Излучение Вавилова–Черенкова. Голубое свечение

Изучая свечение раствора солей урана под действием -лучей радия, советский физик П. А. Черенков обратил внимание на то, что светится и сама вода, в которой солей урана нет. Оказалось, что при пропускании -лучей (см. Гамма-излучение) через чистые жидкости все они начинают светиться. С. И. Вавилов, под руководством которого работал П. А. Черенков, высказал гипотезу, что свечение связано с движением электронов, выбиваемых -квантами радия из атомов. Действительно, свечение сильно зависело от направления магнитного поля в жидкости (это наводило на мысль, что его причина - движение электронов).

Но почему движущиеся в жидкости электроны испускают свет? Правильный ответ на этот вопрос в 1937 г. дали советские физики И. Е. Тамм и И. М. Франк.

Электрон, двигаясь в веществе, взаимодействует с окружающими его атомами. Под действием его электрического поля атомные электроны и ядра смещаются в противоположные стороны - среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль траектории электрона, испускают электромагнитные световые волны. Если скорость электрона v меньше скорости распространения света в среде ( - показатель преломления), то электромагнитное поле будет обгонять электрон, а вещество успеет поляризоваться в пространстве впереди электрона. Поляризация среды перед электроном и за ним противоположна по направлению, и излучения противоположно поляризованных атомов, «складываясь», «гасят» друг друга. Когда , атомы, до которых еще не долетел электрон, не успевают поляризоваться, и возникает излучение, направленное вдоль узкого конического слоя с вершиной, совпадающей с движущимся электроном, и углом при вершине с . Возникновение светового «конуса» и условие излучения можно получить из общих принципов распространения волн.

Рис. 1. Механизм образования волнового фронта

Пусть электрон движется по оси ОЕ (см. рис. 1) очень узкого пустого канала в однородном прозрачном веществе с показателем преломления (пустой канал нужен, чтобы в теоретическом рассмотрении не учитывать столкновений электрона с атомами). Любая точка на линии ОЕ, последовательно занимаемая электроном, будет центром испускания света. Волны, исходящие из последовательных точек О, D, Е, интерферируют друг с другом и усиливаются, если разность фаз между ними равна нулю (см. Интерференция). Это условие выполняется для направления, составляющего угол 0 с траекторией движения электрона. Угол 0 определяется соотношением: .

Действительно, рассмотрим две волны, испущенные в направлении под углом 0 к скорости электрона из двух точек траектории - точки О и точки D, разделенных расстоянием . В точку В, лежащую на прямой BE, перпендикулярной ОВ, первая волна при - через время В точку F, лежащую на прямой BE, волна, испущенная из точки , придет в момент времени после испускания волны из точки О. Эти две волны будут в фазе, т. е. прямая будет волновым фронтом, если эти времена равны: . Та как условие равенства времен дает . Во всех направлениях, для которых , свет будет гаситься из-за интерференции волн, испущенных из участков траектории, разделенных расстоянием Д. Величина Д определяется очевидным уравнением , где Т - период световых колебаний. Это уравнение всегда имеет решение, если .

Если , то направления, в котором излученные волны, интерферируя, усиливаются, не существует, не может быть больше 1.

Рис. 2. Распределение звуковых волн и формирование ударной волны при движении тела

Излучение наблюдается только, если .

На опыте электроны летят в конечном телесном угле, с некоторым разбросом по скоростям, и в результате излучение распространяется в коническом слое около основного направления, определяемого углом .

В нашем рассмотрении мы пренебрегли замедлением электрона. Это вполне допустимо, так как потери на излучение Вавилова - Черенкова малы и в первом приближении можно считать, что теряемая электроном энергия не сказывается на его скорости и он движется равномерно. В этом принципиальное отличие и необычность излучения Вавилова - Черенкова. Обычно заряды излучают, испытывая значительные ускорения.

Электрон, обгоняющий свой свет, сходен с самолетом, летящим со скоростью, большей скорости звука. В этом случае перед самолетом тоже распространяется коническая ударная звуковая волна, (см. рис. 2).

