В чем суть теоремы штейнера. Теорема Штейнера — формулировка

При математическом описании вращательного движения важно знать момент инерции системы относительно оси. В общем случае процедура нахождения этой величины предполагает реализацию процесса интегрирования. Облегчить вычисления позволяет так называемая теорема Штейнера. Рассмотрим ее подробнее в статье.

Что такое момент инерции?

До того как привести формулировку теоремы Штейнера, следует разобраться с самим понятием момента инерции. Допустим, имеется некоторое тело определенной массы и произвольной формы. Этим телом может быть, как материальная точка, так и любой двумерный и трехмерный объект (стержень, цилиндр, шар и т.д.). Если рассматриваемый объект совершает круговое движение вокруг некоторой оси с постоянным угловым ускорением α, тогда можно записать следующее уравнение:

Здесь величина M представляет суммарный момент сил, который придает ускорение α всей системе. Коэффициент пропорциональности между ними - I, называется моментом инерции. Эта физическая величина рассчитывается по следующей общей формуле:

Здесь r - это дистанция между элементом с массой dm и осью вращения. Это выражение означает, что необходимо найти сумму произведений квадратов расстояний r 2 на элементарную массу dm. То есть момент инерции не является чистой характеристикой тела, что его отличает от линейной инерции. Он зависит от распределения массы по всему объекту, который вращается, а также от расстояния до оси и от ориентации тела относительно нее. Например, стержень будет иметь разный I, если его вращать относительно центра масс и относительно конца.

Момент инерции и теорема Штейнера

Известный швейцарский математик, Якоб Штейнер, доказал теорему о параллельных осях и моменте инерции, которая теперь носит его фамилию. Эта теорема постулирует, что момент инерции для абсолютно любого твердого тела произвольной геометрии относительно некоторой оси вращения равен сумме момента инерции относительно оси, которая пересекает центр масс тела и параллельна первой, и произведения массы тела на квадрат дистанции между этими осями. Математически эта формулировка записывается так:

I Z и I O - моменты инерции относительно оси Z и параллельной ей оси O, которая проходит через центр масс тела, l - расстояние между прямыми Z и O.

Теорема позволяет, зная величину I O , рассчитать любой другой момент I Z относительно оси, которая параллельна O.

Доказательство теоремы

Формулу теоремы Штейнера можно легко получить самостоятельно. Для этого рассмотрим произвольное тело на плоскости xy. Пусть начало координат проходит через центр масс этого тела. Рассчитаем момент инерции I O которая проходит через начало координат перпендикулярно плоскости xy. Поскольку расстояние до любой точки тела выражается формулой r = √ (x 2 + y 2), тогда получаем интеграл:

I O = ∫ m (r 2 *dm) = ∫ m ((x 2 +y 2) *dm)

Теперь переместим параллельно ось вдоль оси x на расстояние l, например, в положительном направлении, тогда расчет для новой оси момента инерции будет выглядеть следующим образом:

I Z = ∫ m (((x+l) 2 +y 2)*dm)

Раскроем полный квадрат в скобках и разделим подынтегральные суммы, получим:

I Z = ∫ m ((x 2 +l 2 +2*x*l+y 2)*dm) = ∫ m ((x 2 +y 2)*dm) + 2*l*∫ m (x*dm) + l 2 *∫ m dm

Первое из этих слагаемых является величиной I O , третье слагаемое, после проведения интегрирования, дает член l 2 *m, а вот второе слагаемое равно нулю. Обнуление указанного интеграла связано с тем, что он берется от произведения иксов на элементы массы dm, что в среднем дает ноль, так как центр масс находится в начале координат. В итоге, получается формула теоремы Штейнера.

Рассмотренный случай на плоскости можно обобщить на объемное тело.

Проверка формулы Штейнера на примере стержня

Приведем простой пример, на котором продемонстрируем, как пользоваться рассмотренной теоремой.

