Химические элементы и их функции. Химические элементы в клетках живых организмов — Гипермаркет знаний. Органические и неорганические вещества


Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В 12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Неорганические вещества

Вода. Н 2 О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли. Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н 2 РО 4 и НРО 4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н 2 СО 3 и НСО 3 - . Анионы связывают ионы Н и гидроксид-ионы (ОН -), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки

Белки. Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH 2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы. Углеводы, или сахариды – органические вещества с общей формулой (СН 2 О) n . У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). Схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Рис.1.Расположение нуклеотидов в молекуле ДНК

Из рис.1. видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды. Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) - внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов - от одноклеточных диатомовых водорослей до гигантских акул - жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липоиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.



Абубекерова Альфия, Токарева Виктория, Матвеева Римма, ученицы 8 класса МКОУ "СОШ №1" г. Николаевска

В проекте представлен ход работы и полученные результаты по выяснению роли химических элементов для живых организмов. В альбоме красочно представлена биологическая роль наиболее важных химических элементов.

Скачать:

Предварительный просмотр:

Муниципальное казенное образовательное учреждение

«Средняя общеобразовательная школа №1» города Николаевска Николаевского муниципального района Волгоградской области

Проект на тему:

Работу выполнили:

Токарева Виктория, 8 класс

Матвеева Римма, 8 класс

Абубекерова Альфия, 8 класс

Руководитель:

Евдокимова А.С., учитель химии и биологии

Николаевск, 2014 год

1.Введение ………………………………………………………………….. 3

2. Классификация химических элементов по функциональной роли и содержанию в организме…………………………………………………. 5

3. Поступление химических элементов в организм…………………….6

4. Биологическая роль химических элементов…………………………7

5. Взаимосвязь химических элементов………………………………… 7

6. Выводы…………………………………………………………………… 9

7. Результат работы…………………………………………………………9

9. Источники информации…………………………………………………9

Приложение. ………………………………………………………………..11

1. Введение.

Актуальность

В 8 классе мы начали изучать новый предмет – химию. Мы узнали, что на Земле существуют атомы различных химических элементов (их больше 100), у каждого есть свое название, есть свое место в Периодической системе химических элементов Д.И. Менделеева. Оказывается, что с названиями многих из них мы часто встречаемся в повседневной жизни. Например, реклама с экранов телевизоров постоянно призывает нас употреблять витамины, содержащие кальций и препараты, содержащие йод . А еще говорят, что зубная паста с фтором полезна для зубов, а железо необходимо для нормальной работы нашего организма. Почему же эти элементы так необходимы? А важны ли для живых организмов другие химические элементы? Сколько их требуется для нормальной работы организма? Где они содержатся, в каких продуктах? Что произойдет, если в организм попадет очень много или очень мало каких либо элементов? Мы считаем эти вопросы очень важными для сохранения здоровья человека.

Проблема : слабая информированность учащихся о биологической роли химических элементов

Цель - Выяснить биологическую роль наиболее распространенных химических элементов и использовать эту информацию для формирования у учащихся ценностного отношения к своему здоровью.

Задачи:

1. Определить группу наиболее встречающихся на нашей планете химических элементов и выяснить их биологическое значение.

2. Выяснить важно ли сочетание и пропорциональное соотношение химических элементов при попадании в организм.

3. Оформить полученную информацию в виде брошюры, стенда в кабинете химии.

4. Выступить с данной информацией на уроке химии перед одноклассниками.

Тип проекта : информационный (биология, химия)

Направления проектной деятельности:

  1. Аналитическое (сбор информации)
  2. Творческое (создание брошюры и стенда)

3) Представительское (создание презентации, выступление на уроке)

Участники :

Учащиеся 8 класса

Ресурсное обеспечение проекта:

Координатор – учитель химии Евдокимова Анна Сергеевна.

Материальные ресурсы: ресурсы школьной мини-типографии, бумага формата А4, ватман, двусторонний скотч, компьютер, Интернет.

