Опыт морли. Опыт Майкельсона—Морли

Схема опыта Майкельсона-Гэля

О́пыт Ма́йкельсона - физический опыт, поставленный Альбертом Майкельсоном на своём интерферометре в 1881 году , с целью измерения зависимости скорости света от движения Земли относительно эфира . Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой распространяется свет подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательный - смещение полос не совпадают по фазе с теоретическими, но колебания этих смещений только немного меньше теоретических. Позже, в 1887 году Майкельсон, совместно с Морли , провёл аналогичный, но более точный эксперимент, известный как эксперимент Майкельсона-Морли и показавший, что наблюдавшееся смещение меньше 1/20 теоретического и, вероятно меньше 1/40. В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости; поэтому результаты, равносильны тому, что относительная скорость Земли в эфире, меньше 1/6 орбитальной скорости и, несомненно меньше 1/4. "Из всего сказанного, - заключают свою статью Майкельсон и Морли , - явствует, что безнадежно пытаться решить вопрос о движении солнечной системы по наблюдениям оптических явлений на поверхности Земли. Согласно примечанию С. И. Вавилова «Способ обработки таков, что всякие непереодические смещения исключаются. Между тем эти непереодические смещения были значительны. Максимальное смещение в этом случае составляет 1/10 теоретического».

По мнению профессора Дэйтона К.Миллера(Кейсовская школа прикладных наук): - «Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект» .

Доктор Рой Кеннеди (Калифорнийский технологический институт) после публикаций результатов опыта Морли-Миллера видоизменяет опыт с целью повторения опыта. Интерферометр помещается в металлический герметичный корпус заполненный гелием под давлением 1 атм. Используя приспособление, способное различить очень малые смещения интерференционной картины стало возможным сократить размер плеч до 4 м. Использовался поляризованный свет с целью исключить рассеивание света на зеркалах. Точность опыта соотвествовала смещению 2·10 −3 .На этом аппарате скорость 10 км/с, полученная Миллером, давала бы сдвиг, соответствующий 8·10 −3 длины волны зеленого цвета, что в четыре раза больше наименьшего определяемого значения. Эксперимент проводился в лаборатории Норман Бридж, в помещении с постоянной температурой в различное время дня. Для проверки зависимости скорости эфирного ветра от высоты местности опыты проводились на Маунт Вилсон в здании обсерватории. Эффект оказался не превышающим 1 км/с для эфирного ветра.

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьезная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, т.е. повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности» я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода - Проф. Лоренц

В 1925 г. Майкельсоном и Гэлем у Клиринга в Иллинойсе на земле были уложены водопродные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE направлены точно с запада на восток, EF, DA и CB - с севера на юг. DE=AF=613 м. EF=DA=CB=339.5 м. Одним общим насосом работающим в течении трех часов можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучек света шел по часовой стрелки другой против. Смещение полос вызываемое вращением Земли регистрировали, в различные дни при полной перестановке зеркал и различными людьми. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюденний дала смещение 0,230±0,005.

Таким образом, перед нами снова положительный эффект, сам по себе с поразительной точностью подтверждающий предположение о неувлекаемом эфире, отстающим при суточном вращении Земли. - С.И. Вавилов т. IV

В 1958 году в Колумбийском университете (США) был проведён ещё более точный эксперимент с использованием противонаправленных лучей двух мазеров , показавший неизменность частоты от движения Земли с точностью около 10 −9 %. Ещё более точные измерения в 1974 довели чувствительность до 0,025 м/с. Современные варианты эксперимента Майкельсона используют оптические и криогенные микроволновые резонаторы и позволяют обнаружить отклонение скорости света, если бы оно составляло несколько единиц на 10 −16 .

