Черная дыра лурк. Что такое черная дыра. Самая маленькая черная дыра

«Техника-молодежи» 1976 г №4, с.44-48

Один из дней работы конференции «Человек и космос» был посвящен космическим телам, заполняющим нашу вселенную: частицам, полям, звездам, галактикам, скоплениям галактик...

Мы публикуем обзор докладов на эту тему, сделанных на конференции, - доклада академика Я. ЗЕЛЬДОВИЧА «Поля и частицы во вселенной», а также трех докладов, посвященных исследованию наблюдаемых проявлений наиболее уникальных объектов нашей вселенной - «черных дыр». Эти доклады представлены заведующими секторами Института космических исследований АН СССР, докторами физико-математических наук И. НОВИКОВЫМ и Р. СЮНЯЕВЫМ и научным сотрудником Государственного астрономического института имени П. К. Штернберга, кандидатом физико-математических наук Н. ШАКУРОЙ.

Уже несколько десятилетий астрономический мир волнует проблема существования «черных дыр» во вселенной - удивительнейших объектов, предсказанных физиками на основе общей теории относительности А. Эйнштейна. «Черные дыры» - материальные тела, сжатые силами собственного тяготения до таких размеров, что ни свет, ни какие-либо другие частицы не могут покинуть поверхность и уйти в бесконечность.

Всем хорошо известно понятие второй космической скорости. Это начальная скорость, которую нужно придать космическому кораблю (или любому другому предмету) на поверхности Земли для преодоления гравитационных сил притяжения и ухода в космическое пространство. Численно она равна 11,2 км/с.

Представим теперь гипотетический космический корабль, стартующий с поверхности какой-либо звезды, например нашего Солнца. Для того чтобы он смог освободиться от «гравитационных объятий» звезды, ему потребуется скорость уже в сотни километров в секунду. В общем случае вторая космическая скорость зависит от массы М и радиуса R тела и определяется всем известной формулой: (G - постоянная гравитационного взаимодействия). Очевидно, чем меньший радиус R имеет тело данной массы М, тем сильнее его гравитационное поле, тем больше значение второй космической скорости.

Еще в конце XVII столетия известный французский ученый Пьер Симон Лаплас в некотором смысле предсказал «черные дыры», задаваясь вопросом: до каких размеров следует сжать тело, чтобы скорость убегания с его поверхности равнялась скорости света с = 300 000 км/с? Подставляя в выражение для второй космической скорости величину скорости света с = 300 000 км/с, находим значение радиуса

Для Земли он равен всего 3 см, для Солнца - 3 км. Таким образом, если бы с помощью какого-либо внешнего воздействия удалось сжать эти тела до радиуса R g , то они ничего бы не излучали наружу, так как нужно было бы придать частицам начальную скорость больше скорости света, но последняя, как мы знаем сегодня, является предельно возможной скоростью для материальных частиц.

Истинные размеры Земли и других планет. Солнца и других звезд в тысячи раз больше радиуса R g , и долгое время ученые предполагали, что внутренние силы давления вещества не позволят ему сжаться до критического радиуса. Но в 30-х годах нашего столетия несколько ученых-физиков (одним из них был академик Л. Ландау) показали, что достаточно массивные звезды в конце своей эволюции должны превращаться в «черные дыры», то есть сжаться до таких размеров, когда гравитационное поле запирает излучение, выходящее с их поверхности. Процесс сжатия массивных звезд является необратимым: никакие сверхмощные силы отталкивания между частицами не могут воспрепятствовать сжатию звезды почти до R g . Такой процесс необратимого катастрофического сжатия получил название гравитационного коллапса , а критический радиус R g называется гравитационным радиусом тела.

Мы знаем, что механика Ньютона неприменима, когда скорость движения частиц сравнима со скоростью света. В этом случае пользуются специальной теорией относительности. А для описания сильных гравитационных полей и движения вещества в них также вместо теории тяготения Ньютона пользуются общей теорией относительности, или, как ее еще называют, релятивистской теорией тяготения Эйнштейна. Поразительным оказалось то, что расчет гравитационного радиуса в точной релятивистской теории тяготения привел к тому же значению: , которое Лаплас вычислил больше чем полтора столетия назад. Но, по теории Ньютона, сколь огромную массу вещества мы ни брали бы, она всегда может находиться в равновесном состоянии. Хотя понятие гравитационного радиуса для нее существует, но размеры тела, по теории Ньютона, всегда больше.

В точной релятивистской теории не так. Оказывается, что если масса вещества превышает некоторое критическое значение, то оно должно после того, как потеряет свою тепловую энергию, под действием гравитационных сил коллапсировать. Это критическое значение массы равно примерно 2-3 массам нашего Солнца (2-3 Мс).

Во вселенной мы наблюдаем миллиарды звезд как с массой в десятки раз меньше солнечной, так и в десятки раз больше. Звезды теряют свою тепловую энергию в виде электромагнитного излучения с поверхности. Чем больше масса звезды, тем большую светимость она имеет. Так, звезда с массой в десять раз больше массы Солнца имеет в десять тысяч раз большую светимость.

Длительное время потери энергии компенсируются реакциями термоядерного синтеза, протекающими в глубоких недрах звезд. Но после исчерпания ядерных ресурсов звезда начинает остывать. Расчет показывает, что звезды типа нашего Солнца сжигают свои запасы примерно через 10 млрд. лет 1 , а с массой в десять раз большей - уже через 10 млн. лет. Ведь их светимость в 10 000 раз больше. С началом остывания звезда под действием гравитационных сил начинает сжиматься. В зависимости от массы сжатие приводит к трем различным типам объектов (см. рис. 1). Звезды с массой порядка солнечной превращаются в белые карлики - довольно плотные тела (плотность 10 5 - 10 9 г/см 3), имеющие размеры, сравнимые с радиусом Земли. Сила тяжести в белых карликах уравновешена давлением вырожденных электронов, которое обусловлено квантовыми свойствами плотного электронного газа. Для звезд с массой больше чем 1,2 Мс. давление вырожденных электронов уже не в состоянии противодействовать возрастающей силе гравитации, и такие звезды продолжают сжиматься дальше. Если значение массы не превышает 2-3 Мс, то ее сжатие останавливается при плотности атомного ядра 10 14 -10 15 г/см 3 . При такой плотности вещество практически полностью превращается в нейтроны, и сила тяжести уравновешена давлением вырожденного нейтронного газа. Естественно, что такие объекты были названы нейтронными звездами. Радиус нейтронной звезды составляет всего несколько километров. Сжатие исходной звезды, имеющей радиус в миллионы километров, до размеров в десять километров происходит мгновенно (в рамках понятий астрофизики, т. е. со скоростью свободного падения - около часа), и за короткое время выделяется гигантское количество энергии. Внешние части звезды буквально взрываются и разлетаются со скоростью в десятки тысяч километров в секунду. Большая часть энергии при этом излучается в виде электромагнитных волн, так что светимость звезды в течение нескольких дней становится сравнимой с общей светимостью всех звезд в Галактике. Такой взрыв получил название вспышки сверхновой.