Сроки реализации, этапы работы над проектом :

  1. Постановка проблемы, распределение заданий, «ролей» (январь)2014 года)
  2. Сбор информации (январь – февраль 2014 года)
  3. Обобщение результатов, создание альбома, оформление стенда, (февраль 2014 года)

Результат : повышение информированности учащихся о биологической роли химических элементов

Отсроченный результат : формирование более ответственного отношения к своему здоровью

Практическая значимость (продукт): собранная в ходе выполнения проекта информация будет оформлена в виде брошюры, которой можно воспользоваться при подготовке к экзаменам, конкурсам, олимпиадам, а также будет оформлен стенд в кабинете химии, где ярко, красно и интересно будет представлена информация о биологической роли химических элементов. Возможно, данная информация позволит не только побудить учащихся ответственнее относится к своему здоровью, но и повысит интерес к предмету химия, поможет определиться с выбором профессии.

2. Классификация химических элементов по функциональной роли и содержанию в организме.

Биосфера содержит 100 млрд тонн живого вещества. Около 50% массы земной коры приходится на кислород, более 25% на кремний. Восемнадцать элементов (О, Si, Al, Fe, Ca. Na, К, Mg, H, Ti, С, Р, N, S, Cl, F, Мn, Ва) составляют 99,8% массы земной коры. Живые организмы принимают активное участие в перераспределении химических элементов в земной коре. Минералы, природные химические вещества, образуются в биосфере в различных количествах, благодаря деятельности живых веществ (образование железных руд, горных пород, в основе которых соединения кальция). Кроме этого, оказывают влияние техногенные загрязнения окружающей среды. Изменения, происходящие в верхних слоях земной коры, влияют на химический состав живых организмов. В организме можно обнаружить почти все элементы, которые есть в земной коре и морской воде. Содержание некоторых элементов в организме по сравнению с окружающей средой повышенное – это называют биологическим концентрированием элемента. Например, углерода в земной коре 0,35%, а по содержанию в живых организмах занимает второе место (21%). Однако эта закономерность наблюдается не всегда. Так, кремния в земной коре 27,6%, а в живых организмах его мало, алюминия – 7,45%, а в живых организмах -1·10 -5 %.

В составе живого вещества найдено более 70 элементов.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами .

Для 30 элементов биогенность установлена. Существует несколько классификаций биогенных элементов:

А) По их функциональной роли:

1) органогены, в организме их 97,4% (С, Н, О, N, Р, S),

2) элементы электролитного фона (Na, К, Ca, Mg, Сl). Данные ионы металлов составляют 99% общего содержания металлов в организме;

3) Микроэлементы – это биологически активные атомы центров ферментов, гормонов.

Б) По концентрации элементов в организме биогенные элементы делят:

1) макроэлементы (содержание их превышает 0,01% от массы тела)

К ним относят 12 элементов: С, Н, О, N, Р, S, Na, К, Ca, Mg, Сl, Fe.

2) микроэлементы (0,01%, от массы тела): Цинк , Йод , Фтор , Кремний , Хром , Медь , Марганец , Кобальт , Молибден , Никель , Бор , Бром , Мышьяк , Свинец , Олово , Литий , Кадмий , Ванадий , Селен

3) ультрамикроэлементы (содержание их меньше чем 10 -5 % от массы тела).

3. Поступление химических элементов в организм.

Все живые организмы имеют тесный контакт с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствует питание и потребляемая вода. Организм состоит из воды на 60%, 34% приходится на органические вещества и 6% на неорганические. Основными компонентами органических веществ являются С, Н, О. В их состав входят также N, P, S. В составе неорганических веществ обязательно присутствуют 22 химических элемента. Например, если вес человека составляет 70 кг, то в нём содержится (в граммах): Са - 1700, К - 250, Na –70, Mg - 42, Fe - 5, Zn - 3. На долю металлов приходится 2,1 кг. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (таблица № 1).