Опыт Майкельсона считается эмпирической основой

– важен для развития теории относительности опыт, в котором не было обнаружено движения Земли относительно эфира. Эксперимент провели в 1887 Альберт Майкельсон и Эдвард Морли. Альберт Майкельсон был награжден Нобелевской премией по физике за 1907 с формулировкой: «за создание прецизионных инструментов и выполненные с их помощью спектроскопические и метрологические исследования», в котором прямо не упоминается этот эксперимент, но упоминается изобретено для него оборудования.
Схематическое изображение движения Земли в гипотетическом потоке эфира. Со становлением электродинамики в конце XIX века считалось, что электромагнитные волны, а, следовательно, и свет, распространяются в особом невесомом упругой среде, которое называли эфиром. Поскольку Земля движется вокруг Солнца со скоростью свыше 30 км / с, то возникали две возможности: либо она движется относительно эфира, или же она захватывает эфир частично, увлекая за собой. Изначально эксперимент ставил себе задачу проверки этих гипотез.
http://сайт/uploads/posts/2011-02/1297963534_2%28en%29.svg.png Схема движения лучей в интерферометре Майкельсона Современная интерференционная картина в аналогичном эксперименте с использованием красного лазера. Перед исследователями стояла задача изобрести инструмент, который бы был достаточно чувствительным к движению эфира относительно Земли. Этот инструмент теперь называется интерферометром Майкельсона. В интерферометре начальный луч света разделяется на два с помощью полупрозрачного зеркала, а затем эти два луча, преодолев разный путь, сводятся вместе и интерферируют. Изучая интерференционную картину, можно сделать вывод о разнице оптических путей между двумя лучами.
Если Земля движется относительно эфира, то луч, перпендикулярный к движению Земли и луч, параллельный к движению Земли должны были бы по разному вичуваты движение эфира, а, следовательно, проходить различное оптический путь. Таким образом, при вращении интерферометра интерференционная картина должна была бы меняться.
В 1881 Майкельсон в Германии провел такой эксперимент и получил меньшую, чем ожидалось, изменение интерференционной картины, но тогда его прибор имел еще слишком большую погрешность, чтобы можно было что-то утверждать.
Точный интерферометр Майкельсон сконструировал в США, в университете Вестерн-Резерв вместе с Морли. Длина плеча интерферометра составляла 11 м. Устройство поместили в закрытое помещение в подвале каменного здания, в землю уменьшая возможный температурное воздействие и вибрации. Для того, чтобы уменьшить вибрации еще больше, интерферометр смонтировали на огромном блоке мрамора, который поместили в бассейн, заполненный ртутью. По расчетам они должны были бы увидеть эффект движения Земли относительно эфира.
При полном вращении мраморной глыбы с интерферометром интерференционная картина должна была изменяться периодически с двумя пиками и двумя провалами на один скотный двор. Кроме того, поскольку Земля вращается вокруг своей оси фаза этих периодических изменений должна была меняться в зависимости от дня или ночи.
Есперимент не обнаружил ожидаемого изменения интерференционной картины. Смещения, которое ожидалось при предположении, что эфир совсем не увлекается Землей должно быть по расчетам 0,4. Эксперимен показал, что оно не превышает 0,01. Поскольку это смещение пропорционально квадрату скорости, то Майкельсон и Морли в своей статье в American Journal of Science сделали вывод, что скорость Земли относительно эфира может составлять 1 / 6, и безусловно меньше 1 / 4 скорости Земли видноcно Солнца. Поскольку измеренное значеня смещение картины лежало в пределах экспериментальной погрешности, может быть, что скорость Земли относительно эфира вообще нулевая.
Такой вывод согласовывался с гипотезой Стокса, что эфир увлекается Землей. Однако, Хендрик Лоренц показал в 1886, что гипотеза Стокса противоречивых. Таким образом, результат эксперимента не нашел удовлетворительного объяснения. Решение проблемы пришло только после создания Альбертом Эйнштейном теории относительности.

