Принцип минимума энергии. Как заполняются электронные уровни, подуровни и орбитали по мере усложнения атома

Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома.

Распределение электронов по атомным орбиталям происходит, начиная с орбитали, имеющей наименьшую энергию (принцип минимума энергии), т.е. электрон садится на ближайшую к ядру орбиталь. Это значит, что сначала заполняются электронами те подуровни, для которых сумма значений квантовых чисел (n + l ) была минимальной. Так энергия электрона на 4s-подуровне меньше энергии электрона, находящегося на 3d-подуровне. Следовательно, заполнение электронами подуровней происходит в следующем порядке: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d ~ 4f < 6p < 7s < 6d ~ 5f < 7p.

Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах "Электронные конфигурации элементов", однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.

Атом хрома имеет электронную конфигурацию не 4s 2 3d 4 , a 4s 1 3d 5 . Это является примером того, как стабилизация состояний с параллельными спинами электронов преобладает над незначительной разницей энергетических состояний подуровней 3d и 4s (правила Гунда), то есть энергетически выгодными состояниями для d-подуровня являются d 5 и d 10 . Энергетические диаграммы валентных подуровней атомов хрома и меди представлены на рис.2.1.1.

Подобный переход одного электрона с s-подуровня на d-подуровень происходит еще у 8 элементов: Cu, Nb, Mo, Ru, Ag, Pt, Au . У атома Pd происходит переход двух s-электронов на d-подуровень: Pd 5s 0 4d 10 .

Рис.2.1.1. Энергетические диаграммы валентных подуровней атомов хрома и меди

Правила заполнения электронных оболочек:

1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, всегда равен порядковому номеру элемента в Периодической таблице Д.И.Менделеева. Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.

2. Последовательно заполняем орбитали, начиная с 1s-орбитали, имеющимися электронами, учитывая принцип минимальной энергии. При этом нельзя располагать на каждой орбитали более двух электронов с противоположно направленными спинами (правило Паули).

3. Записываем электронную формулу элемента.

Атом – это сложная, динамически устойчивая микросистема взаимодействующих частиц: протонов р + , нейтронов n 0 и электронов е - .

Рис.2.1.2. Заполнение энергетических уровней электронами элемента фосфора

Электронную структуру атома водорода (z=1) можно изобразить следующим образом:

+1 Н 1s 1 , n = 1 , где квантовая ячейка (атомная орбиталь) обозначается в виде линии или квадрата, а электроны – в виде стрелок.

Каждый атом последующего химического элемента в периодической системе представляет собой многоэлектронный атом.

Атом лития, так же как и атом водорода и гелия, имеет электронную структуру s-элемента, т.к. последний электрон атома лития «садится» на s-подуровень:

+3 Li 1s 2 2s 1 2p 0

В атоме бора появляется первый электрон в p-состоянии:

+5 В 1s 2 2s 2 2p 1

Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.

Итак, 2 электрона расположатся на 1s-орбитали, еще 2 электрона - на 2s-орбитали, а оставшиеся 3 электрона смогут разместиться на трех 2p-орбиталях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так:

+7 N 1s 2 2s 2 2p 3

Рассмотрим действие правила Гунда на примере атома азота: N 1s 2 2s 2 2p 3 . На 2-м электронном уровне есть три одинаковых p-орбитали: 2px, 2py, 2pz. Электроны заселят их так, что на каждой из этих p-орбиталей окажется по одному электрону. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы. Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 валентных электронов) и до полного заполнения не хватает трех электронов.

Внешним уровнем атома называется самый далекий от ядра уровень, на котором есть валентные электроны. Именно эта оболочка соприкасается при столкновении с внешними уровнями других атомов в химических реакциях. При взаимодействии с другими атомами азот способен принять 3 дополнительных электрона на свой внешний уровень. При этом атом азота получит завершенный, то есть максимально заполненный внешний электронный уровень, на котором расположатся 8 электронов.

Завершенный уровень энергетически выгоднее незавершенного, поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.

Рис.2.1.3. Заполнение энергетических уровней у s-, p-,d- и f- элементов электронами


Точное решение уравнения Шредингера удается найти лишь в редких случаях, например, для атома водорода и гипотетических одноэлектронных ионов, таких как He + , Li 2+ , Be 3+ . Атом следующего за водородом элемента - гелия - состоит из ядра и двух электронов, каждый из которых притягивается к обоим ядрам и отталкивается от другого электрона. Уже в этом случае волновое уравнение не имеет точного решения.