Таблица 1. Суточное поступление химических элементов в организм человека

Химический элемент

Суточное потребление, в мг

Взрослые

Дети

Калий

2000-5500

Натрий

1100-3300

Кальций

800-1200

Магний

300-400

Цинк

Железо

10-15

Марганец

Медь

1,5-3,0

Титан

0,85

0,06

Молибден

0,075-0,250

Хром

0,05-0,20

0,04

Кобальт

Около 0,2 витамин B 12

0,001

Хлор

3200

РО 4 3-

800-1200

SO 4 2-

Йод

0,15

0,07

Селен

0,05-0, 07

Фтор

1,5-4,0

0, 6

Столько же химических элементов должно выводиться, поскольку их содержание в организме находится в относительном постоянстве.

Современное состояние знаний о биологической роли элементов можно характеризовать как поверхностное прикосновение к этой проблеме. Накоплено много фактических данных по содержанию элементов в различных компонентах биосферы, ответные реакции организма на их недостаток и избыток.
При недостаточном поступлении элемента в организм наносится существенный ущерб росту и развитию организма. Это объясняется снижением активности ферментов, в состав которых входит элемент. При повышении дозы этого элемента ответная реакция организма возрастает, достигает нормы (биотическая концентрация элемента). Дальнейшее увеличение дозы приводит к снижению функционирования вследствие токсического действия избытка элемента вплоть до летального исхода. Дефицит и избыток биогенного элемента наносит вред организму. Все живые организмы реагируют на недостаток и избыток или неблагоприятное соотношение элементов.

Обычные микроэлементы, когда их концентрация в организме превышает биотическую концентрацию, проявляют токсическое действие на организм. Токсичные элементы при очень малых концентрациях не оказывают вредного воздействия на растения и животных. Например, мышьяк при микроконцентрациях оказывает биостимулирующее действие. Следовательно, нет токсичных элементов, а есть токсичные дозы. Таким образом, малые дозы элемента - лекарство, большие дозы - яд. «Все есть яд, и ничто не лишено ядовитости, одна лишь доза делает яд незаметным» - Парацельс. Уместно вспомнить слова таджикского поэта Рудаки: «Что нынче снадобьем слывет, то завтра станет ядом».

4 . Биологическая роль химических элементов.

Информация о биологической роли химических элементов указана в брошюре «Биологическая роль химических элементов» (Приложение №1)

5. Взаимосвязь химических элементов,

Необходимо помнить об определенных предосторожностях при употреблении минеральных комплексов (как лекарственных препаратов, так и биологически активных добавок к пище).

Передозировка одного минерального вещества может привести к функциональным нарушениям и повышенному выделению другого минерального вещества. Возможно и развитие нежелательных побочных эффектов. Например, избыток цинка ведет к снижению уровня холестеринсодержащих липидов высокой плотности ("хорошего" холестерина).

Главная биологическая функция калия - формирование совместно с другими электролитами (натрий, хлор) разницы потенциалов на мембранах клеток и передача ее изменения по клеточной мембране, за счет обмена с ионами натрия, что особенно важно для нервных и мышечных клеток. Это обуславливает постоянное присутствие в клетках натрия, хлора и калия. В организме эти элементы содержатся в определенном соотношении, обеспечивая гомеостаз (постоянство внутренней среды). Нарушение равновесия между калием и натрием ведет к патологии водного обмена, обезвоживанию, мышечной слабости.

Избыток кальция может привести к недостатку фосфора, и наоборот. Обмен веществ так тонко устроен, что фосфор работает в тесной связке с кальцием (в норме эти вещества должны поступать в организм примерно в одинаковом количестве, в крайнем случае фосфора может быть в полтора раза больше). В реальности в современных продуктах его много больше, чем кальция. Учёные подсчитали, что, например, в питании среднего американца содержание фосфора в 2-4 раза выше, чем кальция. Избыточный фосфор стимулирует выработку гормона паращитовидными железами (это четыре горошины, расположенные рядом с щитовидкой). Тогда этот гормон начинает вымывать кальций из костей. Развивается остеопороз - кости становятся хрупкими и ломкими. Сегодня в мире эта болезнь приобрела характер эпидемии. Перелом шейки бедра у стариков и так называемый «вдовий горб» - типичные проявления остеопороза. Переломы из-за слабости кости возникают даже у подростков. В серьёзных исследованиях доказано, что у девочек, любящих пить колу и прочие газировки (в них добавляют фосфорную кислоту), в 3,14 раза чаще бывают такие переломы. А если они ещё и занимаются спортом, то риск переломов больше в 5 раз. Чем больше фосфатов в крови, тем выше риск инфарктов и смертность от сердечно-сосудистых заболеваний. Фосфор помогает развитию кальцификации. Это самое тяжёлое и необратимое поражение сосудов, при котором на их внутренней стенке откладывается кальций, образуя плотные, как кость, бляшки.