УДК 53.01; 530.1; 530.11; 530.12:

ЭКСПЕРИМЕНТ МАЙКЕЛЬСОНА – МОРЛИ, ОШИБКИ И ПРИЧИНЫ НЕСОСТОЯТЕЛЬНОСТИ

Орлов Евгений Федорович
научно-производственная фирма Ltd "Sinuar"


Аннотация
Данная статья посвящена поискам причин неудачно выполненных физических экспериментов Майкельсона – Морли и их последователей. Проведенные исследования выявили конкретные причины не позволявшие получить положительные результаты указанных экспериментов. Устранение выявленных ошибок путем изменения конструкции интерферометров позволит установить фактические скорости и фактические направления движения небесных тел, что послужит основанием для открытия новой страницы в познании физической картины мира.

THE MICHELSON - MORLEY, ERRORS AND CAUSES OF FAILURE

Orlov Evgeny Fedorovich
Scientific and Production Company Ltd "Sinuar"


Abstract
This article is dedicated to finding the causes of failure of the physical experiments of Michelson - Morley and their followers. Our studies have revealed specific reasons do not provide positive results of these experiments. Eliminating the errors identified by changing the design of interferometers will set the actual speed and the actual direction of the heavenly bodies, which will serve as the basis for opening a new page in the knowledge of the physical picture of the world.

Уникальный физический эксперимент Майкельсона,

Являясь робкой попыткой науки заглянуть в глубины

Физической картины мира, показал истинный уровень

Интеллектуального развития человечества.

ВВЕДЕНИЕ.

В 1881году после продолжительных попыток измерить абсолютную скорость Земли в пространстве, А.Майкельсон опубликовал результаты, как ему казалось, «неудачного» физического эксперимента, в последствии поставившие всю современную науку в ступор, доведя ее к настоящему времени до бредового состояния.

В работе «Логический и физический аспекты в основе критики теории относительности» была указана конкретная причина принципиальной невозможности применения математических преобразований Х.Лоренца, а значит и теории относительности, при рассмотрении физических явлений. Одновременно, был приведен пример с двумя инерциальными системами отсчета, в котором автор настоящей работы уже высказал одну из главных идей о том, что в принципе, распространение электромагнитных сигналов в каждой из инерциальных систем отсчета, имеют место в реальной действительности .

ПОСТАНОВКА ВОПРОСА.

Распространение электромагнитных сигналов в каждой из инерциальных систем отсчета означает, что каждая инерциальная система отсчета (ИСО) является абсолютной для локального пространства в непосредственной близости от основного объема массы материальных частиц, являющихся основой инерциальной системы отсчета. А распространение действия по объемным координатам на огромные расстояния, ИСО осуществляет посредством эфирных частиц, «принадлежащих» конкретной инерциальной системе отсчета.

Таким образом, распространение действия компонентов каждой системы отсчета определяют параметры конкретной системы отсчета, которые напрямую зависят от концентрации объема массы материальных частиц в локальном пространстве. Из этого следует, что визуально определяются размеры любой инерциальной системы отсчета состоящие из основных агрегатных состояний материи – твердой, жидкой, газообразной и плазменной. При этом, широкий спектр электромагнитных излучений, исходящий от перечисленных агрегатных состояний материи, позволяющий осуществлять визуальное наблюдение с помощью телескопов и иных устройств на большом расстоянии от концентрации агрегатных состояний, свидетельствует о том, что конкретные инерциальные системы отсчета распространяют свое действие с помощью эфирного состояния материи, а эфирное состояние материи наблюдается в виде электромагнитных волн, распространяющихся с определенной скоростью в эфирной материи.

Следовательно, пространство нашей Вселенной является конечным, а его размеры находятся в прямой пропорциональной зависимости от суммы объемов масс материальных частиц, включая эфирные частицы.

Границы Вселенной определяются исключительно по отсутствию эфирной материи в пространстве, я называю его Общим Пространством (Пространство-О или, для простоты идентификации, Пространство-Орлова), которое определяется по отсутствию каких-либо электромагнитных колебаний. Таким образом, удаляясь от пространства нашей Вселенной и наблюдая её в мощный телескоп в виде единственной очень маленькой светящейся точки, можно говорить о том, что наблюдатель покидает пространство нашей Вселенной. Дальнейшее удаление наблюдателя от Вселенной и полное исчезновение свечения будет свидетельствовать о том, что наблюдатель покинул пространство нашей Вселенной и находится в Общем Пространстве. Общее Пространство бесконечно по любым направлениям и может включать в себя бесконечное число любых иных Вселенных. Отсутствие эфирной материи в Общем Пространстве означает, что распространение любых видов известных фундаментальных взаимодействий невозможно принципиально.

