Виды значений физической величины. Размер величины. Значение величины. Классификация случайных погрешностей измерений

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

физическая величина" class="form-control mb-2 mr-sm-2" id="term_input" placeholder="Слово"> Найти

Что значит "физическая величина"

Энциклопедический словарь, 1998 г.

физическая величина

особенность, свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и т.д.), но в количественном отношении - индивидуальное для каждого объекта. Примеры физической величины: плотность, вязкость, показатель преломления света и др.

Физическая величина

свойство, общее в качественном отношении многим физическим объектам (физическими системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. К Ф. в., характеризующим свойства объектов, относятся длина, масса, электрическое сопротивление и т.п., к Ф. в., характеризующим состояние системы, √ давление, температура, магнитная индукция и т.п., к Ф. в., характеризующим процессы, √ скорость, мощность и др.

Для количественной оценки Ф. в. (определения её значения в виде некоторого числа принятых для неё единиц) пользуются различными методами измерений. Ф. в. присвоены буквенные символы, используемые в физических уравнениях, выражающих связи между Ф. в., существующие в физических объектах. Термин «Ф. в.» применяют не только в физике, но и в др. науках (химии, биологии и т.д.), когда количественное сравнение свойств исследуемых объектов осуществляют физическими методами (см. Метрология, Размерность физической величины).

Википедия

Физическая величина

Физи́ческая величина́ - свойство материального объекта или явления, общее в качественном отношении для класса объектов или явлений, но в количественном отношении индивидуальное для каждого из них . Физические величины имеют род, размер, единицу и значение.

Для обозначения физических величин применяются прописные и строчные буквы латинского или греческого алфавита. Часто к обозначениям добавляют верхние или нижние индексы, указывающие, к чему относится величина, например E часто обозначает потенциальную энергию, а c - теплоёмкость при постоянном давлении.

Физическая величина

Физи́ческая величина́ - физическое свойство материального объекта, физического явления , процесса, которое может быть охарактеризовано количественно.

Значение физической величины - одно или несколько (в случае тензорной физической величины) чисел, характеризующих эту физическую величину, с указанием единицы измерения , на основе которой они были получены.

Размер физической величины - значения чисел, фигурирующих в значении физической величины .

Например, автомобиль может быть охарактеризован с помощью такой физической величины , как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100.

Размерность физической величины - единица измерения , фигурирующая в значении физической величины . Как правило, у физической величины много различных размерностей: например, у длины - нанометр, миллиметр, сантиметр, метр, километр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ , СГС и др.

Часто физическая величина может быть выражена через другие, более основополагающие физические величины. (Например, сила может быть выражена через массу тела и его ускорение). А значит, соответственно, и размерность такой физической величины может быть выражена через размерности этих более общих величин. (Размерность силы может быть выражена через размерности массы и ускорения). (Часто такое представление размерности некоторой физической величины через размерности других физических величин является самостоятельной задачей, которая в некоторых случаях имеет свой смысл и назначение.) Размерности таких более общих величин часто уже являются основными единицами той или другой системы физических единиц, то есть такими, которые сами уже не выражаются через другие, ещё более общие величины.

Пример.
Если физическая величина мощность записывается как

P = 42,3 × 10³ Вт = 42,3 кВт, Р - это общепринятое литерное обозначение этой физической величины, 42,3 × 10³ Вт - значение этой физической величины, 42,3 × 10³ - размер этой физической величины.

Вт - это сокращённое обозначение одной из единиц измерения этой физической величины (ватт). Литера к является обозначением десятичного множителя «кило » Международной системы единиц (СИ) .

Размерные и безразмерные физические величины

  • Размерная физическая величина - физическая величина, для определения значения которой нужно применить какую-то единицу измерения этой физической величины. Подавляющее большинство физических величин являются размерными.
  • Безразмерная физическая величина - физическая величина, для определения значения которой достаточно только указания её размера. Например, относительная диэлектрическая проницаемость - это безразмерная физическая величина.

Аддитивные и неаддитивные физические величины

  • Аддитивная физическая величина - физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга. Например, физическая величина масса - аддитивная физическая величина.
  • Неаддитивная физическая величина - физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга её значений не имеет физического смысла. Например, физическая величина температура - неаддитивная физическая величина.