Избыток молибдена уменьшает содержание меди.

Избыток вольфрама уменьшает содержание молибдена.

На фоне дефицита железа, а также кальция, фосфора, магния и цинка способность организма усваивать свинец увеличивается и т.д.

При потреблении минеральных веществ, следует строго придерживаться медицинских рекомендаций!

6. Выводы:

Мы выяснили, что многие химические элементы (более 30) имеют определенное значение для живых организмов. Такие элементы как С, Н, О, N, Р, S, являясь макроэлементами играют большую роль, из них построены клетки живого организма. Другие, хоть и имеют малое содержание в организме (микроэлементы), так же необходимы. Но для большинства элементов как недостаток, так и избыток оказывает вредное воздействие на организм.

Мы разобрались так же, откуда поступают элементы в наш организм, как избежать избыточного и недостаточного их содержания.

Имеются элементы, малая доза которых является токсичной. Это такие элементы как мышьяк, свинец, ртуть, кадмий и др. Тяжелые металлы имеют способность накапливаться в организме.

Важно также взаимное влияние обмена одного элемента на обмен другого. Так, например фосфор и кальций должны попадать в организм в определенном соотношении. Если фосфора попадает больше, то это способствует вымыванию кальция из костей и др. последствиям.

7. Результат работы:

1) Нашли и обобщили информацию о биологической роли химических элементов.

2) Создали брошюру «Биологическая роль химических элементов» (приложение №1)

3) Создали презентацию о биологической роли химических элементов и выступили с ней на уроке химии в 8 и 9-ых классах (приложение №2).

4) Оформили стенд в кабинете химии (приложение №3).

8. Источники информации:

1) Конспект лекций по общей химии. Челябинская государственная медицинская академия. А. В. Жолнин.

2) Ливанов П.А.,Соболев М.Б., Ревич Б. А. Свинцовая опасность и здоровье населения. // Рос. Сем. Врач. 1999, No 2, с. 18–26.

3) Корбанова А.И., Сорокина Н.С., Молодкина Н.Н. Свинец и его действие на

Организм. // Мед. труда и пром. экология. 2001, No 5, с. 29–34.

4) Химия. Учебник для 9 кл. Габриелян О.С.

5) Ресурсы сети Интернет:

wikipedia.org и др.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

Все организмы на нашей планете состоят из клеток, которые схожи между собой химическим составом. В данной статье мы кратко расскажем о химическом составе клетки, его роли в жизнедеятельности всего организма, узнаем, какая наука изучает данный вопрос.

Группы элементов химического состава клетки

Наука, которая изучает составные части и строение живой клетки, называется цитологией.

Все элементы, входящие в химическую структуру организма, можно условно поделить на три группы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

К макроэлементам относятся водород, углерод, кислород и азот. На их долю припадает почти 98% всех составных элементов.

Микроэлементы имеются в количестве десятых и сотых долей процента. И совсем малое содержание ультрамикроэлементов - сотые и тысячные доли процента.

ТОП-4 статьи которые читают вместе с этой

В переводе с греческого «макрос» – большой, а «микро» – маленький.

Учёные установили, что каких-либо особенных элементов, которые присущи только лишь живым организмам, нет. Поэтому, что живая, что неживая природа состоит из одних и тех же элементов. Этим доказывается их взаимосвязь.

Несмотря на количественное содержание химического элемента, отсутствие или уменьшение хотя бы одного из них ведёт к гибели всего организма. Ведь у каждого из них есть своё значение.

Роль химического состава клетки

Макроэлементы являются основой биополимеров, а именно белков, углеводов, нуклеиновых кислот и липидов.