1 Возраст Солнца на сегодняшний день 5 млрд. лет.

Наконец, если масса звезды превышает тройную массу Солнца, то уже никакие силы отталкивания не могут остановить процесс сжатия, и он заканчивается релятивистским коллапсом с образованием «черной дыры».

Но это не значит, что возникшие космические объекты будут иметь пропорциональные массы. На причинах этих несоответствий подробно остановился в своем докладе академик Я. Зельдович. Для сил тяготения характерен дефект массы. Могут возникнуть состояния, когда гравитационный дефект массы достигнет 30, 50 и даже 99%.

Теоретические расчеты дают несколько способов рождений «черной дыры» (рис. 2). Во-первых, возможен прямой коллапс массивной звезды, при котором яркость исходной звезды, воспринимаемая далеким наблюдателем, будет быстро падать. Из фиолетовой звезда быстро становится красной, затем инфракрасной, а потом и вовсе погаснет. Хотя она будет по-прежнему излучать энергию, поле тяготения становится столь сильным, что траектории фотонов будут заворачиваться обратно к коллапсирующей звезде. Возможен также следующий путь: центральные части звезды сжимаются в плотное горячее нейтронное ядро с массой больше критической, а затем после быстрого остывания (за время порядка десятков секунд) массивная нейтронная звезда коллапсирует дальше в «черную дыру». Такой двухступенчатый процесс приводит к взрыву наружных частей звезды, аналогичному взрыву сверхновой, с образованием нормальной нейтронной звезды. Наконец, «черная дыра» может образоваться из нейтронной звезды спустя десятки миллионов лет после взрыва сверхновой, когда масса нейтронной звезды в результате выпадания на ее поверхность окружающего межзвездного вещества превысит критическое значение.

Можно ли наблюдать эти три типа конечных объектов звездной эволюции: белые карлики, нейтронные звезды и «черные дыры»?

Исторически оказалось, что белые карлики были обнаружены задолго до того, как разобрались в теории звездной эволюции. Они наблюдались как компактные белые звезды с большой температурой поверхности. Но откуда они черпают свою энергию, ведь, по теории, источники ядерной энергии в них отсутствуют? Оказывается, они светят за счет запасов тепловой энергии, которая осталась у них от предыдущих, горячих этапов эволюции. Имея малую площадь поверхности, эти звезды теряют свою энергию весьма экономно. Они медленно остывают и за время порядка сотен миллионов лет превращаются в черные карлики, то есть становятся холодными и невидимыми.


Нейтронным звездам повезло больше. Они сначала были открыты теоретиками «на кончике пера», а спустя почти 30 лет после предсказания были обнаружены как источники космического строго периодического излучения - пульсары. (За это открытие А. Хьюишу, руководителю группы английских астрономов, обнаруживших первый пульсар, была присуждена Нобелевская премия.) Наблюдаются пульсары с периодами следования импульсов от сотых долей секунды у самых молодых пульсаров до нескольких секунд у пульсаров, возраст которых составляет десятки миллионов лет. Периодичность пульсаров связана с их быстрым вращением вокруг собственной оси.

Представьте себе прожектор, находящийся на поверхности некоторого вращающегося объекта. Если вы находитесь на пути луча света от такого объекта, то увидите, что излучение от него будет приходить в виде отдельных импульсов с периодом, равным периоду вращения объекта, - это и будет грубая, приближенная, но верная в своей основе модель пульсара. Почему же излучение с поверхности нейтронной звезды уходит в узком конусе углов, как луч света от прожектора? Оказывается, благодаря мощному магнитному полю 10 11 -10 12 гс нейтронная звезда излучает энергию лишь вдоль силовых линий из магнитных полюсов, что в результате вращения приводит к явлению пульсара как космического маяка. Любопытно, что излучаемая в космическое пространство энергия черпается из его энергии вращения, и период вращения пульсара постепенно увеличивается. Время от времени на этот плавный рост периода накладываются сбои частоты, когда пульсар практически мгновенно уменьшает значение периода. Эти сбои вызваны «звездотрясением» нейтронной звезды. По мере замедления вращения в твердой коре нейтронной звезды (см, рис. 3) постепенно накапливаются механические напряжения, и, когда эти напряжения превышают предел прочности, происходит внезапное высвобождение энергии и перестройка твердой коры - пульсар при такой перестройке мгновенно уменьшает свой период вращения.

Как излучают «черные дыры»?

Внешнее гравитационное поле - вот все, что остается от звезды после того, как она коллапсирует и превратится в «черную дыру». Все богатство внешних характеристик звезды - магнитное поле, химический состав, спектр излучения - исчезает в процессе гравитационного коллапса. Представим себе на минутку фантастическую ситуацию, когда наша Земля оказалась бы рядом с «черной дырой» (рис. 4). Земля не просто начала бы падать на «черную дыру», приливные силы начали бы деформировать Землю, вытягивая ее в каплю, прежде чем она полностью поглотилась бы «черной дырой».

«Черная дыра» без вращения характеризуется лишь значением гравитационного радиуса R g , ограничивающего сферу в окрестности «черной дыры», из-под которой никакие сигналы не могут выйти наружу. Если же «черная дыра» имеет еще и угловой момент вращения, то выше гравитационного радиуса появляется область, названная эргосферой. Находясь в эргосфере, частица не может оставаться в покое. При распаде частицы из эргосферы можно извлекать энергию - один осколок падает на «черную дыру», а второй улетает в бесконечность, унося с собой избыток энергии (см. рис. на стр. 44).