Экстенсивные и интенсивные физические величины

Физическая величина называется

  • экстенсивной, если величина её значения складывается из величин значений этой физической величины для подсистем, из которых состоит система (например, объём , вес);
  • интенсивной , если величина её значения не зависит от размера системы (например, температура , давление).

Некоторые физические величины, такие как момент импульса , площадь , сила , длина , время , не относятся ни к экстенсивным, ни к интенсивным.

От некоторых экстенсивных величин образуются производные величины:

  • удельная величина - это величина, делённая на массу (например, удельный объём);
  • молярная величина - это величина, делённая на количество вещества (например, молярный объём).

Скалярные, векторные, тензорные величины

В самом общем случае можно сказать, что физическая величина может быть представлена посредством тензора определённого ранга (валентности) .

Система единиц физических величин

Система единиц физических величин - совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. Примеры систем физических единиц - Международная система единиц (СИ) , СГС .

Символы физических величин

Литература

  • РМГ 29-99 Метрология. Основные термины и определения.
  • Бурдун Г. Д., Базакуца В. А. Единицы физических величин . - Харьков : Вища школа, .
  • 9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.
  • 13. Классификация систематических погрешностей измерений по причине возникновения.
  • 14. Классификация систематических погрешностей измерений по характеру проявления.
  • 15. Классификация методов измерений, определение методов, входящих в классификацию.
  • 16. Определения терминов: мера, измерительный прибор, измерительный преобразователь, измерительная установка, измерительная система.
  • 17. Классификация измерительных приборов.
  • 18. Классификация измерительных преобразователей.
  • Вопрос 19. Структура измерительных приборов прямого действия
  • Вопрос 20. Структура измерительных приборов сравнения
  • Вопрос 21. Метрологические характеристики средств измерений
  • 26. Динамические характеристики средств измерений: Дифференциальные уравнения, передаточные функции.
  • 27. Частотные характеристики средств измерений.
  • 28. Классификация погрешностей измерительных устройств.
  • 29) Определение аддитивной, мультипликативной, гистерезисной погрешности и вариации
  • 30) Определение основной, дополнительной, абсолютной, относительной и приведенной погрешностей измерений
  • 31) Нормирование метрологических характеристик средств измерений
  • 32. Нормирование метрологических характеристик средств измерений.
  • 34 Способы нормирования характеристик, определяющих точность измерений. Характеристики статистических распределений.
  • 35 Выявление и исключение грубых погрешностей измерений.
  • 36. Структура измерительных систем и их характеристики
  • 8. Истинное, действительное и измеренное значение физической величины.

    Физической величиной называется одно из свойств физического объекта (явления, процесса), которое является общим в качественном отношении для многих - физических объектов, отличаясь при этом количественным значением.

    Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.).

    В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.

    Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

    Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

    9. Классификация измерений по зависимости измеряемой величины от времени и по совокупностям измеряемых величин.

    По характеру изменения измеряемой величины - статические и динамические измерения.

    Динамическое измерение - измерение величины, размер которой изменяется с течением времени. Быстрое изменение размера измеряемой величины требует ее измерения с точнейшим определением момента времени. Например, измерение расстояния до уровня поверхности Земли с воздушного шара или измерение постоянного напряжения электрического тока. По существу динамическое измерение является измерением функциональной зависимости измеряемой величины от времени.

    Статическое измерение - измерение величины, которая принимается в соответствии с поставленной измерительной задачей за неизменяющуюся на протяжении периода измерения. Например, измерение линейного размера изготовленного изделия при нормальной температуре можно считать статическим, поскольку колебания температуры в цехе на уровне десятых долей градуса вносят погрешность измерений не более 10 мкм/м, несущественную по сравнению с погрешностью изготовления детали. Поэтому в этой измерительной задаче можно считать измеряемую величину неизменной. При калибровке штриховой меры длины на государственном первичном эталоне термостатирование обеспечивает стабильность поддержания температуры на уровне 0,005 °С. Такие колебания температуры обусловливают в тысячу раз меньшую погрешность измерений - не более 0,01 мкм/м. Но в данной измерительной задаче она является существенной, и учет изменений температуры в процессе измерений становится условием обеспечения требуемой точности измерений. Поэтому эти измерения следует проводить по методике динамических измерений.

