нехитрые правила позволяют с достаточно высокой точностью расставлять знаки. Но мы продолжаем экспериментировать и с полноценными моделями, которые смогут ещё на этапе распознавания голоса правильно интерпретировать интонации человека с точки зрения пунктуации.

Планы на будущее

Сегодня SpeechKit активно используется для решения «боевых» задач в массовых сервисах для конечных пользователей. Следующая веха - научиться распознавать спонтанную речь в живом потоке, чтобы можно было прямо в реальном времени расшифровать интервью или автоматически конспектировать лекцию, получая на выходе уже размеченный текст, с выделенными тезисами и ключевыми фактами. Это огромная и очень наукоёмкая задача, которую пока не удалось решить никому в мире - а других мы и не любим!

Для развития SpeechKit очень важна обратная связь. Поставьте

На Yet another Conference 2013 мы представили разработчикам нашу новую библиотеку Yandex SpeechKit. Это публичный API для распознавания речи, который могут использовать разработчики под Android и iOS. Скачать SpeechKit, а также ознакомиться с документацией, можно .

Yandex SpeechKit позволяет напрямую обращаться к тому бэкэнду, который успешно применяется в мобильных приложениях Яндекса. Мы достаточно долго развивали эту систему и сейчас правильно распознаем 94% слов в Навигаторе и Мобильных Картах, а также 84% слов в Мобильном Браузере. При этом на распознавание уходит чуть больше секунды. Это уже весьма достойное качество, и мы активно работаем над его улучшением.

Можно утверждать, что уже в скором времени голосовые интерфейсы практически не будут отличаться по надежности от классических способов ввода. Подробный рассказ о том, как нам удалось добиться таких результатов, и как устроена наша система, под катом.

Распознавание речи - одна из самых интересных и сложных задач искусственного интеллекта. Здесь задействованы достижения весьма различных областей: от компьютерной лингвистики до цифровой обработки сигналов. Чтобы понять, как должна быть устроена машина, понимающая речь, давайте для начала разберемся, с чем мы имеем дело.

I. Основы
Звучащая речь для нас - это, прежде всего, цифровой сигнал. И если мы посмотрим на запись этого сигнала, то не увидим там ни слов, ни четко выраженных фонем - разные «речевые события» плавно перетекают друг в друга, не образуя четких границ. Одна и та же фраза, произнесенная разными людьми или в различной обстановке, на уровне сигнала будет выглядеть по-разному. Вместе с тем, люди как-то распознают речь друг друга: следовательно, существуют инварианты, согласно которым по сигналу можно восстановить, что же, собственно, было сказано. Поиск таких инвариантов - задача акустического моделирования.

Предположим, что речь человека состоит из фонем (это грубое упрощение, но в первом приближении оно верно). Определим фонему как минимальную смыслоразличительную единицу языка, то есть звук, замена которого может привести к изменению смысла слова или фразы. Возьмем небольшой участок сигнала, скажем, 25 миллисекунд. Назовем этот участок «фреймом». Какая фонема была произнесена на этом фрейме? На этот вопрос сложно ответить однозначно - многие фонемы чрезвычайно похожи друг на друга. Но если нельзя дать однозначный ответ, то можно рассуждать в терминах «вероятностей»: для данного сигнала одни фонемы более вероятны, другие менее, третьи вообще можно исключить из рассмотрения. Собственно, акустическая модель - это функция, принимающая на вход небольшой участок акустического сигнала (фрейм) и выдающая распределение вероятностей различных фонем на этом фрейме. Таким образом, акустическая модель дает нам возможность по звуку восстановить, что было произнесено - с той или иной степенью уверенности.

Еще один важный аспект акустики - вероятность перехода между различными фонемами. Из опыта мы знаем, что одни сочетания фонем произносятся легко и встречаются часто, другие сложнее для произношения и на практике используются реже. Мы можем обобщить эту информацию и учитывать ее при оценке «правдоподобности» той или иной последовательности фонем.