Поиск «черных дыр» в нашей Галактике наиболее перспективен в двойных звездных системах. Больше 50% звезд входят в состав двойных систем. Пусть одна из них превратилась в «черную дыру». Если вторая находится на достаточно безопасном расстоянии, то есть приливные силы не разрушают ее, а лишь немного деформируют, то такие две звезды будут по-прежнему вращаться вокруг общего центра тяжести, но одна из них будет невидима. Советские ученые, академик Я. Зельдович и О. Гусейнов, в 1965 году предложили искать «черные дыры» среди тех двойных систем, где невидим более массивный компонент. Более поздние исследования показали, что если оптическая звезда теряет вещество со своей поверхности, то вокруг «черной дыры» может возникнуть светящийся ореол. И сейчас все надежды астрономов связаны с изучением взаимодействия «черных дыр» с веществом, которое их окружает.

Сферическое падение холодного вещества на «черную дыру» не приводит к заметному выделению энергии: у «черной дыры» отсутствует поверхность, при ударе о которую вещество остановилось и высветило бы свою энергию. Но, как показали независимо друг от друга в 1964 году академик Я. Зельдович и американский астрофизик Е. Салпитер, если «черная дыра» «обдувается» направленным потоком газа, то за нею возникает сильная ударная волна, в которой газ нагревается до десятков миллионов градусов и начинает излучать в рентгеновском диапазоне спектра. Так происходит, когда оптическая звезда истекает звездным ветром и ее размеры малы по сравнению с некоторой критической полостью, называемой полостью Роша (рис. 5а). Если же звезда заполняет всю полость Роша, то истечение происходит через «узкую горловину» (рис. 56), и вокруг «черной дыры» образуется диск. Вещество в диске по мере потери скорости падает по медленно скручивающейся спирали на «черную дыру». В процессе падения часть гравитационной энергии превращается в тепловую и нагревает диск. Сильнее всего разогреваются близкие к «черной дыре» области диска. Температура в них поднимается до десятков миллионов градусов, и в результате диск, как и в случае ударной волны, главную часть энергии излучает в рентгеновском диапазоне.

Аналогичная картина будет наблюдаться, если вместо «черной дыры» в двойной системе находится нейтронная звезда (рис. 5в). Однако нейтронная звезда обладает сильным магнитным полем. Это поле направляет падающее вещество в область магнитных полюсов, где и происходит выделение основной части энергии в рентгеновском диапазоне. При вращении такой нейтронной звезды мы будем наблюдать явление рентгеновского пульсара.

В настоящее время открыто большое число компактных рентгеновских источников в составе двойных систем. Они были обнаружены по регулярному выключению излучения во время затмения источника соседней оптической звездой. Если само излучение дополнительно промодулировано, то это скорее всего нейтронная звезда, если нет - есть основания считать такой источник «черной дырой». Оценки их масс, которые можно сделать на основании законов Кеплера, показали, что они больше критического предела для нейтронной звезды. Наиболее подробно изучен источник Лебедь X-1 с массой больше 10Мс. По всем своим характеристикам он является «черной дырой».

Долгое время большинство астрофизиков считало, что изолированная «черная дыра», вокруг которой нет никаких частиц, не излучает. Но несколько лет назад известный английский астрофизик С. Хокинг показал, что даже полностью изолированная «черная дыра» должна излучать в космическое пространство фотоны, нейтрино и другие частицы. Этот поток энергии вызван квантовыми явлениями рождения частиц в сильном переменном поле тяготения. При коллапсе звезда асимптотически приближается к значению гравитационного радиуса и достигнет его лишь за бесконечно долгое время. В пустоте вокруг «черной дыры» всегда существует маленькая нестатичность поля. А в нестатических полях должны рождаться новые частицы. Хокинг детально рассчитал процесс излучения «черных дыр» и показал, что с течением времени «черные дыры» уменьшаются, они как бы затягиваются и уменьшаются до сколь угодно малых размеров. В согласии с полученными формулами квантовое излучение «черной дыры» характеризуется температурой Т ~ 10 -6 Мс/М°К. Таким образом, если масса «черной дыры» порядка солнечной, то эффективная температура излучения ничтожна - 10 -6 °К. Можно вычислить и время жизни «черной дыры»: лет. Это время для «черных дыр» звездной массы колоссально велико, и процессы Хокинга не влияют на наблюдаемые проявления «черных дыр» в двойных системах.

Около десяти лет назад во вселенной были открыты удивительнейшие и до сих пор неразгаданные объекты - квазары. Светимость квазаров в сотни раз превышает светимость даже очень больших галактик, то есть квазары светят сильнее, чем сотни миллиардов звезд. Наряду с чудовищно большой светимостью наблюдается еще один удивительный факт - за несколько лет или даже месяцев поток излучения от квазаров может меняться в десятки раз. Переменность излучения свидетельствует о том, что оно рождается в очень компактной области с размерами не больше размеров солнечной системы. Это очень мало для объекта, имеющего колоссальнейшую светимость. Что же это за тела?

Теоретиками было предложено несколько моделей. Одна из них предполагает наличие сверхмассивной звезды с массой, в 10 миллионов раз большей массы нашего Солнца. Такая звезда излучает очень много энергии, но время жизни ее очень мало по космическим масштабам: всего несколько десятков тысяч лет, после чего она остывает и коллапсирует в «черную дыру». В другой модели предполагалось, что квазар представляет собой скопление десятков миллионов горячих массивных звезд (рис. 6). Звезды будут сталкиваться, будут прилипать одна к другой, становиться более массивными, будут эволюционировать. При этом часто будут происходить вспышки сверхновых и наблюдаться колоссальное энерговыделение. Но и в этом случае тесное скопление звезд превращается в сверхмассивную «черную дыру».

Английский астрофизик Д. Линден-Лелл первым задумался о том, как можно обнаружить такую сверхмассивную «черную дыру». Он показал, что падение межзвездного газа, который всегда имеется в межзвездном пространстве вокруг сверхмассивной «черной дыры», приведет к колоссальному энерговыделению. Вокруг «черной дыры» появится ореол излучения со всеми свойствами, наблюдаемыми у квазаров. В настоящее время построена теория излучения квазаров как сверхмассивных «черных дыр», на которые выпадает вещество, однако однозначные доказательства этой модели еще не получены.

Обзор подготовил кандидат физико-математических наук
НИКОЛАЙ ШАКУРА

Трактат о «черной дыре»

АЛЕКСАНДР ЯНГЕЛЬ

Ну шарада!