Известно, что для стержня длиной L и массой m момент инерции I O (ось проходит через центр масс) равен m*L 2 /12, а момент I Z (ось проходит через конец стержня) равен m*L 2 /3. Проверим эти данные, воспользовавшись теоремой Штейнера. Поскольку расстояние между двумя осями равно L/2, тогда получаем момент I Z:

I Z = I O + m*(L/2) 2 = m*L 2 /12 + m*L 2 /4 = 4*m*L 2 /12 = m*L 2 /3

То есть мы проверили формулу Штейнера и получили такое же значение для I Z , что и в источнике.

Аналогичные вычисления можно проводить и для других тел (цилиндра, шара, диска), получая при этом необходимые моменты инерции, и не производя интегрирования.

Момент инерции и перпендикулярные оси

Рассмотренная теорема касается параллельных осей. Для полноты информации полезно также привести теорему для перпендикулярных осей. Она формулируется так: для плоского объекта произвольной формы момент инерции относительно перпендикулярной ему оси будет равен сумме двух моментов инерции относительно двух взаимно перпендикулярных и лежащих в плоскости объекта осей, при этом все три оси должны проходить через одну точку. Математически это записывается так:

Здесь z, x, y - три взаимно перпендикулярные оси вращения.

Существенное отличие этой теоремы от теоремы Штейнера заключается в том, что она применима только к плоским (двумерным) твердым объектам. Тем не менее на практике ее достаточно широко используют, мысленно разрезая тело на отдельные слои, а затем, складывая полученные моменты инерции.


т.е. момент инерции тела относительно
произвольной оси OZ равен моменту инерции
тела относительно оси OZq, проходящей через
центр масс тела параллельно оси OZ, плюс
произведение массы тела на квадрат расстояния
между осями OZ и OZq. Это утверждение иногда
называют теоремой о параллельных осях или
теоремой Штейнера. Именно поэтому, очень
важно знать (или уметь вычислять) моменты
инерции различных тел относительно осей OZq,
проходящих через центр масс тела.
Расчет момента инерции

производится на практике следующим образом:
если твердое тело сплошное, то его можно
разбить на бесконечно большое количество
бесконечно малых частей массы dm = pdV, где

р - плотность тела в данном месте, a dV - объем
кусочка dm, и суммирование заменить на
интегрирование по объему тела V, т.е.

где Rq - расстояние от кусочка dm до оси OZo.

В качестве примера вычислим момент инерции
тонкого однородного стержня (длиной L и массой
М) относительно перпендикулярной ему оси,
проходящей через его середину (центр масс



тонкого однородного стержня находится в его
середине). Направим ось ОХ вдоль стержня и
поместим начало координат в середине стержня

Укажем еще для примера, что момент инерции
полого цилиндра массой М и радиусом R
относительно оси цилиндра равен MR 2 . Если же
цилиндр сплошной, то его момент инерции


Рассмотренные выше простейшие виды
движения твердого тела - поступательное
движение и вращение - особенно важны потому,
что любое произвольное движение твердого тела
сводится к ним. Можно строго доказать, что
произвольное движение твердого тела можно
представить в виде совокупности поступательного
движения всего тела со скоростью какой -либо
его точки О и вращения вокруг оси, проходящей
через эту точку. При этом скорость
поступательного движения v 0 зависит от того,
какую именно точку мы выбрали.

сказать, что угловая скорость имеет "абсолютный"
характер, то есть можно говорить об угловой
скорости вращения твердого тела, не указывая
при этом, через какую именно точку проходит ось
вращения. Поступательная же скорость v 0 такого
"абсолютного" характера не имеет. Обычно в
качестве точки О выбирают центр масс тела.
Преимущества такого выбора выяснятся ниже.

5. Плоское движение

Рассмотрим наиболее простой вид
произвольного движения твердого тела, так
называемое плоское движение, когда все точки
тела движутся в параллельных плоскостях,
ориентация которых в пространстве остается
неизменной, а тело вращается вокруг оси,
перпендикулярной этим плоскостям.