Поэтому большое значение имеют различные приближенные методы. С помощью таких методов удалось установить электронное строение атомов всех известных элементов. Эти расчеты показывают, что орбитали в многоэлектронных атомах не сильно отличаются от орбиталей атома водорода (эти орбитали называют водородоподобными). Главное отличие - некоторая сжатость орбиталей из-за большего заряда ядра. Кроме того, для многоэлектронных атомов найдено, что для каждого энергетического уровня (при данном значении главного квантового числа n ) происходит расщепление на подуровни . Энергия электрона зависит уже не только от n , но и от орбитального квантового числа l . Она увеличивается в ряду s -, p -, d -, f -орбиталей (рис. 7).

Рис. 7

Для высоких энергетических уровней различия в энергиях подуровней достаточно велики, так что один уровень может проникать в другой, например

6s d4f p.

Заселение атомных орбиталей для многоэлектронного атома в основном (то есть энергетически наиболее выгодном) состоянии происходит в соответствии с определенными правилами.

Принцип минимума энергии

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s s p s p s d p s d p s f5d p s f6d ...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s -орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d -, либо 4s -орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s -орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d . Оказалось, что у одних элементов более низкую энергию имеет 4f -подуровень, а у других - 5d -подуровень. То же самое наблюдается для 5f - и 6d -подуровней.

Энергетические подуровни

Согласно пределам изменений орбитального квантового числа от 0 до (n-1), в каждом энергетическом уровне возможно строго ограниченное число подуровней, а именно: число подуровней равно номеру уровня:

Сочетание главного (n) и орбитального (l) квантовых чисел полностью характеризует энергию электрона. Запас энергии электрона отражается суммой (n+l).

Так, например, электроны 3d-подуровня обладают более высокой энергией, чем электроны 4s-подуровня:

Порядок заполнения уровней и подуровней в атоме электронами определяется правилом В.М. Клечковского: заполнение электронных уровней атома происходит последовательно в порядке возрастания суммы (n+1).

В соответствии с этим определена реальная энергетическая шкала подуровней, по которой построены электронные оболочки всех атомов:

1s ï 2s2p ï 3s3p ï 4s3d4p ï 5s4d5p ï 6s4f5d6p ï 7s5f6d…

3. Магнитное квантовое число (m l) характеризует направление электронного облака (орбитали) в пространстве.

Чем сложнее форма электронного облака (т.е. чем выше значение l), тем больше вариаций в ориентации данного облака в пространстве и тем больше существует отдельных энергетических состояний электрона, характеризующихся определенным значением магнитного квантового числа.

Математически m l принимает целочисленные значения от -1 до +1, включая 0, т.е. всего (21+1) значений.

Обозначим каждую отдельную атомную орбиталь в пространстве как энергетическую ячейку ð, тогда число таких ячеек в подуровнях составит:

Подуровень Возможные значения m l Число отдельных энергетических состояний (орбиталей, ячеек) в подуровне
s (l=0) одно
p (l=1) -1, 0, +1 три
d (l=2) -2, -1, 0, +1, +2 пять
f (l=3) -3, -2, -1, 0, +1, +2, +3 семь

Например, шарообразная s-орбиталь однозначно направлена в пространстве. Гантелеобразные орбитали каждого p-подуровня ориентируются по трем осям координат

4. Спиновое квантовое число m s характеризует собственное вращение электрона вокруг своей оси и принимает всего два значения: + 1 / 2 и – 1 / 2 , в зависимости от направления вращения в ту или другую сторону. Согласно принципу Паули, в одной орбитали может расположиться не более 2 электронов с противоположно направленными (антипараллельными)

p- подуровень спинами: .

Такие электроны называютсяспаренными.Неспаренныйэлектрон схематически изображается одной стрелкой: .

Зная емкость одной орбитали (2 электрона) и число энергетических состояний в подуровне (m s), можно определить количество электронов в подуровнях:

Можно записать результат иначе: s 2 p 6 d 10 f 14 .

Эти цифры необходимо хорошо запомнить для правильного написания электронных формул атома.

Итак, четыре квантовых числа – n, l, m l , m s – полностью определяют состояние каждого электрона в атоме. Все электроны в атоме с одинаковым значением n составляют энергетический уровень, с одинаковыми значениями n и l – энергетический подуровень, с одинаковыми значениями n, l и m l – отдельную атомную орбиталь (квантовую ячейку). Электроны одной орбитали отличаются спинами.