Знать, недаром

Ошарашен астроном...
В дали дальней мирозданья
звезды ходят ходуном:
то разбухнут, как арбузы,
то - летят в тартарары,
словно канувшие в лузы
биллиардные шары.
Астроном по небу шарит,
вороша кромешный мрак:
кто там карты мне мешает?
Что за «черная дыра»?
Безразмерная утроба!
Мир, закрытый на учет!
Или ты - мусоропровод
для вселенских нечистот?!
Ты - распахнутая настежь,
все глотающая пасть.
Нет опаснее напасти:
в этой пропасти пропасть.
Даже свет,

и тот не в силах

Из неволи улизнуть.
И самой невыносимо -
никому не подмигнуть...
Ты скажи, о чем тоскуешь,
коротая вечера?
Для чего ты существуешь
и куда ведешь, «дыра»?
...Астроном до помраченья
сверлит глазом

Как он хочет в назначенье
верить доброе твое!

>

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

– одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:

Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

– удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 10 31 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 10 36 кг.

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

Допустим, что вам не повезло и ваш корабль неумолимо движется к сверхмассивной черной дыре. Нет смысла бороться. Вы просто выключили двигатели и идете навстречу неизбежному. Чего ожидать?

Начнем с невесомости. Вы пребываете в свободном падении, поэтому экипаж, корабль и все детали невесомы. Чем ближе подходите к центру отверстия, тем сильнее ощущаются приливные гравитационные силы. Например, ваши ноги ближе к центру, чем голова. Тогда вам начинает казаться, что вас растягивают. В итоге, вас просто разорвет на части.

Эти силы неприметны, пока вы не подойдете на удаленность в 600000 км от центра. Это уже после черты горизонта. Но мы говорим об огромном объекте. Если вы падаете в дыру с солнечной массой, то приливные силы охватили бы вас в 6000 км от центра и разорвали до того, как вы подошли к горизонту (поэтому мы отправляем вас в большую, чтобы смогли умереть уже внутри дыры, а не на подходе).

Что внутри? Не хочется разочаровывать, но ничего примечательного. Некоторые объекты могут искажаться по внешнему виду и больше ничего необычного. Даже после перехода горизонта вы будете видеть вещи вокруг себя, так как они движутся с вами.

Сколько на все это уйдет времени? Все завит от вашей удаленности. Например, вы начали с точки покоя, где сингулярность в 10 раз больше радиуса дыры. Для подхода к горизонту понадобится лишь 8 минут, а затем еще 7 секунд, чтобы войти в сингулярность. Если падаете в маленькую черную дыру, то все произойдет быстрее.

Как только перешагнете горизонт, можете стрелять ракетами, кричать и плакать. На все это у вас 7 секунд, пока не попадете в сингулярность. Но ничего уже не спасет. Поэтому просто насладитесь поездкой.

Допустим, вы обречены и падаете в дыру, а ваш друг/подруга наблюдает за этим издалека. Ну, он увидит все по-другому. Заметит, что ближе к горизонту вы замедлите свой ход. Но даже если человек просидит сотню лет, он так и не дождется, когда вы достигнете горизонта.

Попробуем объяснить. Черная дыра могла появиться из коллапсирующей звезды. Так как материал разрушается, то Кирилл (пусть будет вашим другом) видит его уменьшение, но никогда не заметит подхода к горизонту. Именно поэтому их называли «замороженными звездами», ведь кажется, будто они замерзают с определенным радиусом.

В чем же дело? Назовем это оптической иллюзией. Для формирования дыры не нужна бесконечность, как и для перехода через горизонт. По мере вашего подхода свету требуется больше времени, чтобы добраться к Кириллу. Если точнее, то излучение в реальном времени от вашего перехода зафиксируется у горизонта навечно. Вы уже давно перешагнули за линию, а Кирилл все еще наблюдает световой сигнал.

Или же можно подойти с другой стороны. Время тянется дольше возле горизонта. Например, вы обладаете супермощным кораблем. Вам удалось приблизиться к горизонту, побыть там пару минут и выбраться живым к Кириллу. Кого же вы увидите? Старика! Ведь для вас время текло намного медленнее.

Что тогда верно? Иллюзия или игра времени? Все зависит от используемой системы координат при описании черной дыры. Если полагаться на координаты Шварцшильда, то при пересечении горизонта временная координата (t) приравнивается к бесконечности. Но показатели этой системы предоставляют размытое представление того, что происходит возле самого объекта. У линии горизонта все координаты искажаются (сингулярность). Но вам можно использовать обе системы координат, поэтому два ответа имеют силу.

В реальности вы просто станете невидимкой, и Кирилл перестанет вас видеть еще до того, как пройдет много времени. Не стоит забывать о красном смещении. Вы излучаете наблюдаемый свет на определенной волне, но Кирилл увидит его на более длинной. Волны удлиняются по мере приближения к горизонту. Кроме того, не стоит забывать, что излучение происходит в определенных фотонах.

Например, в момент перехода вы отправите последний фотон. Он достигнет Кирилла в определенное конечное время (примерно час для сверхмассивной черной дыры).

Конечно, нет. Не забывайте про существование горизонта событий. Только из этой области вы не можете выбраться. Достаточно просто не приближаться к ней и чувствуйте себя спокойно. Более того, с безопасного расстояния вам этот объект будет казаться самым обычным.

Информационный парадокс Хокинга

Физик Эмиль Ахмедов о действии гравитации на электромагнитные волны, информационном парадоксе черных дыр и принципе предсказуемости в науке:

Не паникуйте, так как Солнцу никогда не трансформироваться в подобный объект, потому что ему просто не хватит массы. Тем более, что оно будет сохранять свой теперешний внешний вид еще 5 миллиардов лет. Затем перейдет к этапу красного гиганта, поглотив Меркурий, Венеру и хорошо поджарив нашу планету, а затем станет обычным белым карликом.

Но давайте предадимся фантазии. Итак, Солнце стало черной дырой. Начнем с того, что сразу нас укутает темнота и холод. Земля и прочие планеты не будут всасываться в дыру. Они продолжат вращаться вокруг нового объекта по обычным орбитам. Почему? Потому что горизонт будет достигать всего 3 км, и гравитация ничего не сможет с нами сделать.