Будем рассматривать плоское движение в
неподвижной ИСО XYZ, причем плоскость XOY
совместим с плоскостью движения частиц, в
которой находится центр масс тела, скорость
которого v 0 = у цм относительно неподвижной
системы будем считать скоростью

поступательного движения тела (скорость v 0 ,
естественно, расположена в плоскости XOY).
Далее будем считать, что все силы f k ,



действующие на тело, параллельны плоскости
XOY. Тогда уравнение поступательного движения
тела можно записать в виде:

центра масс тела. Уравнение (3.12) проектируется
на оси ОХ и OY.

Уравнение вращательного движения тела
вокруг оси OZq, проходящей через центр масс
тела перпендикулярно неподвижной плоскости

XOY, совпадает по форме с уравнением
вращательного движения тела вокруг
закрепленной оси (3.9):

Последнее утверждение (его можно строго
доказать!) выглядит довольно странным, так как
уравнение (3.9) было написано относительно ИСО,
система же отсчета (ось OZo), в которой
происходит вращение тела, не является
инерциальной, так как центр масс тела движется с
ускорением а 0 . Тем не менее это так, и связан

этот факт именно с тем, что мы выбрали в
качестве точки О при рассмотрении
поступательного движения центр масс тела. При
решении конкретных задач уравнения (3.12) и
(3.13) следует еще дополнить кинематическими

Уважаемые посетители сайта , предлагает Вашему вниманию работу по математике на тему , где представлены материалы теоретического и практического характера, рекомендации по решению задач с использованием указанной теоремы.

Теорема Штейнера , или, как именуется она в других источниках, теорема Гюйгенса-Штейнера, получила свое название в честь ее автора – Якоба Штейнера (швейцарского математика), а также благодаря дополнениям – Христиана Гюйгенса (голландского физика, астронома и математика). Рассмотрим кратко их вклад в и других наук.

Теорема Штейнера — об авторах теоремы

Якоб Штейнер
(1796—1863)

Якоб Штейнер (1796—1863) — один из , который считается основателем, как синтетической геометрии кривых линий, так и поверхностей второго и высших порядков.

Что касается Христиана Гюйгенса, то его вклад в различные науки тоже не мал. Он значительно усовершенствовал (до 92-кратного увеличения изображения), открыл кольца Сатурна и спутник его — Титан, а в 1673 году в своем довольно содержательном труде «Маятниковые часы», представил работы по кинематике ускоренного .

Теорема Штейнера — формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

J= J 0 + md 2 (1)

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО 1 ║О’O 1 ’;
J 0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J 0 = J d = mR 2 /2 (2)

Так как d = R, тогда и момент инерции относительно оси, которая проходит через указанную на рисунке точку А будет определяется формулой (3):

J = mR 2 + mR 2 /2 = 3 / 2 mR 2 (3)

Более подробная информация о теореме представлена в реферате и презентации, которые можно скачать по ссылкам перед статьей.

Теорема Штейнера. Момент инерции – содержание работы

Введение

Часть 1. Динамика вращения твердого тела
1.1. Моменты инерции шара и диска
1.2. Теорема Гюйгенса-Штейнера
1.3. Динамика вращательного движения твердого тела — теоретические основы
Момент импульса
Момент силы
Момент инерции относительно оси вращения
Главный закон динамики вращательного движения твердого тела относительно неподвижной оси

В приведенных примерах оси проходят через центр инерции тела. Мо­мент инерции относительно других осей вращения определяется при по­мощи теоремы Штейнера: момент инерции тела относительно произвольной оси вращения равен сумме момента инерции Jc относительно параллельной оси, проходящей через центр инерции тела, и величины произведения массы тела на квадрат расстояния между ними. где m масса тела, а - расстояние от центра инерции тела до выбранной оси вращения, т.е.

, где m - масса тела, а - расстояние от центра

инерции тела до выбранной оси вращения.

Покажем на одном примере применение теоремы Штейнера. Вычислим момент инерции тонкого стержня относительно оси, проходящей через его край перпендикулярно стержню. Прямое вычисление сводится к тому же ин­тегралу (*),но взятому в других пределах:

Расстояние до оси, проходящей через центр масс, равно а = ℓ/2. По теореме Штейнера получаем тот же результат.