    По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические (состав, химические свойства, концентрация) , радиотехнические и т. д.

      Классификация измерений по способу получения результата (по виду).

    По способу получения результатов измерений различают: прямые, косвенные, совокупные и совместные измерения.

    Прямыми называют измерения, при которых искомое значение измеряемой величины находят непосредственно из опытных данных.

    Косвенными называют измерения, при которых искомое значение измеряемой величины находят на основании известной зависимости между измеряемой величиной и величинами, определяемыми с помощью прямых измерений.

    Совокупными называют измерения, при которых одновременно измеряются несколько одноименных величин и определяемое значение находят, решая систему уравнений, которую получают на основании прямых измерений одноименных величин.

    Совместными называют измерения двух или более неодноименных величин для нахождения зависимости между ними.

      Классификация измерений по условиям, определяющим точность результата и по количеству измерений для получения результата.

    По условиям, определяющим точность результата, измерения делятся на три класса:

    1. Измерения максимально возможной точности, достижимой при существующем уровне техники.

    К ним относятся в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин, и, кроме того, измерения физических констант, прежде всего универсальных (например, абсолютного значения ускорения свободного падения, гиромагнитного отношения протона и др.).

    К этому же классу относятся и некоторые специальные измерения, требующие высокой точности.

    2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения.

    К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники и заводскими измерительными лабораториями, которые гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

    3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

    Примерами технических измерений являются измерения, выполняемые в процессе производства на машиностроительных предприятиях, на щитах распределительных устройств электрических станций и др.

    По количеству измерений измерения делятся на однократные и многократные.

    Однократное измерение - это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

    Многократные измерения - это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, - четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

      Классификация случайных погрешностей измерений.

    Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

    1)Грубая- не превышает допустимую погрешность

    2)Промах- грубая погрешность, зависит от человека

    3)Ожидаемая- полученная в результате эксперимента при созд. условиях

    Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

    Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

    Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

    Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

    Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

    количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

    Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

    Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

    где числовое значение величины, ее единица.

    Следует различать истинное и действительное значения физической величины.

    Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

    Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

    Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

    Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

    Однако, пользуясь специальными техническими средствами, можно определить действительные

    значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

    К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

    Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

    Различают измерения прямые и косвенные.

    Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

    Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

    Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.

    Понятие физической величины - общее в физике и метрологии и применяется для описания материальных систем объектов.

    Физическая величина, как указывалось выше, - это характеристика, общая в качественном отношении для множества объектов, процессов, явлений, а в количественном - индивидуальная для каждого из них. Например, все тела обладают собственной массой и температурой, но числовые значения этих параметров для разных тел различны. Количественное содержание этого свойства в объекте является размером физической величины, числовую оценку ее размеров называют значением физической величины .

    Физическая величина, выражающая одно и то же в качественном отношении свойство, называется однородной (одноименной ).

    Основная задача измерений - получение информации о значениях физической величины в виде некоторого количества принятых для нее единиц.

    Значения физических величин подразделяются на истинные и действительные.

    Истинное значение - это значение, идеальным образом отражающее качественно и количественно соответствующие свойства объекта.

    Действительное значение - это значение, найденное экспериментально и настолько приближенное к истинному, что может быть принято вместо него.

    Физические величины классифицируют по ряду признаков. Различают следующие классификации :

    1) по отношению к сигналам измерительной информации физические величины бывают: активные - величины, которые без использования вспомогательных источников энергии могут быть преобразованы в сигнал измерительной информации; пассив ные - величины, которые нуждаются в использовании вспомога­тельных источников энергии, посредством которых создается сигнал измерительной информации;

    2) по признаку аддитивности физические величины разделяются на: аддитивные , или экстенсивные, которые можно измерять по частям, а также точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер; не аддитивные, или интенсивные, которые непосредственно не измеряются, а преобразуются в измерение величины или измерение путем косвенных измерений. (Аддитивность (лат. additivus - прибавляемый) - свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям).

    Эволюция развития систем физических единиц.