Учитывая значения всех четырех квантовых чисел, определим максимальное количество электронов в энергетических уровнях (электронных слоях):

Большие количества электронов (18,32) содержатся только в глубоко лежащих электронных слоях атомов, внешний электронный слой может содержать от 1 (у водорода и щелочных металлов) до 8 электронов (инертные газы).

Важно помнить, что заполнение электронами электронных оболочек происходит по принципу наименьшей энергии : сначала заполняются подуровни с минимальным значением энергии, затем с более высокими значениями. Эта последовательность соответствует энергетической шкале подуровней В.М. Клечковского.

Электронную структуру атома отображают электронные формулы, в которых указываются энергетические уровни, подуровни и число электронов в подуровнях.

Например, у атома водорода 1 H всего 1 электрон, который располагается в первом от ядра слое на s-подуровне; электронная формула атома водорода 1s 1 .

У атома лития 3 Li всего 3 электрона, из них 2 находятся в s-подуровне первого слоя, а 1 помещается во второй слой, который также начинается s-подуровнем. Электронная формула атома лития 1s 2 2s 1 .

Атом фосфора 15 P имеет 15 электронов, расположенных в трех электронных слоях. Помня, что s-подуровень содержит не более 2 электронов, а p-подуровень содержит не более 6, постепенно размещаем все электроны по подуровням и составляем электронную формулу атома фосфора: 1s 2 2s 2 2p 6 3s 2 3p 3 .

При составлении электронной формулы атома марганца 25 Mn необходимо учесть последовательность возрастания энергии подуровней: 1s2s2p3s3p4s3d…

Распределяем постепенно все 25 электронов Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 .

Окончательная электронная формула атома марганца (с учетом удаленности электронов от ядра) выглядит так:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2

Электронная формула марганца полностью соответствует положению его в периодической системе: число электронных слоев (энергетических уровней) – 4 равно номеру периода; во внешнем слое 2 электрона, предпоследний слой не завершен, что характерно для металлов побочных подгрупп; общее количество подвижных, валентных электронов (3d 5 4s 2) – 7 равно номеру группы.



В зависимости от того, какой из энергетических подуровней в атоме –s-, p-, d- или f- застраивается в последнюю очередь, все химические элементы подразделяются на электронные семейства: s-элементы (H, He, щелочные металлы, металлы главной подгруппы 2-й группы периодической системы); p-элементы (элементы главных подгрупп 3, 4, 5, 6, 7, 8-й групп периодической системы); d-элементы (все металлы побочных подгрупп); f- элементы (лантаноиды и актиноиды).

Электронные структуры атомов являются глубоким теоретическим обоснованием структуры периодической системы, длина периодов (т.е. количество элементов в периодах) непосредственно вытекает из емкости электронных слоев и последовательности возрастания энергии подуровней:

Каждый период начинается s-элементом со структурой внешнего слоя s 1 (щелочной металл) и заканчивается p-элементом со структурой внешнего слоя …s 2 p 6 (инертный газ). I-й период содержит только два s-элемента (H и He), II-й и III-й малые периоды содержат по два s-элемента и шесть p-элемента. В IV-м и V-м больших периодах между s- и p-элементами «вклиниваются» по 10 d-элементов – переходных металлов, выделенных в побочные подгруппы. В VI и VII периодах к аналогичной структуре добавляется еще по 14 f-элементов, по свойствам близких соответственно лантану и актинию и выделенных в виде подгрупп лантаноидов и актиноидов.

При изучении электронных структур атомов обратите внимание на их графическое изображение, например:

13 Аl 1s 2 2s 2 2p 6 3s 2 3p 1

N=2 1s 2s 2p 3s 3p

применяют оба варианта изображения: а) и б):

Для правильного расположения электронов на орбиталях необходимо знать правило Гунда: электроны в подуровне располагаются так, чтобы их суммарный спин был максимальным. Иными словами, электроны прежде по одному занимают все свободные ячейки данного подуровня.

Например, если необходимо разместить три p-электрона (p 3) в p-подуровне, который всегда имеет три орбитали, то из двух возможных вариантов правилу Гунда отвечает первый вариант:

В качестве примера рассмотрим графическую электронную схему атома углерода:

6 C·1s 2 2s 2 2p 2

Количество неспаренных электронов в атоме – очень важная характеристика. Согласно теории ковалентной связи, только неспаренные электроны могут образовывать химические связи и определяют валентные возможности атома.