Таким образом, А.Майкельсон и его последователи, могли и должны были получать две составляющие скоростей перемещения интерферометра, а следовательно и Земли в пространстве. Первая из них, это нулевая скорость относительно поверхности Земли, при условии неподвижности интерферометра, доказывающая, что Земля является инерциальной системой отсчета, со своими компонентами параметров действия в пространстве. Вторая составляющая – это скорость перемещения Земли относительно любой иной выбранной инерциальной системы отсчета, при условии, если интерферометр будет направлен исключительно на выбранную систему отсчета. Но в таком случае оказывается, что во Вселенной находится огромное количество инерциальных систем отсчета, перемещающихся в пространстве в различных направлениях. Следовательно, значения скоростей взаимного перемещения Земли и указанных систем отсчета, будет представлять собой широкий спектр скоростей, начиная от нулевых значений и кончая скоростями сравнимыми со скоростями распространения гравитационного взаимодействия.

Указанная постановка вопроса требует, чтобы интерферометр был ориентирован на выбранную звезду, а значит, был смонтирован либо на тубе телескопа, с помощью которого можно установить точное направление на выбранную звезду. Либо необходимо смонтировать телескоп на монтажном столе интерферометра, но в любом случае интерферометр должен иметь возможность вращаться в двух плоскостях – в горизонтальной и в вертикальной.

Как известно, интерферометры А.Майкельсона и его последователей, вращались лишь в горизонтальной плоскости, означая тем самым, что интерферометры хаотично направлялись на различные инерциальные системы отсчета, в результате чего регистрировались хаотичные показания.

Следующим важным моментом для успешного выполнения эксперимента по измерению скорости перемещения Земли относительно выбранной удаленной инерциальной системы отсчета (звезды) является учет ослабления действия компонентов параметров удаленной ИСО в пространстве. Предположительно, подобное ослабление происходит пропорционально квадрату расстояния, измеренного от Земли до удаленной выбранной звезды. Указанная постановка вопроса требует ослабления светового луча интерферометра до состояния, когда компоненты параметров удаленной ИСО будут способны взаимодействовать со световым лучом интерферометра.

Известно, что в современных интерферометрах используются лазерные источники света, обладающие большими мощностями светового потока. Мощность светового потока подобных источников когерентного излучения несоизмеримо больше светового потока удаленной звезды и соответственно взаимодействие двух разновеликих излучений просто не замечается человеческим глазом и тем более современной аппаратурой.

Сравнительно слабый источник света в интерферометре Майкельсона позволял ему получать хаотичные значения скоростей тех или иных удаленных систем отсчета, на которые интерферометр хаотично направлялся во время проведения эксперимента, при вращении интерферометра вокруг собственной оси.

Таким образом, для измерения абсолютной скорости перемещения Земли в локальной абсолютной системе отсчета удаленной звезды или галактики необходимо выполнить как минимум два важных дополнительных условия. Первое условие: – при выполнении измерений интерферометр должен быть строго ориентирован на выбранную удаленную звезду или галактику. Второе условие: – световой поток интерферометра должен быть соизмеримым со световым потоком удаленной звезды или галактики.

Следовательно, реконструкция интерферометра состоит в том, чтобы он был смонтирован на телескопе, с помощью которого должно отслеживаться направление на выбранную звезду или галактику, а соизмеримость световых потоков удаленной звезды и источника света интерферометра следует подбирать опытным путем, устанавливая поглощающие фильтры.

ЗАКЛЮЧЕНИЕ.