Потери энергии на излучение у быстрых заряженных частиц почти в тысячу раз меньше потерь на ионизацию. Казалось бы, что столь незначительную энергию трудно использовать в практических приложениях. Однако по излучению Вавилова - Черенкова с помощью специальных детекторов удается измерить скорость, энергию, заряд быстрых частиц.

В 1958 г. за открытие и толкование этого эффекта советским физикам П. А. Черенкову, И. М. Франку и И. Е. Тамму была присуждена Нобелевская премия по физике.

Британская и американская рабочие группы 10 лет назад уже доказали о наличии фото-пигмента в глазу человека. Он сигнализирует организму, наступил день или ночь, лето или зима. Фото-пигмент реагирует, в частности, на синий свет. Синий свет показывает организму как будто это день – нужно бодрствовать.

Повышение и снижение показателей мелатонина регулируется количеством света, который захватывают наши глаза и передают в шишковидную железу (эпифиз). Когда темнеет, выработка мелатонина в эпифизе увеличивается, и нам хочется спать. Яркое освещение тормозит синтез мелатонина, сон как рукой снимает.

Сильнее всего выработка мелатонина подавляется светом с длиной волны 450-480 нанометров, то есть синим светом.

Сравнение с зелёным светом показало, что синий свет сдвигает в сторону дня стрелку биологических часов в среднем на три часа, а зелёный - только на полтора, и эффект синего света держится дольше. Поэтому, синий искусственный свет, охватывающий спектр видимых фиолетовых и собственно синих световых волн, становится угрожающе опасным в ночное время!

Поэтому учёные рекомендуют утром яркое синеватое освещение, чтобы быстрее проснуться, а вечером желательно избегать синей части спектра. Кстати, распространённые сейчас энергосберегающие, а особенно светодиодные лампы испускают очень много синих лучей.
Так получается, что проблемы здоровья человека вступают в этом вопросе в противодействие с энергосберегающими технологиями. Обычные лампы накаливания, которые сейчас повсеместно снимают с производства, выдавали куда меньше света синего спектра, чем люминесцентные или светодиодные нового поколения. И всё же при выборе ламп следует руководствоваться полученными знаниями и предпочесть синему любой другой цвет.

Чем опасно для здоровья ночное освещение?

Многие исследования последних лет находили связь между работой в ночную смену и воздействием искусственного света на возникновение или обострение у наблюдаемых болезней сердца, сахарного диабета, ожирения, а также рака предстательной и молочной железы. Хотя ещё не совсем понятно, отчего это происходит, но учёные считают, что всё дело в подавлении светом гормона мелатонина, который, в свою очередь, влияет на циркадный ритм человека («внутренние часы»).

Исследователи из Гарварда, пытаясь пролить свет на связь циркадного цикла с диабетом и ожирением, провели эксперимент среди 10 участников. Им постоянно смещали с помощью света сроки их циркадного цикла. В результате – уровень сахара в крови значительно возрос, вызвав преддиабетное состояние, а уровень гормона лептина, отвечающего за чувство сытости после еды, напротив, понизился (то есть человек испытывал даже при том, что организм биологически насытился).

Оказалось, даже очень тусклый свет от ночника способен разрушить сон и нарушить ход биологических часов! Кроме сердечно-сосудистых заболеваний и сахарного диабета, это приводит к началу депрессии.

Еще, обнаружено, что изменения в сетчатке глаз, по мере старения, могут привести к нарушению циркадных ритмов.

Поэтому проблемы со зрением у пожилых могут стать причиной развития многих хронических заболеваний и состояний, связанных с возрастом.

По мере старения хрусталик глаз приобретает жёлтый оттенок и пропускает меньше лучей. Да и в целом, наши глаза улавливают меньше света, особенно синей части спектра. Глаза 10-летнего ребёнка способны поглощать в 10 раз больше синего света, чем глаза 95-летнего старика. В 45 лет глаза человека поглощают лишь 50% синего спектра света, необходимого для обеспечения циркадных ритмов.

Свет с экрана компьютера мешает спать

Работа и игра на компьютере особенно отрицательно влияет на сон, так как при работе вы сильно сконцентрировались и сидите близко к яркому экрану.

Двух часов чтения с экрана устройства вроде iPad при максимальной яркости достаточно, чтобы подавить нормальную выработку ночного мелатонина.