Микроэлементы входят в состав жизненно важных органических веществ, участвуют в обменных процессах. Они являются составными компонентами минеральных солей, которые находятся в виде катионов и анионов, их соотношение определяет щелочную среду. Чаще всего она слабощелочная, ведь соотношение минеральных солей не изменяется.

Гемоглобин содержит железо, хлорофилл - магний, белки - серу, нуклеиновые кислоты - фосфор, обмен веществ происходит при достаточном количестве кальция.

Рис. 2. Состав клетки

Некоторые химические элементы являются компонентами неорганических веществ, например, воды. Она играет большую роль в жизнедеятельности как растительной, так и животной клетки. Вода является хорошим растворителем, из-за этого все вещества внутри организма делятся на:

  • Гидрофильные - растворяются в воде;
  • Гидрофобные - не растворяются в воде.

Благодаря наличию воды клетка становится упругой, она способствует перемещению органических веществ в цитоплазме.

Рис. 3. Вещества клетки.

Таблица “Свойства химического состава клетки”

Чтобы наглядно понять, какие химические элементы входят в состав клетки, мы внесли их в следующую таблицу:

Элементы

Значение

Макроэлементы

Кислород, углерод, водород, азот

Составной компонент оболочки у растений, в животном организме находится в составе костей и зубов, принимает активное участие в свёртываемости крови.

Содержится в нуклеиновых кислотах, ферментах, костной ткани и зубной эмали.

Микроэлементы

Является основой белков, ферментов и витаминов.

Обеспечивает передачу нервных импульсов, активирует синтез белка, процессы фотосинтеза и роста.

Один из компонентов желудочного сока, провокатор ферментов.

Принимает активное участие в обменных процессах, компонент гормона щитовидной железы.

Обеспечивает передачу импульсов в нервной системе, поддерживает постоянное давление внутри клетки, провоцирует синтез гормонов.

Составной элемент хлорофилла, костной ткани и зубов, провоцирует синтез ДНК и процессы теплоотдачи.

Составная часть гемоглобина, хрусталика, роговицы, синтезирует хлорофилл. Транспортирует кислород по организму.

Ультрамикроэлементы

Составная часть процессов кровообразования, фотосинтеза, ускоряет внутриклеточные процессы окисления.

Марганец

Активизирует фотосинтез, участвует в кровообразовании, обеспечивает высокую урожайность.

Составная часть зубной эмали.

Регулирует рост растений.

Что мы узнали?

Каждая клетка живой природы имеет свой набор химических элементов. По своему составу предметы живой и неживой природы имеют сходства, это доказывает тесную их взаимосвязь. Каждая клеточка состоит из макроэлементов, микроэлементов и ультрамикроэлементов, у каждого из которых есть своя роль. Отсутствие хотя бы одного из них ведёт к заболеванию и даже гибели всего организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 807.

Клетка

С точки зрения концепции живых систем по А. Ленинджеру.

    Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

    В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

    Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

    Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о. клетка – элементарная живая открытая система, способная к самостоятельному существованию, воспроизведению и развитию. Она является элементарной структурно-функциональной единицей всех живых организмов.

Химический состав клеток.

Из 110 элементов периодической системы Менделеева в организме человека обнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальной жизнедеятельности, причем 18 из них необходимы абсолютно, а 7 - полезны. В соответствии с процентным содержанием в клетке химические элементы делят на три группы:

    Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

    Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

    Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк - сахарный диабет, иод - эндемический зоб, железо - злокачественная анемия и т.д.).

Современной медицине известны факты отрицательного взаимодействия витаминов и минералов:

    Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).

    Кальций и железо снижают усвоение марганца;

    Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительное взаимовлияние:

    Витамин Е и селен, а также кальций и витамин К действуют синергично;

    Для усвоения кальция необходим витамин Д;

    Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки.

Вода – важнейшая составная часть клетки, универсальная дисперсионная среда живой материи. Активные клетки наземных организмов состоят на 60 – 95% из воды. В покоящихся клетках и тканях (семена, споры) воды 10 - 20%. Вода в клетке находится в двух формах – свободной и связанной с клеточными коллоидами. Свободная вода является растворителем и дисперсионной средой коллоидной системы протоплазмы. Ее 95%. Связанная вода (4 – 5 %) всей воды клетки образует непрочные водородные и гидроксильные связи с белками.