В заключении необходимо отметить, что выполнение эксперимента Майкельсона – Морли с учетом выявленных ошибок, позволит определить фактические скорости и фактические направления движения звезд и галактик в пространстве нашей Вселенной. Это крайне необходимо сделать, поскольку применяемая современная методика определения скоростей взаимного перемещения небесных тел основывается исключительно на «красном смещении» спектров, тем самым, внося большие искажения в понимание физической картины мира.


Библиографический список
  1. Орлов Е.Ф. Логический и физический аспекты в основании критики теории относительности. // Исследования в области естественных наук. – Март, 2013 [Электронный ресурс]. URL:

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Опыт Майкельсона – Морли. Опыт Физо. Подготовил учитель физики КГУ «Урицкая средняя школа №1» Иванов Ю.Д.

2 слайд

Описание слайда:

Общий вид интерферометра в перспективе. Изображение из доклада А. Майкельсона по результатам его экспериментов, выполненных в 1881 г. Около 1880 года Майкельсон придумал оптический прибор исключительно высокой точности, который назвал интерферометром. Целью первого эксперимента (1881) было измерение зависимости скорости света от движения Земли относительно эфира.

3 слайд

Описание слайда:

Эксперимент Майкельсона - Морли и показавший, что наблюдаемое смещение несомненно меньше 1/20 теоретического и, вероятно, меньше 1/40. В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости, поэтому результаты равносильны тому, что относительная скорость Земли в эфире меньше 1/6 её орбитальной скорости.

4 слайд

Описание слайда:

В 1887 году два американских физика - Альберт Майкельсон и Генри Морли - решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.

5 слайд

Описание слайда:

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Теория распространения света как колебаний особой среды - светоносного эфира - появилась в XVII веке. В 1727 году английский астроном Джеймс Брэдли объяснил с её помощью аберрацию света. Предполагалось, что эфир неподвижен, но после опытов Физо возникло предположение, что эфир частично или полностью увлекается в ходе движения вещества. Джеймс Брэдли

8 слайд

Описание слайда:

В 1925 г. Майкельсон и Гэль у Клиринга в Иллинойсе уложили на земле водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE были направлены точно с запада на восток, EF, DA и CB - с севера на юг. Длины DE и AF составляли 613 м; EF, DA и CB - 339,5 м. Одним общим насосом, работающим в течение трех часов, можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение, Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, разные люди регистрировали в различные дни при полной перестановке зеркал. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка.

9 слайд

Описание слайда:

Впервые скорость света лабораторным методом удалось измерить французскому физику Арману Иполлиту Луи Физо

10 слайд

Описание слайда:

Схема опыта Физо Луч света от источника разделяется полупрозрачной пластинкой на два луча, один из которых, отражаясь от зеркал, проходит через текущую в трубах воду по направлению её движения, а другой - против её движения. После этого оба луча попадают в интерферометр, где и наблюдается интерференционная картина. Измерения производились сначала при неподвижной воде, а затем - при движущейся, со скоростью 7 м/c. По смещению интерференционных полос определялась разность времён прохождения лучей в движущейся и неподвижной среде, а следовательно, и величина (коэффициент увлечения). В рамках теории относительности нет необходимости в гипотезе частичного увлечения. Фактически свет полностью «увлекается» средой, а результат опыта Физо свидетельствует о неклассическом (релятивистском) сложении скоростей. Таким образом, опыт сыграл важную роль при построении электродинамики движущихся сред и явился одним из экспериментальных обоснований теории относительности Эйнштейна.