Да. Естественно, мы не можем полагаться на видимое наблюдение, так как свету не удается вырваться. Но есть косвенные улики. Например, вы видите участок, в котором может быть черная дыра. Как это проверить? Начните с измерения массы. Если видно, что в одной области ее слишком много или она как бы незаметна, то вы на верном пути. Есть две точки поиска: галактический центр и двойные системы с рентгеновским излучением.

Таким образом, в 8 галактиках нашли массивные центральные объекты, чья масса ядер колеблется от миллиона до миллиарда солнечных. Массу вычисляют через наблюдение за скоростью вращения звезд и газа вокруг центра. Чем быстрее, тем больше должна быть масса, чтобы удержать их на орбите.

Эти массивные объекты считают черными дырами по двум причинам. Ну, больше просто нет вариантов. Нет ничего массивнее, темнее и компактнее. К тому же есть теория, что у всех активных и крупных галактиках в центре прячется такой монстр. Но все же это не 100% доказательства.

Но в пользу теории говорят две последних находки. У ближайшей активной галактики заметили систему «водяного мазера» (мощный источник микроволнового излучения) возле ядра. При помощи интерферометра ученые отобразили распределение газовых скоростей. То есть, они измерили скорость в пределах половины светового года в галактическом центре. Это помогло им понять, что внутри расположен массивный объект, чей радиус достигает половины светового года.

Вторая находка убеждает еще больше. Исследователи при помощи рентгена наткнулись на спектральную линию галактического ядра, указывающую на присутствие рядом атомов, скорость движения которых невероятно высокая (1/3 световой). Кроме того, излучение соответствовало красному смещению, что отвечает горизонту черной дыры.

Еще один класс можно найти в Млечном Пути. Это звездные черные дыры, формирующиеся после взрыва сверхновой. Если бы они существовали отдельно, то даже вблизи мы бы вряд ли ее заметили. Но нам везет, ведь большинство существуют в двойных системах. Их легко отыскать, так как черная дыра будет тянуть массу своего соседа и влиять на него гравитацией. «Вырванный» материал формирует аккреционный диск, в котором все нагревается, а значит, создает сильное излучение.

Предположим, вам удалось найти двойную систему. Как понять, что компактный объект представляет собою черную дыру? Снова обращаемся к массе. Для этого измерьте орбитальную скорость соседней звезды. Если масса невероятно огромная при таких малых размерах, то вариантов больше не остается.

Это сложный механизм. Подобную тему Стивен Хокинг затронул еще в 1970-х годах. Он говорил, что черные дыры не совсем «черные». Там присутствуют квантово-механические эффекты, заставляющие ее создавать излучение. Постепенно дыра начинает сжиматься. Скорость излучения растет с уменьшением массы, поэтому дыра излучает все больше и ускоряет процесс сжатия, пока не растворится.

Однако, это лишь теоретическая схема, ведь никто не может точно сказать, что происходит на последнем этапе. Некоторые думают, что остается небольшой, но стабильный след. Современные теории не придумали пока ничего лучше. Но сам процесс невероятен и сложен. Приходится вычислять параметры в искривленном пространстве-времени, а сами результаты не поддаются проверке в привычных условиях.

Здесь можно воспользоваться Законом сохранения энергии, но только для коротких продолжительностей. Вселенная может создавать энергию и массу с нуля, но только они должны быстро исчезать. Одно из проявлений – вакуумные флуктуации. Пары частиц и античастиц вырастают из ниоткуда, существуют определенный недолгий срок и гибнут во взаимном уничтожении. При их появлении энергетический баланс нарушается, но все восстанавливается после исчезновения. Кажется фантастикой, но этот механизм подтвержден экспериментально.

Допустим, одна из вакуумных флуктуаций действует возле горизонта черной дыры. Возможно, одна из частиц падает внутрь, а вторая убегает. Сбежавшая забирает с собою часть энергии дыры и может попасть на глаза наблюдателю. Ему покажется, что темный объект просто выпустил частицу. Но процесс повторяется, и мы видим непрерывный поток излучения из черной дыры.

Мы уже говорили, что Кириллу кажется, будто вам нужна бесконечность, чтобы перешагнуть через линию горизонта. Кроме того, упоминалось, что черные дыры испаряются через конечный временной промежуток. То есть, когда вы достигнете горизонта, дыра исчезнет?

Нет. Когда мы описывали наблюдения Кирилла, мы не говорили о процессе испарения. Но, если этот процесс присутствует, то все меняется. Ваш друг увидит, как вы перелетите через горизонт именно в момент испарения. Почему?

Над Кириллом властвует оптическая иллюзия. Излучаемому свету в горизонте событий нужно много времени, чтобы добраться к другу. Если дыра длится вечно, то свет может идти бесконечно долго, и Кирилл не дождется перехода. Но, если дыра испарилась, то свет уже ничто не остановит, и он доберется к парню в момент взрыва излучения. Но вам уже все равно, ведь вы давно погибли в сингулярности.

В формулах общей теории относительности есть интересная особенность – симметричность во времени. Например, в любом уравнении вы можете представить, что время течет назад и получите другое, но все же правильно, решение. Если применить этот принцип к черным дырам, то рождается белая дыра.

Черная дыра – определенная область, из которой ничто не может выбраться. Но второй вариант, это белая дыра, в которую ничто не может упасть. Фактически, она все отталкивает. Хотя, с математической точки зрения, все выглядит гладко, но это не доказывает их существование в природе. Скорее всего, их нет, как и способа это выяснить.

До этого момента мы говорили о классике черных дыр. Они не вращаются и лишены электрического заряда. А вот в противоположном варианте начинается самое интересное. Например, вы можете попасть внутрь, но избежать сингулярности. Более того, ее «внутренность» способна контактировать с белой дырой. То есть, вы попадете в своеобразный туннель, где черная дыра – вход, а белая – выход. Подобную комбинацию называют червоточиной.

Интересно, что белая дыра может находиться в любом месте, даже в другой Вселенной. Если уметь управлять такими червоточинами, то мы обеспечим быструю транспортировку в любую область пространства. А еще круче – возможность путешествий во времени.

Но не пакуйте рюкзак, пока не узнаете несколько моментов. К сожалению, велика вероятность, что таких формирований нет. Мы уже говорили, что белые дыры – вывод из математических формул, а не реальный и подтвержденный объект. Да и все наблюдаемые черные дыры создают падение материи и не формируют червоточин. И конечная остановка – сингулярность.