Теперь у нас есть все инструменты, чтобы сконструировать одну из главных «рабочих лошадок» автоматического распознавания речи - скрытую марковскую модель (HMM, Hidden Markov Model). Для этого на время представим, что мы решаем не задачу распознавания речи, а прямо противоположную - преобразование текста в речь. Допустим, мы хотим получить произношение слова «Яндекс». Пусть слово «Яндекс» состоит из набора фонем, скажем, [й][а][н][д][э][к][с]. Построим конечный автомат для слова «Яндекс», в котором каждая фонема представлена отдельным состоянием. В каждый момент времени находимся в одном из этих состояний и «произносим» характерный для этой фонемы звук (как произносится каждая из фонем, мы знаем благодаря акустической модели). Но одни фонемы длятся долго (как [а] в слове «Яндекс»), другие практически проглатываются. Здесь нам и пригодится информация о вероятности перехода между фонемами. Сгенерировав звук, соответствующий текущему состоянию, мы принимаем вероятностное решение: оставаться нам в этом же состоянии или же переходить к следующему (и, соответственно, следующей фонеме).

Более формально HMM можно представить следующим образом. Во-первых, введем понятие эмиссии. Как мы помним из предыдущего примера, каждое из состояний HMM «порождает» звук, характерный именно для этого состояния (т.е. фонемы). На каждом фрейме звук «разыгрывается» из распределения вероятностей, соответствующего данной фонеме. Во-вторых, между состояниями возможны переходы, также подчиняющиеся заранее заданным вероятностным закономерностям. К примеру, вероятность того, что фонема [а] будет «тянуться», высока, чего нельзя сказать о фонеме [д]. Матрица эмиссий и матрица переходов однозначно задают скрытую марковскую модель.

Хорошо, мы рассмотрели, как скрытая марковская модель может использоваться для порождения речи, но как применить ее к обратной задаче - распознаванию речи? На помощь приходит алгоритм Витерби . У нас есть набор наблюдаемых величин (собственно, звук) и вероятностная модель, соотносящая скрытые состояния (фонемы) и наблюдаемые величины. Алгоритм Витерби позволяет восстановить наиболее вероятную последовательность скрытых состояний.

Пусть в нашем словаре распознавания всего два слова: «Да» ([д][а]) и «Нет» ([н"][е][т]). Таким образом, у нас есть две скрытые марковские модели. Далее, пусть у нас есть запись голоса пользователя, который говорит «да» или «нет». Алгоритм Витерби позволит нам получить ответ на вопрос, какая из гипотез распознавания более вероятна.

Теперь наша задача сводится к тому, чтобы восстановить наиболее вероятную последовательность состояний скрытой марковской модели, которая «породила» (точнее, могла бы породить) предъявленную нам аудиозапись. Если пользователь говорит «да», то соответствующая последовательность состояний на 10 фреймах может быть, например, [д][д][д][д][а][а][а][а][а][а] или [д][а][а][а][а][а][а][а][а][а]. Аналогично, возможны различные варианты произношения для «нет» - например, [н"][н"][н"][е][е][е][е][т][т][т] и [н"][н"][е][е][е][е][е][е][т][т]. Теперь найдем «лучший», то есть наиболее вероятный, способ произнесения каждого слова. На каждом фрейме мы будем спрашивать нашу акустическую модель, насколько вероятно, что здесь звучит конкретная фонема (например, [д] и [а]); кроме того, мы будем учитывать вероятности переходов ([д]->[д], [д]->[а], [а]->[а]). Так мы получим наиболее вероятный способ произнесения каждого из слов-гипотез; более того, для каждого из них мы получим меру, насколько вообще вероятно, что произносилось именно это слово (можно рассматривать эту меру как длину кратчайшего пути через соответствующий граф). «Выигравшая» (то есть более вероятная) гипотеза будет возвращена как результат распознавания.