      Метрическая система мер - первая система единиц физических величин

    была принята в 1791 г. Национальным собранием Франции. Она включала в себя единицы длины, площади, объема, вместимости и веса , в основу которых были положены две единицы - метр и килограмм . Она отличалась от системы единиц, ис­пользуемой сейчас, и еще не была системой единиц в современном понимании.

      Абсолютная система единиц физических величин .

    Методику построения системы единиц как совокупности основных и производных единиц разработал и предложил в 1832 г. немецкий математик К. Гаусс, назвав ее абсолютной системой. За основу он взял три независимые друг от друга величины - массу, длину, время .

    За основные единицы измерения этих величин он принял миллиграмм, миллиметр, секунду , предполагая, что остальные единицы можно определить с их помощью.

    Позднее появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, и базирующихся на метрической системе мер, но различающихся основными единицами.

    В соответствии с предложенным принципом Гаусса основными системами единиц физических величин являются:

      Система СГС , в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени; была установлена в 1881 г.;

      Система МКГСС . Применение килограмма как единицы веса, а позднее как единицы силы вообще привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр - единица длины, килограмм - сила - единица силы, секунда - единица времени;

    5. Система МКСА - основными единицами являются метр, килограмм, секунда и ампер. Основы этой системы предложил в 1901 г. итальянский ученый Дж. Джорджи.

    Международные отношения в области науки и экономики требовали унификации единиц измерения, создания единой системы единиц физических величин, охватывающей различные отрасли области измерений и сохраняющей принцип когерентности, т.е. равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами.

      Система СИ . В 1954 г. комиссия по разработке единой Международной

    системы единиц предложила проект системы единиц, который был утвержден в 1960 г . XI Генеральной конференцией по мерам и весам. Международная система единиц (сокращенно СИ) свое название взяла от начальных букв французского наименования Система Интернешнл.

    Международная система единиц (СИ) включает в себя семь основных (табл. 1), две дополнительные и ряд внесистемных единиц измерения.

    Таблица 1 - Международная система единиц

    Физические величины, имеющие официально утвержденный эталон

    Единица измерения

    Сокращенное обозначение единицы

    физической величины

    международное

    килограмм

    Сила электрического тока

    Температура

    Единица освещенности

    Количество вещества

    Источник: Тюрин Н.И. Введение в метрологию. М.: Издательство стандартов, 1985.

    Основные единицы измерения физических величин в соответствии с решениями Генеральной конференции по мерам и весам определяются следующим образом:

      метр - длина пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

      килограмм равен массе международного прототипа килограмма;

      секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома Сs 133 ;

      ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия;

      кандела равна силе света в заданном направлении источника, испускающего ионохранические излучения, энергетическая сила света которого в этом направлении составляет 1 / 683 Вт/ср;

      кельвин равен 1 /273,16 части термодинамической температуры тройной точки воды;

      моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в С 12 массой 0,012 кг 2 .

    Дополнительные единицы Международной системы единиц для измерения плоского и телесного углов:

      радиан (рад) - плоский угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17"48" 3 ;

      стерадиан (ср) - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

    Дополнительные единицы СИ применяются для образования единиц угловой скорости, углового ускорения и некоторых других величин. Радиан и стерадиан используются для теоретических построений и расчетов, так как большинство важных для практики значений углов в радианах выражаются трансцендентными числами.

    Внесистемные единицы:

    За логарифмическую единицу принята десятая доля бела - децибел (дБ);

    Диоптрия - сила света для оптических приборов;

    Реактивная мощность-вар (ВА);

    Астрономическая единица (а.е.) - 149,6 млн км;

    Световой год - расстояние, которое проходит луч света за 1 год;

    Вместимость - литр (л);

    Площадь - гектар (га).

    Логарифмические единицы подразделяются на абсолютные, которые представляют собой десятичный логарифм отношения физической величины к нормированному значению, и относительные, образующиеся как десятичный логарифм отношения любых двух однородных (одноименных) величин.

    К единицам, не входящим в СИ, относятся градус и минута. Остальные единицы являются производными.

    Производные единицы СИ образуются с помощью простейших уравнений, которые связывают величины и в которых числовые коэффициенты равны единице. При этом производная единица называется когерентной.