Многие из нас каждый день по несколько часов проводят за компьютером. При этом не все знают, что правильная настройка дисплея монитора может сделать работу более эффективной и комфортной.

Программа F.lux исправляет это, делая свечение экрана адаптированным к времени суток. Свечение монитора будет плавно меняться от холодного днем к теплому ночью.

«F.lux» в переводе с английского означает течение, постоянное изменение, постоянное движение. Работать за монитором в любое время суток значительно комфортнее.

Легко ли ей пользоваться?
Благодаря низким системным требованиям, «F.lux» будет отлично работать даже на слабых компьютерах. Простая установка не займет много времени. Все, что требуется – это укать Ваше местонахождение на земном шаре. Карты Гугл помогут сделать это менее, чем за минуту. Теперь программа настроена и работает в фоновом режиме, создавая комфорт для Ваших глаз.

«F.lux» полностью бесплатна. Есть версии для Windows, Mac OS и Linux.

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

Мировая научная общественность уже не первое десятилетие спорит о вреде и пользе воздействия синего света на человеческий организм. Представители одного лагеря заявляют о серьезной угрозе и разрушительном действии синего света, а их оппоненты приводят веские доводы в пользу оздоровительного эффекта от него. В чем причина этих разногласий? Кто прав и, как разобраться, нужен ли людям синий свет для поддержания здоровья? Или природа что-то перепутала, включив его в доступный человеческому восприятию видимый спектр…

Рисунок 1. Электромагнитное излучение в диапазоне длин волн от 380 до 760 нм

Особую актуальность все эти вопросы имеют для людей, страдающих катарактой и задумавшихся об имплантации интраокулярных линз (ИОЛ) . Многие производители предлагают ИОЛ, изготовленные из материалов, не пропускающих электромагнитное излучение в диапазоне длин волн 420–500 нм, характерном для синего света (узнать такие линзы легко, они имеют желтоватый оттенок).

Но один из лидеров рынка искусственных хрусталиков - компания Abbott Medical Optics (АМО) - осознанно плывет против течения, борясь со стереотипами и отстаивая свою принципиальную и обоснованную позицию. АМО создает прозрачные линзы, подобно естественным хрусталикам молодых здоровых глаз полностью пропускающие синий свет в видимом диапазоне.

Отвечая на этот вопрос, чем обусловлен столь серьезный выбор, возможно, нам удастся развеять миф о вреде синего света, прежде принимавшийся большинством в качестве неопровержимого постулата.

Осторожно! Синий свет

Цвета всех видимых объектов, обусловлены различными длинами волн электромагнитного излучения. Попадая в глаза, отражённый от этих от этих объектов свет вызывает реакцию светочувствительных клеток сетчаски, инициирующую формирование нервных импульсов, переправляемых по зрительному нерву в мозг, где и формируется привычная "карптина мира" - изображение, каким мы его видим. Наши глаза воспринимают электромагнитное излучение в диапазоне длин волн от 380 до 760 нм.
Так как коротковолновое излучение (в данном случае синий свет) сильнее рассеивается в структурах глаза, оно ухудшает качество зрения и провоцирует возникновение симптомов зрительного утомления. Но основные опасения относительно синего света связаны не с этим, а с его действием на сетчатку. Помимо сильного рассеяния, коротковолновое излучение обладает большой энергией. Оно вызывает фотохимическую реакцию в клетках сетчатки, в ходе которой продуцируются свободные радикалы, оказывающие повреждающее воздействие на фоторецепторы - колбочки и палочки.

Эпителий сетчатки не способен утилизировать продукты метаболизма, образующиеся вследствие данных реакция. Эти продукты накапливаются и вызывают дегенерацию сетчатки . В результате длительных экспериментов, проводимых независимыми группами ученых в разных странах, таких как Швеция, США, Россия, Великобритания, удалось установить, что наиболее опасной является полоса длин волн, расположенная в сине-фиолетовой части спектра примерно от 415 до 455 нм.

Однако нигде не сказано и на практике не подтверждено, что синий свет с длиной волны из данного диапазона может моментально лишить человека здорового зрения. Лишь продолжительное, избыточное его воздействие на глаза может способствовать возникновению негативных эффектов. Наиболее опасным является даже не солнечный, а искусственный свет, исходящий от энергосберегающих ламп и экранов различных электронных устройств. В спектрах такого искусственного света преобладает опасный набор длин волн от 420 до 450 нм.