.

§22.Основной закон динамики вращательного движения.

Формулировка закона: Скорость изменения момента импульса относительно полюса равна главному моменту силы относительно того же полюса, т.е.

.

В проекциях на оси координат:
.

Если вращение тела происходит относительно неподвижной оси, то основной закон динамики вращательного движения примет вид: . В данном случае момент импульса легко выразить через угловую скорость и момент инерции тела относительно рассматриваемой оси:
. Тогда основной закон динамики вращательного движения примет вид:
. Если тело не рассыпается и не деформируется, то

, вследствие чего
. Если ко всему
, то
и, оно равно:
.

Элементарная работа, совершаемая моментом силы, при вращательном движении относительно неподвижной оси вычисляется по формуле:
(*). Полная работа
. Если
, то
.

На основании формулы (*), получим выражение для кинетической энергии вращательного движения твёрдого тела относительно неподвижной оси. Т.к.
, то. После интегрирования, получим окончательный результат для кинетической энергии вращательного движения относительно неподвижной оси
.

§23.Закон сохранения момента импульса.

Как уже указывалось, законы сохранения энергии и импульса связаны с однородностью времени и пространства, соответственно. Но у трехмер­ного пространства, в отличие от одномерного времени, имеется еще одна симметрия. Пространство само по себе изотропно, в нем нет выделен­ных направлений. С этой симметрией связанзакон сохранения момента импульса. Эта связь проявляется в том, что момент количества движе­ния, является одной из основных величин, описывающих вращательное движение.

По определению момент импульса отдельной частицы равен .

Направление вектора L определяется по правилу буравчика (штопора), а его величина равна L = r p sin , где

  угол между направлениями радиус-вектора частицы и ее импульса. Величина ℓ = r sin равна рас­стоянию от начала координатО до прямой, вдоль которой направлен импульс частицы. Эта величина называетсяплечом импульса. ВекторL зависит от выбора начала координат, поэтому говоря о нем, обычно указывают: "момент импульса относительно точкиО ".

Рассмотрим производную по времени от момента импульса:

.

Первое слагаемое равно нулю, т.к. . Во втором слагаемом, согласно второму закону Ньютона, производную по импульсу можно заменить на действующую на тело силу. Векторное произведение радиус-вектора на силу называетсямоментом силы относительно точкиО: .

Направление момента силы определяется тем же правилом буравчика. Его величина М = r F sin , где

     угол между радиус-вектором и силой. Аналогично тому, как это было сделано выше, определяется и плечо силы

= r sin - расстояние от точкиО до линии действия силы. В итоге получаем уравнение движения для момента импульса частицы:.

По форме уравнение аналогично второму закону Ньютона: вместо им­пульса частицы стоит момент импульса, а вместо силы -момент силы. Если
,то
, т.е. момент импульса постоянен в отсутствие внешних моментов сил.

Формулировка закона: Момент импульса замкнутой системы относительно полюса не изменяется с течением времени.

В частном случае вращения относительно неподвижной оси, имеем:
, где

начальные момент инерции и угловая скорость тела относительно рассматриваемой оси, а

конечные момент инерции и угловая скорость тела относительно рассматриваемой оси.

Закон сохранения полной механической энергии с учётом вращательного движения: полная механическая энергия консервативной системы постоянна: .

Пример: Найти скорость системы при прохождении расстояния h.

Дано: m, M, h. Найти: V - ?



Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, что момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С , проходящую через центр масс и параллельную ей ось О , отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и , связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

(2.10.1)

Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

, , , (2.11.1)

где — координаты центра масс тела, — проекции внешних сил на оси координат, m — масса тела. Три других являются уравнениями моментов относительно осей ОХ , ОУ и ОZ в декартовой системе координат:

, , , (2.11.2)

где L x , L y , L z — моменты импульса системы относительно осей ОХ , ОУ , ОZ , а M x , M y , M z — моменты внешних сил относительно этих же осей.

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.