    Размерность является качественным отображением измеряемых величин. Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением из мерения: Q = q * [ Q ]

    где Q - значение величины; q - числовое значение измеряемой величины в условных единицах; [Q] - выбранная для измерения единица.

    Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть Уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

    (Например, за единицу измерения массы жидкости принят 1мл.,поэтому на упаковке обозначается: 250мл., 750 и т.д., но если за ед. измерения принять 1л., тогда то же кол-во жидкости будет обозначено 0,25л., 075л. соответственно).

    Как один из способов образования кратных и дольных единиц используется десятичная кратность между большими и меньшими единицами, принятая в метрической системе мер. В табл. 1.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

    Таблица 2 - Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

    Множитель

    Приставка

    Обозначение приставки

    международное

    (Эксаба́йт - единица измерения количества информации, равная 1018 или 260 байтам. 1 ЭэВ (эксаэлектронвольт) = 1018 электронвольт = 0.1602 джоуля)

    Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости оттого, куда добавляется приставка. Например, 1 м 2 можно использовать как 1 квадратный метр и как 100 квадратных сантиметров, что далеко не одно и то же, потому что 1 квадратный метр это 10 000 квадратных сантиметров.

    Согласно международным правилам, кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Степени относятся к тем единицам, которые получены в результате присоединения приставок. Например, 1 км 2 = 1 (км) 2 = (10 3 м) 2 == 10 6 м 2 .

    Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Единство измерений достигается хранением, точным воспроизведением установленных единиц физических величин и передачей их размеров всем рабочим средствам измерений с помощью эталонов и образцовых средств измерений.

    Эталон - средство измерения, обеспечивающее хранение и воспроизведение узаконенной единицы физической величины, а также передачу ее размера другим средствам измерения.

    Создание, хранение и применение эталонов, контроль их состояния подчиняются единым правилам, установленным ГОСТ «ГСИ. Эталоны единиц физических величин. Порядок разработки, утверждения, регистрации, хранения и применения».

    По подчиненности эталоны подразделяются на первичные и вторичные и имеют следующую классификацию.

    Первичный эталон обеспечивает хранение, воспроизведение единицы и передачу размеров с наивысшей в стране точностью, достижимой в данной области измерений:

    - специальные первичные эталоны - предназначены для воспроизведения единицы в условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью технически неосуществима, например для малых и больших напряжений, СВЧ и ВЧ. Их утверждают в качестве государственных эталонов. Ввиду особой важности государственных эталонов и для придания им силы закона на каждый государственный эталон утверждается ГОСТ. Создает, утверждает, хранит и применяет государственные эталоны Государственный комитет по стандартам.

    Вторичный эталон воспроизводит единицу в особых условиях и заменяет при этих условиях первичный эталон. Он создается и утверждается для обеспечения наименьшего износа государствен­ного эталона. Вторичные эталоны в свою очередь делятся по назначению :

    Эталоны-копии - предназначены для передачи размеров единиц рабочим эталонам;

    Эталоны сравнения - предназначены для проверки сохранности государственного эталона и для замены его в случае порчи или утраты;

    Эталоны-свидетели - применяются для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

    Рабочие эталоны - воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства.

    Эталон единицы - одно средство или комплекс средств измерений, обеспечивающих хранение и воспроизведение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона.

    Воспроизведение единиц в зависимости от технико-экономических требований производится двумя способами :

    - централизованным - с помощью единого для всей страны или группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

    - децентрализованным - применим к производным единицам, размер которых не может передаваться прямым сравнением с эталоном и обеспечивать необходимую точность.

    Стандартом установлен многоступенчатый порядок передачи размеров единицы физической величины от государственного эталона всем рабочим средствам измерения данной физической величины с помощью вторичных эталонов и образцовых средств измерения различных разрядов от наивысшего первого к низшим и от образцовых средств к рабочим.

    Передача размера осуществляется различными методами по­верки, преимущественно известными методами измерений. Передача размера ступенчатым способом сопровождается потерей точности, однако многоступенчатость позволяет сохранять этало­ны и передавать размер единицы всем рабочим средствам измерения.