Если в подуровне имеются свободные энергетические состояния (незанятые орбитали), атом при возбуждении «распаривает», разъединяет спаренные электроны, и его валентные возможности повышаются:

6 C· 1s 2 2s 2 2p 3

Углерод в нормальном состоянии 2-х-валентен, в возбужденном – 4-х-валентен. Атом фтора не имеет возможностей для возбуждения (т.к. все орбитали внешнего электронного слоя заняты), поэтому фтор в своих соединениях одновалентен.

Пример 1. Что такое квантовые числа? Какие значения они могут принимать?

Решение. Движение электрона в атоме имеет вероятностный характер. Околоядерное пространство, в котором с наибольшей вероятностью (0,9-0,95) может находиться электрон, называется атомной орбиталью (АО). Атомная орбиталь, как любая геометрическая фигура, характеризуется тремя параметрами (координатами), получившими название квантовых чисел (n, l, m l ). Квантовые числа принимают не любые, а определенные, дискретные (прерывные) значения. Соседние значения квантовых чисел различаются на единицу. Квантовые числа определяют размер (n), форму (l) и ориентацию (m l) атомной орбитали в пространстве. Занимая ту или иную атомную орбиталь, электрон образует электронное облако, которое у электронов одного и того же атома может иметь различную форму (рис. 1). Формы электронных облаков аналогичны АО. Их также называют электронными или атомными орбиталями. Электронное облако характеризуется четырьмя числами (n, l, m 1 и m 5).

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f 5d < 6p < 7s < 5f 6d ...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s -орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d -, либо 4s -орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s -орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d . Оказалось, что у одних элементов более низкую энергию имеет 4f -подуровень, а у других - 5d -подуровень. То же самое наблюдается для 5f - и 6d -подуровней.

Принцип Паули

Принцип Паули , который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n , l , m l , m s ).

Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s -орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин −1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными ) спинами на одной орбитали можно схематически представить так:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s -орбиталь.

Правило Гунда

Правило Гунда (Хунда) определяет порядок заселения электронами орбиталей, имеющих одинаковую энергию. Оно было выведено немецким физиком-теоретиком Ф. Гундом (Хундом) в 1927 г. на основе анализа атомных спектров.

Согласно правилу Гунда, заселение орбиталей, относящихся к одному и тому же энергетическому подуровню, начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заселение орбиталей парами электронов с противоположными спинами. В результате суммарный спин (и сумма спиновых квантовых чисел) всех электронов в атоме будет максимальным.

Например, атом азота имеет три электрона, находящиеся на 2р -подуровне. Согласно правилу Гунда, они должны располагаться поодиночке на каждой из трех 2р -орбиталей. При этом все три электрона должны иметь параллельные спины:

Электронные конфигурации атомов

Схематическое изображение орбиталей с учетом их энергии называется энергетическая диаграммой атома. Она отражает взаимное расположение уровней и подуровней энергии.

На схеме орбитали обозначают в виде ячеек: , а электроны - в виде стрелок:или

Электрон может занять любую свободную орбиталь, но, согласно принципу минимума энергии, всегда предпочитает ту орбиталь, у которой энергия ниже. Принцип запрета Паули ограничивает число электронов на каждой орбитали. Поэтому в одной ячейке (на атомной орбитали) может быть только один или два электрона. На каждом s -подуровне (одна орбиталь) могут находиться два электрона, на каждом p -подуровне (три орбитали) - шесть электронов, на каждом d -подуровне (пять орбиталей) - десять электронов. Правило Гунда определяет порядок заселения орбиталей с одинаковой энергией.

Таким образом, можно получить последовательность заселения атомных орбиталей электронами:

Действуя с помощью принципа минимума энергии, принципа Паули и правила Гунда, можно определить порядок заселения орбиталей электронами и построить электронную формулу любого элемента.

Электронная конфигурация (формула) атома - распределение электронов по орбиталям в основном (невозбужденном) состоянии этого атома и его ионов: 1s 2 2s 2 2p 6 3s 2 3p 6 ... Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы, например 3d 5 - это 5 электронов на 3d -подуровне.

Для краткости записи электронной конфигурации атома вместо орбиталей, полностью заселенных электронами, иногда записывают символ благородного газа, имеющего соответствующую электронную формулу:

 1s 2 =

 1s 2 2s 2 2p 6 =

 1s 2 2s 2 2p 6 3s 2 3p 6 =

Например, электронная формула атома хлора 1s 2 2s 2 2p 6 3s 2 3p 5 , или 3s 2 3p 5 . За скобки вынесены валентные электроны, принимающие участие в образовании химических связей.