Несмотря на огромные достижения в области физики и астрономии, есть немало явлений, суть которых до конца не раскрыта. К таким явлениям принадлежат загадочные черные дыры, вся информация о которых носит лишь теоретический характер и не может быть проверена практическим путем.

Существуют ли черные дыры?

Еще до появления теории относительности астрономами была высказана теория о существовании черных воронок. После публикации теории Эйнштейна был пересмотрен вопрос гравитации и в проблеме черных дыр появились новые предположения. Увидеть этот космический объект нереально, ведь он поглощает весь свет, попадающий в его пространство. Ученые доказывают наличие черных дыр, опираясь на анализ движения межзвездного газа и траектории передвижений звезд.

Образование черных дыр ведет к изменению вокруг них пространственно-временных характеристик. Время будто сжимается под влиянием огромной гравитации и замедляется. Звезды, оказавшиеся на пути черной воронки, могут уклоняться от своего маршрута и даже менять направление движения. Черные дыры поглощают энергию своей звезды-двойника, чем также проявляют себя.

Как выглядит черная дыра?

Информация, касающаяся черных дыр, по большей части носит гипотетический характер. Ученые изучают их по их воздействию на пространство и излучению. Увидеть черные дыры во вселенной не представляется возможным, ведь они поглощают весь свет, попадающий в близлежащее пространство. Со специальных спутников было сделано рентгеновское изображение черных объектов, на котором виден яркий центр, являющийся источником излучения лучей.

Как образуются черные дыры?

Черная дыра в космосе является отдельным миром, который имеет свои уникальные характеристики и свойства. Свойства космических дыр обусловлены причинами их появления. Относительно появления черных объектов существуют такие теории:

  1. Они являются результатом коллапсов, происходящих в космосе. Это может быть столкновение крупных космических тел или взрыв сверхновых звезд.
  2. Они возникают вследствие утяжеления космических объектов при сохранении их размеров. Причина такого явления не определена.

Черная воронка – это объект в космосе, имеющий относительно небольшой размер при огромной массе. Теория черной дыры говорит, что каждый космический объект потенциально может стать черной воронкой, если в результате каких-то явлений он будет терять свои размеры, но сохранять массу. Ученые даже говорят о существовании множества черных микродыр – миниатюрных космических объектах с относительно большой массой. Такое несоответствие массы и размера приводит к усилению гравитационного поля и появлению сильного притяжения.

Что находится в черной дыре?

Черный таинственный объект можно назвать дырой лишь с большой натяжкой. Центром этого явления является космическое тело, имеющее повышенную гравитацию. Результатом такой гравитации становится сильное притяжение к поверхности этого космического тела. При этом образуется вихревой поток, в котором вращаются газы и крупицы космической пыли. Поэтому черную дыру правильнее называть черной воронкой.

Узнать на практике, что внутри черной дыры, невозможно, потому что уровень гравитации космической воронки не позволяет никакому объекту вырваться из зоны ее влияния. По мнению ученых, внутри черной дыры полная темнота, ведь кванты света исчезают в ней безвозвратно. Предполагается, что внутри черной воронки искажается пространство и время, законы физики и геометрии в этом месте не действуют. Такие особенности черных дыр предположительно могут приводить к образованию антивеществ, которые на данный момент не знакомы ученым.

Чем опасны черные дыры?

Иногда черные дыры описываются как объекты, поглощающие окружающие предметы, излучения и частицы. Такое представление неверно: свойства черной дыры позволяют ей впитывать лишь то, что попадает в зону ее влияния. Она может втягивать в себя космические микрочастицы и излучение, исходящее от звезд-двойников. Даже если планета находится вблизи черной дыры, она не будет поглощена, а продолжит двигаться по своей орбите.

Что будет, если попасть в черную дыру?

Свойства черных дыр зависят от силы гравитационного поля. Черные воронки притягивают к себе все, что попадает в зону их влияния. При этом изменяются пространственно-временные характеристики. Ученые, изучающие все о черных дырах, расходятся во мнении относительного того, что происходит с предметами в этой воронке:

  • одни ученые предполагают, что все предметы, попадающие в эти дыры, растягиваются или разрываются на куски и не успевают достичь поверхности притягивающего объекта;
  • другие же ученые утверждают, что в дырах искривляются все привычные характеристики, поэтому предметы там как бы исчезают во времени и пространстве. По этой причине черные дыры иногда называют воротами в иные миры.

Виды черных дыр

Черные воронки делятся по видам, исходя из способа их образования:

  1. Черные объекты звездных масс зарождаются в конце жизни некоторых звезд. Полное сгорание звезды и окончание термоядерных реакций приводит к сжатию звезды. Если же при этом звезда претерпит гравитационный коллапс, то сможет трансформироваться в черную воронку.
  2. Сверхмассивные черные воронки . Ученые утверждают, что сердцевиной любой галактики является сверхмассивная воронка, образование которой является началом появления новой галактики.
  3. Первичные черные дыры . Сюда могут относиться дыры различной массы, включая микродыры, образовавшиеся из-за расхождений в плотности материи и силе гравитации. Такие дыры – это воронки, образовавшиеся в начале зарождения Вселенной. Сюда же относятся такие объекты, как волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.
  4. Квантовые черные дыры . Появляются как результат ядерных реакций и живут непродолжительное время. Квантовые воронки представляют наибольший интерес, так как их изучение может помочь ответить на вопросы по проблеме черных космических объектов.
  5. Некоторые ученые выделяют такой вид космических объектов, волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.

Ближайшая черная дыра к Земле

Ближайшая черная дыра удалена от Земли на 3000 световых лет. Она называется V616 Monocerotis, или V616 Mon. Ее вес достигает 9-13 масс Солнца. Бинарный партнер этой дыры – звезда в полмассы Солнца. Еще одна относительно близкая к Земле воронка - Cygnus X-1. Она располагается от Земли в 6 тысячах световых лет и весит в 15 раз больше Солнца. Эта черная космическая дыра тоже имеет своего бинарного партнера, движение которого и помогает отследить влияние Cygnus X-1.