Свойства воды:

    Вода – естественный растворитель для минеральных ионов и других веществ.

    Вода – дисперсионная фаза коллоидной системы протоплазмы.

    Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

    Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

    Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

    Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

    Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

    Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

    Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

    Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

    Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.

В клетках разных организмов обнаружено около 70 элементов периодической системы элементов Д. И. Менделеева, но лишь 24 из них имеют вполне установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы . На долю этих элементов приходится более 95 % массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре. Жизненно важными являются также кальций, фосфор, сера, калий, хлор, натрий, магний, йод и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов .

Другие химические элементы: медь, марганец, молибден, кобальт, цинк, бор, фтор, хром, селен, алюминий, йод, железо, кремний - содержатся в исключительно малых количествах (менее 0,01 % массы клеток). Они относятся к группе микроэлементов .

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ - ферментов, витаминов (кобальт входит в состав витамина B 12), гормонов (йод входит в состав тироксина);оказывают влияние на рост и развитие организмов (цинк, марганец, медь), кроветворение (железо, медь), процессы клеточного дыхания (медь, цинк) и т. д. Содержание и значение для жизнедеятельности клеток и организма в целом различных химических элементов приведено в таблице:

Важнейшие химические элементы клетки
Элемент Символ Примерное содержание, % Значение для клетки и организма
Кислород O 62 Входит в состав воды и органических веществ; участвует в клеточном дыхании
Углерод C 20 Входит в состав всех органических веществ
Водород H 10 Входит в состав воды и органических веществ; участвует в процессах преобразования энергии
Азот N 3 Входит в состав аминокислот, белков, нуклеиновых кислот, АТФ, хлорофилла, витаминов
Кальций Ca 2,5 Входит в состав клеточной стенки у растений, костей и зубов, повышает свертывание крови и сократимость мышечных волокон
Фосфор P 1,0 Входит в состав костной ткани и зубной эмали, нуклеиновых кислот, АТФ, некоторых ферментов
Сера S 0,25 Входит в состав аминокислот (цистеин, цистин и метионин), некоторых витаминов, участвует в образовании дисульфидных связей при образовании третичной структуры белков
Калий K 0,25 Содержится в клетке только в виде ионов, активирует ферменты белкового синтеза, обуславливает нормальный ритм сердечной деятельности, участвует в процессах фотосинтеза, генерации биоэлектрических потенциалов
Хлор Cl 0,2 Преобладает отрицательный ион в организме животных. Компонент соляной кислоты в желудочном соке
Натрий Na 0,10 Содержится в клетке только в виде ионов, обуславливает нормальный рит сердечной деятельности, влияет на синтез гормонов
Магний Mg 0,07 Входит в состав молекул хлорофилла, а также костей и зубов, активирует энергетический обмен и синтез ДНК
Йод I 0,01 Входит в состав гормонов щитовидной железы
Железо Fe 0,01 Входит в состав многих ферментов, гемоглобина и миоглобина, участвует в биосинтезе хлорофилла, в транспорте электронов, в процессах дыхания и фотосинтеза
Медь Cu Следы Входит в состав гемоцианинов у беспозвоночных, в состав некоторых ферментов, участвует в процессах кроветворения, фотосинтеза, синтеза гемоглобина
Марганец Mn Следы Входит в состав или повышает активность некоторых ферментов, участвует в развитии костей, ассимиляции азота и процессе фотосинтеза
Молибден Mo Следы Входит в состав некоторых ферментов (нитратредуктаза), участвует в процессах связывания атмосферного азота клубеньковыми бактериями
Кобальт Co Следы Входит в состав витамина B 12 , участвует в фиксации атмосферного азота клубеньковыми бактериями
Бор B Следы Влияет на ростовые процессы растений, активирует восстановительные ферменты дыхания
Цинк Zn Следы Входит в состав некоторых ферментов, расщепляющих полипептиды, участвует в синтезе растительных гормонов (ауксинов) и гликолизе
Фтор F Следы Входит в состав эмали зубов и костей