Алгоритм Витерби достаточно прост в реализации (используется динамическое программирование) и работает за время, пропорциональное произведению количества состояний HMM на число фреймов. Однако не всегда нам достаточно знать самый вероятный путь; например, при тренировке акустической модели нужна оценка вероятности каждого состояния на каждом фрейме. Для этого используется алгоритм Forward-Backward .

Однако акустическая модель - это всего лишь одна из составляющих системы. Что делать, если словарь распознавания состоит не из двух слов, как в рассмотренном выше примере, а из сотен тысяч или даже миллионов? Многие из них будут очень похожи по произношению или даже совпадать. Вместе с тем, при наличии контекста роль акустики падает: невнятно произнесенные, зашумленные или неоднозначные слова можно восстановить «по смыслу». Для учета контекста опять-таки используются вероятностные модели. К примеру, носителю русского языка понятно, что естественность (в нашем случае - вероятность) предложения «мама мыла раму» выше, чем «мама мыла циклотрон» или «мама мыла рама». То есть наличие фиксированного контекста «мама мыла...» задает распределение вероятностей для следующего слова, которое отражает как семантику, так и морфологию. Такой тип языковых моделей называется n-gram language models (триграммы в рассмотренном выше примере); разумеется, существуют куда более сложные и мощные способы моделирования языка.

II. Что под капотом у Yandex ASR?
Теперь, когда мы представляем себе общее устройство систем распознавания речи, опишем более подробно детали технологии Яндекса - лучшей, согласно нашим данным, системы распознавания русской речи.
При рассмотрении игрушечных примеров выше мы намеренно сделали несколько упрощений и опустили ряд важных деталей. В частности, мы утверждали, что основной «строительной единицей» речи является фонема. На самом деле фонема - слишком крупная единица; чтобы адекватно смоделировать произношение одиночной фонемы, используется три отдельных состояния - начало, середина и конец фонемы. Вместе они образуют такую же HMM, как представлена выше. Кроме того, фонемы являются позиционно-зависимыми и контекстно-зависимыми: формально «одна и та же» фонема звучит существенно по-разному в зависимости от того, в какой части слова она находится и с какими фонемами соседствует. Вместе с тем, простое перечисление всех возможных вариантов контекстно-зависимых фонем вернет очень большое число сочетаний, многие из которых никогда не встречаются в реальной жизни; чтобы сделать количество рассматриваемых акустических событий разумным, близкие контекстно-зависимые фонемы объединяются на ранних этапах тренировки и рассматриваются вместе.
Таким образом, мы, во-первых, сделали фонемы контекстно-зависимыми, а во-вторых, разбили каждую из них на три части. Эти объекты - «части фонем» - теперь составляют наш фонетический алфавит. Их также называют сенонами. Каждое состояние нашей HMM - это сенон. В нашей модели используется 48 фонем и около 4000 сенонов.

Итак, наша акустическая модель все так же принимает на вход звук, а на выходе дает распределение вероятностей по сенонам. Теперь рассмотрим, что конкретно подается на вход. Как мы говорили, звук нарезается участками по 25 мс («фреймами»). Как правило, шаг нарезки составляет 10 мс, так что соседние фреймы частично пересекаются. Понятно, что «сырой» звук - амплитуда колебаний по времени - не самая информативная форма представления акустического сигнала. Спектр этого сигнала - уже гораздо лучше. На практике обычно используется логарифмированный и отмасштабированный спектр, что соответствует закономерностям человеческого слухового восприятия (Mel-преобразование). Полученные величины подвергаются дискретному косинусному преобразованию (DCT), и в результате получается MFCC - Mel Frequency Cepstral Coefficients. (Слово Cepstral получено перестановкой букв в Spectral, что отражает наличие дополнительного DCT). MFCC - это вектор из 13 (обычно) вещественных чисел. Они могут использоваться как вход акустической модели «в сыром виде», но чаще подвергаются множеству дополнительных преобразований.