Черные дыры - интересные факты

Ученые рассказывают о черных объектах такие интересные факты:

  1. Если брать в расчет, что эти объекты являются центром галактик, то для поиска самой большой воронки следует обнаружить самую крупную галактику. Поэтому самая большая черная дыра во вселенной – воронка, находящаяся в галактике IC 1101 в центре скопления Abell 2029.
  2. Черные объекты на самом деле выглядят как разноцветные. Причина этого кроется в их радиомагнитном излучении.
  3. В середине черной дыры нет постоянных физических или математических законов. Все зависит от массы дыры и ее гравитационного поля.
  4. Черные воронки постепенно испаряются.
  5. Вес черных воронок может доходить до неимоверных размеров. Масса наибольшей черной дыры равняется 30 миллионам масс Солнца.

Как для ученых минувших столетий, так и для исследователей нашего времени наибольшей загадкой космоса является черная дыра. Что внутри этой совсем незнакомой для физики системы? Какие законы там действуют? Как идет время в черной дыре, и почему оттуда не могут вырваться даже кванты света? Сейчас мы попробуем, конечно же, с точки зрения теории, а не практики, разобраться в том, что внутри черной дыры, почему она, в принципе, образовалась и существует, как она притягивает объекты, которые ее окружают.

Для начала опишем этот объект

Итак, черной дырой именуется определенная область пространства во Вселенной. Выделить ее как отдельную звезду или планету невозможно, так как это не твердое и не газовое тело. Не имея базовых пониманий того, что такое пространство-время и как эти измерения могут видоизменяться, невозможно постичь того, что находится внутри черной дыры. Дело в том, что эта область не является лишь пространственной единицей. который искажает как три известных нам измерения (длину, ширину и высоту), так и временную шкалу. Ученые уверены в том, что в районе горизонта (так называется область, окружающая дыру) время принимает пространственное значение и может двигаться как вперед, так и назад.

Познаем тайны гравитации

Если мы желаем разобраться в том, что внутри черной дыры, рассмотрим детально, что такое гравитация. Именно это явление ключевое в понимании природы так называемых «кротовых нор», из которых не выбирается даже свет. Гравитацией называется взаимодействие между всеми телами, которые имеют материальную основу. Сила такого тяготения зависит от молекулярного состава тел, от концентрации атомов, а также от их состава. Чем больше частиц сколлапсировано в определенном участке пространства, тем больше гравитационная сила. Это неразрывно связано с Теорией Большого взрыва, когда наша Вселенная была размером с горошину. Это было состояние максимальной сингулярности, и в результате вспышки квантов света пространство стало расширяться за счет того, что частицы отталкивались друг от друга. С точностью до наоборот описывается учеными черная дыра. Что внутри такой штуковины в соответствии с ТБЗ? Сингулярность, которая равна показателям, присущим нашей Вселенной в момент зарождения.

Как попадает материя в «кротовую нору»?

Бытует мнение, что человек никогда не сможет понять, что происходит внутри черной дыры. Так как, попав туда, он будет буквально раздавлен гравитацией и силой тяжести. На самом деле это не совсем так. Да, действительно, черная дыра представляет собой область сингулярности, где все сжато до максимума. Но это вовсе не «космический пылесос», который способен затянуть в себя все планеты и звезды. Любой материальный объект, оказавшийся на горизонте событий, будет наблюдать сильное искажение пространства и времени (пока что эти единицы стоят отдельно). Эвклидова система геометрии начнет давать сбои, иными словами, пересекутся, очертания стереометрических фигур перестанут быть привычными. Что касается времени, то оно будет постепенно замедляться. Чем ближе вы будете приближаться к дыре, тем медленнее будут идти часы относительно Земного времени, но вы этого не заметите. При попадании в «кротовую нору» тело будет падать с нулевой скоростью, но при этом данная единица будет равняться бесконечности. кривизны, который приравнивает бесконечное к нулю, что окончательно останавливает время в области сингулярности.

Реакция на излучаемый свет

Единственным объектом в космосе, который притягивает свет, является черная дыра. Что внутри нее находится и в каком оно там виде - неизвестно, но полагают, что это кромешная тьма, которую представить себе невозможно. Световые кванты, попадая туда, не просто исчезают. Их масса умножается на массу сингулярности, что делает ее еще больше и увеличивает ее Таким образом, если внутри «кротовой норы» вы включите фонарик, чтобы осмотреться, он не будет светиться. Излучаемые кванты будут постоянно множиться на массу дыры, и вы, грубо говоря, лишь усугубите свое положение.

Черные дыры на каждом шагу

Как мы уже разобрались, основой образования является гравитация, величина которой там в миллионы раз превосходит земную. Точное представление о том, что такое черная дыра, подарил миру Карл Шварцшильд, который, собственно, и открыл тот самый горизонт событий и точку невозврата, а также установил, что ноль в состоянии сингулярности равен бесконечности. По его мнению, черная дыра может образоваться в любой точке пространства. При этом определенный материальный объект, имеющий сферическую форму, должен достичь гравитационного радиуса. Например, масса нашей планеты должна уместиться в объеме одного горошка, чтобы стать черной дырой. А Солнце должно иметь диаметр в 5 километров при своей массе - тогда его состояние станет сингулярным.

Горизонт образования нового мира

Законы физики и геометрии отлично действуют на земле и в открытом космосе, где пространство близится к вакууму. Но они полностью теряют свою значимость на горизонте событий. Именно поэтому с математической точки зрения невозможно рассчитать, что внутри черной дыры. Картинки, которые можно придумать, если искривлять пространство в соответствии с нашими представлениями о мире, наверняка далеки от истины. Установлено лишь, что время тут превращается в пространственную единицу и, скорее всего, к существующим измерениям прибавляются еще какие-то. Это дает возможность полагать, что внутри черной дыры (фото, как известно, этого не покажет, так как свет там съедает сам себя) образуются совсем иные миры. Эти Вселенные могут состоять из антивещества, которое ныне незнакомо ученым. Также существуют версии, что сфера невозврата - это лишь портал, который ведет либо в другой мир, либо в другие точки нашей Вселенной.