В 1881 г. Майкельсон осуществил знаменитый опыт, с помощью которого он рассчитывал обнаружить движение Земли относительно эфира (эфирный ветер). В 1887 г. Майкельсон повторил свой опыт совместно с Морли на более совершенном приборе. Установка Майкельсона - Морли изображена на рис. 150.1. Кирпичное основание поддерживало кольцевой чугунный желоб с ртутью. На ртути плавал деревянный поплавок, имеющий форму нижней половины разрезанного вдоль бублика. На этот поплавок устанавливалась массивная квадратная каменная плита. Такое устройство позволяло плавно поворачивать плиту вокруг вертикальной оси прибора. На плите монтировался интерферометр Майкельсона (см. рис. 123.1), видоизмененный так, что оба луча, прежде чем вернуться к полупрозрачной пластинке, несколько раз проходили туда и обратно путь, совпадающий с диагональю плиты. Схема хода лучей показана на рис. 150.2. Обозначения на этом рисунке соответствуют обозначениям на рис. 123.1.

В основе опыта лежали следующие соображения. Предположим, что плечо интерферометра (рис. 150.3) совпадает с направлением движения Земли относительно эфира. Тогда время, необходимое лучу чтобы пройти путь до зеркала и обратно, будет отлично от времени, необходимого для прохождения пути лучом 2.

В результате, даже при равенстве длин обоих плеч, лучи 1 и 2 приобретут некоторую разность хода. Если повернуть прибор на 90°, плечи поменяются местами и разность хода изменит знак. Это должно привести к смещению интерференционной картины, величину которого, как показали произведенные Майкельсоном расчеты, вполне можно было бы обнаружить.

Чтобы вычислить ожидаемое смещение интерференционной картины, найдем времена прохождения соответствующих путей лучами 1 и 2. Пусть скорость Земли относительно эфира равна .

Если эфир не увлекается Землей и скорость света относительно эфира равна с (показатель преломления воздуха практически равен единице), то скорость света относительно прибора будет равна с - v для направления и с + v для направления Следовательно, время для луча 2 определяется выражением

(скорость движения Земли по орбите равна 30 км/с, поэтому

Прежде чем приступить к вычислению времени , рассмотрим следующий пример из механики. Пусть катеру, который развивает скорость с относительно воды, требуется пересечь реку, текущую со скоростью v, в направлении, точно перпендикулярном к ее берегам (рис 150.4). Для того чтобы катер перемещался в заданном направлении, его скорость с относительно воды должна быть направлена так, как показано на рисунке. Поэтому скорость катера относительно берегов будет равна Такова же будет (как предполагал Майкельсон) скорость луча 1 относительно прибора.

Следовательно, время для луча 1 равно

Подставив в выражение значения (150.1) и (150.2) для получим разность хода лучей 1 и 2:

При повороте прибора на 90° разность хода изменит знак. Следовательно, число полос, на которое сместится интерференционная картина, составит

Длина плеча I (учитывая многократные отражения) составляла 11 м. Длина волны света в опыте Майкельсона и Морли равнялась 0,59 мкм. Подстановка этих значений в формулу (150.3) дает полосы.

Прибор позволял обнаружить смещение порядка 0,01 полосы. Однако никакого смещения интерференционной картины обнаружено не было. Чтобы исключить возможность того, что в момент измерений плоскость горизонта окажется перпендикулярной к вектору орбитальной скорости Земли, опыт повторялся в различное время суток. Впоследствии опыт производился многократно в различное время года (за год вектор Орбитальной скорости Земли поворачивается в пространстве на 360°) и неизменно давал отрицательные результаты. Обнаружить эфирный ветер не удавалось. Мировой эфир оставался неуловимым.

Было предпринято несколько попыток объяснить отрицательный результат опыта Майкельсона, не отказываясь от гипотезы о мировом эфире. Однако все эти попытки оказались несостоятельными. Исчерпывающее непротиворечивое объяснение всех опытных фактов, в том числе и результатов опыта Майкельсона, было дано Эйнштейном в 1905 г. Эйнштейн прншел к выводу, что мирового эфира, т. е. особой среды, которая могла бы служить абсолютной системой отсчета, не существует. В соответствии с этим Эйнштейн распространил механический принцип относительности на все без исключения физические явления. Далее Эйнштейн постулировал в соответствии с опытными данными, что скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.

Принцип относительности и принцип постоянства скорости света образуют основу созданной Эйнштейном специальной теории относительности (см. главу VIII 1-го тома).