Тренировка акустической модели - сложный и многоэтапный процесс. Для тренировки используются алгоритмы семейства Expectation-Maximization , такие, как алгоритм Баума-Велша . Суть алгоритмов такого рода - в чередовании двух шагов: на шаге Expectation имеющаяся модель используется для вычисления матожидания функции правдоподобия, на шаге Maximization параметры модели изменяются таким образом, чтобы максимизировать эту оценку. На ранних этапах тренировки используются простые акустические модели: на вход даются простые MFCC features, фонемы рассматриваются вне контекстной зависимости, для моделирования вероятности эмиссии в HMM используется смесь гауссиан с диагональными матрицами ковариаций (Diagonal GMMs - Gaussian Mixture Models). Результаты каждой предыдущей акустической модели являются стартовой точкой для тренировки более сложной модели, с более сложным входом, выходом или функцией распределения вероятности эмиссии. Существует множество способов улучшения акустической модели, однако наиболее значительный эффект имеет переход от GMM-модели к DNN (Deep Neural Network), что повышает качество распознавания практически в два раза. Нейронные сети лишены многих ограничений, характерных для гауссовых смесей, и обладают лучшей обобщающей способностью. Кроме того, акустические модели на нейронных сетях более устойчивы к шуму и обладают лучшим быстродействием.

Нейронная сеть для акустического моделирования тренируется в несколько этапов. Для инициализации нейросети используется стек из ограниченных машин Больцмана (Restricted Boltzmann Machines , RBM). RBM - это стохастическая нейросеть, которая тренируется без учителя. Хотя выученные ей веса нельзя напрямую использовать для различения между классами акустических событий, они детально отражают структуру речи. Можно относиться к RBM как к механизму извлечения признаков (feature extractor) - полученная генеративная модель оказывается отличной стартовой точкой для построения дискриминативной модели. Дискриминативная модель тренируется с использованием классического алгоритма обратного распространения ошибки, при этом применяется ряд технических приемов, улучшающих сходимость и предотвращающих переобучение (overfitting). В итоге на входе нейросети - несколько фреймов MFCC-features (центральный фрейм подлежит классификации, остальные образуют контекст), на выходе - около 4000 нейронов, соответствующих различным сенонам. Эта нейросеть используется как акустическая модель в production-системе.

Рассмотрим подробнее процесс декодирования. Для задачи распознавания спонтанной речи с большим словарем подход, описанный в первой секции, неприменим. Необходима структура данных, соединяющая воедино все возможные предложения, которые может распознать система. Подходящей структурой является weighted finite-state transducer (WFST) - по сути, просто конечный автомат с выходной лентой и весами на ребрах. На входе этого автомата - сеноны, на выходе - слова. Процесс декодирования сводится к тому, чтобы выбрать лучший путь в этом автомате и предоставить выходную последовательность слов, соответствующую этому пути. При этом цена прохода по каждой дуге складывается из двух компонент. Первая компонента известна заранее и вычисляется на этапе сборки автомата. Она включает в себя стоимость произношения, перехода в данное состояние, оценку правдоподобия со стороны языковой модели. Вторая компонента вычисляется отдельно для конкретного фрейма: это акустический вес сенона, соответствующего входному символу рассматриваемой дуги. Декодирование происходит в реальном времени, поэтому исследуются не все возможные пути: специальные эвристики ограничивают набор гипотез наиболее вероятными.

Разумеется, наиболее интересная с технической точки зрения часть - это построение такого автомата. Эта задача решается в оффлайне. Чтобы перейти от простых HMM для каждой контекстно-зависимой фонемы к линейным автоматам для каждого слова, нам необходимо использовать словарь произношений. Создание такого словаря невозможно вручную, и здесь используются методы машинного обучения (а сама задача в научном сообществе называется Grapheme-To-Phoneme, или G2P). В свою очередь, слова «состыковываются» друг с другом в языковую модель, также представленную в виде конечного автомата. Центральной операцией здесь является композиция WFST, но также важны и различные методы оптимизации WFST по размеру и эффективности укладки в памяти.