Рождение и смерть

Куда более чем существование черной дыры, является ее зарождение или исчезновение. Сфера, искажающая пространство-время, как мы уже выяснили, образуется в результате коллапса. Это может быть взрыв большой звезды, столкновение двух и более тел в космосе и так далее. Но каким образом материя, которую теоретически можно было бы ощупать, превратилась в область искажения времени? Загадка находится в процессе работы. Но за ней следует второй вопрос - почему такие сферы невозврата исчезают? И если черные дыры испаряются, то почему из них не выходит тот свет и вся космическая материя, которую они втянули? Когда вещество в зоне сингулярности начинает расширяться, гравитация постепенно снижается. В результате черная дыра просто растворяется, и на ее месте остается обычное вакуумное космическое пространство. Из этого вытекает еще одна загадка - куда подевалось все то, что в нее попало?

Гравитация - наш ключ к счастливому будущему?

Исследователи уверены в том, что энергетическое будущее человечества может сформировать именно черная дыра. Что внутри этой системы, пока что неизвестно, но удалось установить, что на горизонте событий любая материя трансформируется в энергию, но, конечно же, частично. К примеру, человек, оказываясь около точки невозврата, отдаст 10 процентов своей материи для ее переработки в энергию. Этот показатель просто колоссальный, он стал сенсацией у астрономов. Дело в том, что на Земле при материя перерабатывается в энергию лишь на 0,7 процента.

Нет более завораживающего своей красотой космического явления, чем черные дыры. Как известно, свое название объект получил из-за того, что способен поглощать свет, но при этом не может отражать его. Из-за огромного притяжения черные дыры всасывают все, что находится рядом с ними – планеты, звезды, космический мусор. Однако это далеко не все, что следует знать про черные дыры, так как существует множество удивительных фактов про них.

Точки невозврата у черных дыр нет

Долгое время считалось, что все, что попадает в область черной дыры остается в ней, но результатом последних исследований стало то, что оказывается спустя время черная дыра «выплевывает» в космос все содержимое, но в другом виде, отличном от первоначального. Горизонт событий, который считался точкой невозврата для космических объектов, оказался лишь их временным убежищем, однако этот процесс происходит очень медленно.

Земле угрожает черная дыра

Солнечная система лишь часть бесконечной галактики, в которой находится огромное количество черных дыр. Оказывается, что и Земле угрожает две из них, но к счастью, находятся они на огромном расстоянии – около 1600 световых лет . Обнаружены они в галактике, которая образовалась в результате слияния двух галактик.


Увидели черные дыры ученые только благодаря тому, что они находились рядом с Солнечной системой с помощью рентгеновского телескопа, который способен улавливать рентгеновские лучи, излучаемые этими космическими объектами. Черные дыры, так как они находятся рядом друг с другом и практически сливаются в одну, назвали одним именем – Чандра в честь бога Луны из индуистской мифологии. Ученые уверены, что вскоре Чандра станет единым целым из-за огромной силы гравитации.

Черные дыры со временем могут исчезнуть

Рано или поздно все содержимое из черной дыры выходит и остается только радиация. Теряя массу, черные дыры со временем становятся меньше, а после совсем исчезают. Гибель космического объекта очень медленна и потому вряд ли кому-то из ученых удастся увидеть, как уменьшается, а после и исчезает черная дыра. Стивен Хоккинг утверждал, что дыра в космосе представляет собой сильно сжатую планету и со временем она испаряется, начиная с краев искажения.

Черные дыры не обязательно могут выглядеть черными

Ученые утверждают, что так как космический объект поглощает в себя световые частицы, не отражая их, черная дыра не имеет цвета, выдает ее только поверхность – горизонт событий. Своим гравитационным полем она заслоняет все пространство позади себя, включая планеты и звезды. Но при этом из-за поглощения планет и звезд на поверхности черной дыры по спирали из-за огромной скорости движения объектов и трения между ними, появляется свечение, которое может быть ярче звезд. Это скопление газов, звездной пыли и другой материи, которую затягивает черная дыра. Также иногда черная дыра может излучать электромагнитные волны и потому может быть видимой.

Черные дыры не создаются из ниоткуда, их основа – погасшая звезда

Звезды светятся в космосе благодаря своему запасу термоядерного топлива. Когда он заканчивается, звезда начинает охлаждаться, постепенно превращаясь из белого карлика в черного. Внутри остывшей звезды начинает снижаться давление. Под действием силы гравитации космическое тело начинает сжиматься. Следствием этого процесса является то, что звезда как бы взрывается, все ее частицы разлетаются в космосе, но при этом силы гравитации продолжают действовать, притягивая соседние космические объекты, которые после поглощаются ею, увеличивая мощность черной дыры и ее размеры.

Сверхмассивная черная дыра

Черная дыра, размеры которой в десятки тысяч раз превышают размеры Солнца, находится в самом центре Млечного пути. Ученые назвали ее Стрелец и находится она от Земли на расстоянии 26000 световых лет . Данная область галактики чрезвычайно активна и с огромной скоростью поглощает все, что находится рядом с ней. Также часто она «выплевывает» погасшие звезды.


Удивительным является тот факт, что средняя плотность черной дыры, даже учитывая ее огромный размер, может быть равна даже плотности воздуха. С увеличением радиуса черной дыры, то есть количества захваченных ею объектов, плотность черной дыры становится меньше и объясняется это простыми законами физики. Таким образом, самые большие тела в космосе на самом деле могут быть такими же легкими, как и воздух.

Черная дыра может создать новые Вселенные

Как бы это не звучало странно, особенно на фоне того, что на самом деле черные дыры поглощают и соответственно разрушают все вокруг, ученые всерьез задумываются о том, что данные космические объекты могут положить начало появлению новой Вселенной. Так, как известно черные дыры не только поглощают материю, но и могут освобождать ее в определенные периоды. Любая частичка, которая вышла из черной дыры, может взорваться и это станет новым Большим взрывом, а согласно его теории наша Вселенная так и появилась, потому не исключено, что Солнечная система, которая сегодня существует и в которой вертится Земля, населенное огромным количеством людей, когда-то была рождена массивной черной дырой.

Возле черной дыры время идет очень медленно

Когда объект подходит близко к черной дыре, вне зависимости от того, какая у него масса, его движение начинает замедляться и это происходит потому, что в самой черной дыре время замедляется и все происходит очень медленно. Это связано с огромной силой гравитации, которую имеет черная дыра. При этом то, что происходит в самой черной дыре происходит достаточно быстро, потому если бы наблюдатель смотрел на черную дыру со стороны, ему показалось бы, что все происходящие процессы в ней протекают медленно, однако если бы попал в ее воронку, силы гравитации мгновенно бы разорвали его.