Для больших периодов (особенно шестого и седьмого) построение электронных конфигураций атомов имеет более сложных характер. Например, 4f -электрон появляется не в атоме лантана, а в атоме следующего за ним церия. Последовательное заполнение 4f -подуровня прерывается в атоме гадолиния, где имеется 5d -электрон

Свободная энергия Гиббса (или простоэнергия Гиббса , илипотенциал Гиббса , илитермодинамический потенциал в узком смысле) - этотермодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике ихимии .

Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома .

Распределение электронов по атомным орбиталям происходит, начиная с орбитали, имеющей наименьшую энергию (принцип минимума энергии), т.е. электрон садится на ближайшую к ядру орбиталь. Это значит, что сначала заполняются электронами те подуровни, для которых сумма значений квантовых чисел (n + l ) была минимальной. Так энергия электрона на 4s-подуровне меньше энергии электрона, находящегося на 3d-подуровне. Следовательно, заполнение электронами подуровней происходит в следующем порядке: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d ~ 4f < 6p < 7s < 6d ~ 5f < 7p.

Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах "Электронные конфигурации элементов", однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.

Атом хрома имеет электронную конфигурацию не 4s 2 3d 4 , a 4s 1 3d 5 . Это является примером того, как стабилизация состояний с параллельными спинами электронов преобладает над незначительной разницей энергетических состояний подуровней 3d и 4s (правила Гунда), то есть энергетически выгодными состояниями для d-подуровня являются d 5 и d 10 . Энергетические диаграммы валентных подуровней атомов хрома и меди представлены на рис.2.1.1.

Подобный переход одного электрона с s-подуровня на d-подуровень происходит еще у 8 элементов: Cu, Nb, Mo, Ru, Ag, Pt, Au . У атома Pd происходит переход двух s-электронов на d-подуровень: Pd 5s 0 4d 10 .

Рис.2.1.1. Энергетические диаграммы валентных подуровней атомов хрома и меди

Правила заполнения электронных оболочек:

1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, всегда равен порядковому номеру элемента в Периодической таблице Д.И. Менделеева . Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.

2. Последовательно заполняем орбитали, начиная с 1s-орбитали, имеющимися электронами, учитывая принцип минимальной энергии. При этом нельзя располагать на каждой орбитали более двух электронов с противоположно направленными спинами (правило Паули).

3. Записываем электронную формулу элемента.

Атом - это сложная, динамически устойчивая микросистема взаимодействующих частиц: протонов р + , нейтронов n 0 и электронов е - .


Рис.2.1.2. Заполнение энергетических уровней электронами элемента фосфора

Электронную структуру атома водорода (z = 1) можно изобразить следующим образом:

+1 Н 1s 1 , n = 1 , где квантовая ячейка (атомная орбиталь) обозначается в виде линии или квадрата, а электроны - в виде стрелок.

Каждый атом последующего химического элемента в периодической системе представляет собой многоэлектронный атом.

Атом лития , так же как и атом водорода и гелия, имеет электронную структуру s-элемента, т.к. последний электрон атома лития «садится» на s-подуровень:

+3 Li 1s 2 2s 1 2p 0

В атоме бора появляется первый электрон в p-состоянии:

+5 В 1s 2 2s 2 2p 1

Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.

Итак, 2 электрона расположатся на 1s-орбитали, еще 2 электрона - на 2s-орбитали, а оставшиеся 3 электрона смогут разместиться на трех 2p-орбиталях.

Электронная формула элемента с порядковым номером 7 (это элемент азот , имеющий символ “N”) выглядит так:

+7 N 1s 2 2s 2 2p 3

Рассмотрим действие правила Гунда на примере атома азота: N 1s 2 2s 2 2p 3 . На 2-м электронном уровне есть три одинаковых p-орбитали: 2px, 2py, 2pz. Электроны заселят их так, что на каждой из этих p-орбиталей окажется по одному электрону. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы. Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 валентных электронов) и до полного заполнения не хватает трех электронов.

Внешним уровнем атома называется самый далекий от ядра уровень, на котором есть валентные электроны. Именно эта оболочка соприкасается при столкновении с внешними уровнями других атомов в химических реакциях. При взаимодействии с другими атомами азот способен принять 3 дополнительных электрона на свой внешний уровень. При этом атом азота получит завершенный, то есть максимально заполненный внешний электронный уровень, на котором расположатся 8 электронов.

Завершенный уровень энергетически выгоднее незавершенного, поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.