Результат процесса декодирования - список гипотез, который может быть подвергнут дальнейшей обработке. К примеру, можно использовать более мощную языковую модель для переранжирования наиболее вероятных гипотез. Результирующий список возвращается пользователю, отсортированный по значению confidence - степени нашей уверенности в том, что распознавание прошло правильно. Нередко остается всего одна гипотеза, в этом случае приложение-клиент сразу переходит к выполнению голосовой команды.

В заключение коснемся вопроса о метриках качества систем распознавания речи. Наиболее популярна метрика Word Error Rate (и обратная ей Word Accuracy). По существу, она отражает долю неправильно распознанных слов. Чтобы рассчитать Word Error Rate для системы распознавания речи, используют размеченные вручную корпуса голосовых запросов, соответствующих тематике приложения, использующего распознавание речи.

Вы жаждете информации, но ваш мозг устал её зрительно воспринимать? В конце рабочего дня не осталось концентрации внимания? А может быть вам просто лень читать?

Прежде чем искоренять в себе лень, не лишним будет с ней подружиться. На самом деле это верная и мудрая подруга, которая в содружестве с парочкой импульсов мозга может научить многим тонкостям в жизни, где обойти можно не то что большие горы, но даже маленькие пригорки. Как можно жить, не напрягаясь? Лень знает ответ на этот вопрос по каждой отдельной ситуации.

Например, чтобы человек не напрягался и берёг своё зрение, придуманы движки голосового синтеза - искусственный интеллект, способный преобразовывать текст в голосовую речь и наоборот - речь в текст.

Рецепт восприятия любой печатной информации на слух прост: устанавливаем на компьютер любую из программ для чтения текста голосом типа Говорилки или Балаболки, дополняем её русскоязычным голосовым движком с дикторами типа Алёны, Николая, Ольги или Катерины, копируем текст в программу и запускаем воспроизведение искусственной речи. Но даже этот рецепт может быть упрощён. Публикации интернет-сайтов можно прослушивать в пару кликов, внедрив в браузер специальное расширение, которое предназначено для преобразования текста в речь.

Chrome-расширение SpeakIt!: синтезатор речи внутри браузера для тех, кому лень читать

Расширение для браузеров на базе Chromium SpeakIt! может читать текст на более чем 50-ти языках, включая русский. Русскоязычные голосовые движки в него уже установлены, так что не нужно никаких дополнительных телодвижений по установке отдельных программных компонентов. Всё, что нужно сделать, преодолев на пару минут свою лень, это установить из магазина Google Chrome расширение SpeakIt!. Оно поставляется совершенно бесплатно.

После установки расширение SpeakIt! встраивается в панель инструментов браузера кнопкой в виде значка динамика. Нажатие левой клавишей мышки откроет мини-интерфейс расширения с кнопкой запуска воспроизведения речи и кнопкой остановки.

Правый клик по кнопке SpeakIt! откроет контекстное меню, где нам нужно выбрать команду «Параметры».

Здесь, в настройках расширения из выпадающих списков можем выставить отличный от предустановленного голосовой движок с русскоязычным диктором, можем выбрать женский или мужской голос. Также можем настроить уровень и скорость воспроизведения речи, перетягивая ползунки соответствующих опций.

Выбор русскоязычного диктора мужским или женским голосом присутствует только для голосового движка iSpeech. Движок Speakit! может читать только женским голосом. А движок native могут смело выставлять те, кто привыкли к бархатистому голосу Digalo Николая. Вводим в поле «Проверка» любую фразу и тестируем несколько голосовых движков и дикторов. Это поможет каждому подобрать для себя оптимальное воспроизведение речи. Если интернет-публикация на английском, соответственно, тестируем англоязычные голосовые движки.

Что же, с настройками расширения определились, теперь приступим непосредственно к процессу воспроизведения интернет-публикаций искусственным голосом. На веб-странице заинтересовавшей публикации выделяем текст, который нужно воспроизвести, затем либо вызываем контекстное меню и жмём кнопку SpeakIt!, либо жмём кнопку этого расширения на панели браузера.