Рисунок 2. Воздействие коротковолнового излучения на структуру глаза

Не весь спектр синего света вреден для глаз!

Было доказано, что определенная часть диапазона синего света отвечает за правильное функционирование биоритмов, иначе говоря, за регуляцию «внутренних часов». Несколько лет назад в моде была теория замены утреннего кофе пребыванием в помещении с синими лампами . Действительно, результаты многих экспериментов демонстрируют, что синий свет помогает людям проснуться, заряжает энергией, улучшает внимание и активизирует мыслительный процесс, влияя на психомоторные функции. Такой эффект связан с воздействием синего света с длиной волны порядка (450–480 нм) на выработку жизненно важного гормона мелатонина, отвечающего за регуляцию суточного ритма, а также за изменение биохимического состава крови, улучшение работы сердца и легких, стимуляцию иммунной и эндокринной системы, влияющего на процессы адаптации при смене часовых поясов и даже на замедление процессов старения,.

Также стоит отметить незаменимую роль синего света в обеспечении высокой цветовой контрастной чувствительности и в поддержании высокой остроты зрения в сумеречное время, а также в условиях плохой освещенности.

Доказано самой природой!

Еще одним подтверждением пользы синего света является факт, связанный с возрастными изменениями естественного хрусталика. С годами хрусталик становиться более плотным и приобретает желтоватый оттенок. В результате этого происходит изменение светопропускания глаз - в них происходит заметная фильтрация синей области спектра. Корреляция между данными изменениями и нарушением циркадных ритмов у пожилых людей была замечена давно. Установлено, что у таких людей гораздо чаще возникают проблемы со сном: они без видимых причин просыпаются среди ночи, не могут надолго погружаться в глубокий сон, при этом в дневное время испытывают сонливость и дремлют. Это происходит за счет снижения восприимчивости их глаз к синему свету, а значит и к уменьшению выработки мелатонина в дозах, необходимых для регуляции здорового суточного ритма.

Фильтрация должна быть разумной!

Современные технические возможности и постоянно расширяющие научные сведения позволяют создавать специальные очковые покрытия, уменьшающие пропускание вредной части спектра видимого излучения. Такие решения доступны всем, кто следит за сохранением здоровья глаз. Что же касается людей с установленными интраокулярными линзами, для них действуют те же правила предосторожности. Чрезмерное пребывание на солнце или под влиянием искусственных источников света, содержащих коротковолновую синюю составляющую, может наносить вред их организму. Но это не означает, что их ИОЛ должны полностью блокировать попадание в глаза синего света. Люди с искусственными хрусталиками, так же, как и все остальные могут и должны пользоваться внешними средствами оптической защиты.

Но начисто лишать их возможности воспринимать видимый (и в том числе полезный!) синий свет, значит, подвергать их здоровье серьезной опасности. Проще говоря, человек всегда может надеть солнцезащитные очки, но вынуть из глаза интраокулярную линзу при всем желании сам не сможет.

Рисунок 3. Люди с ИОЛ должны пользоваться внешними средствами оптической защиты

Все вышесказанное относится к ответу на вопрос о выборе ИОЛ, о пользе тех из них, свойства которые максимально приближены к свойствам естественных хрусталиков, а еще о том, как важно не забывайте следить за своим здоровьем каждый день!

Куда смотрят разрушители мифов?!

В завершении хочется добавить еще несколько слов уже не о медицинской, а о маркетинговой составляющей спора о синем свете. Практика имплантации интраокулярных линз берет свое начало с середины прошлого века. По мере развития технологий, расширения научных знаний и совершенствования материалов, ИОЛ становились все более эффективными и безопасными.

Однако изначально существовал целый ряд трудностей, которые только предстояло преодолеть. Одной из них являлась разработка стабильного прозрачного биосовместимого полимера, пригодного для производства искусственных хрусталиков. Как раз для стабилизации к этому полимеру примешивали специальные вещества, имевшие желтоватый цвет. По естественным физическим причинам такие ИОЛ не пропускали синий свет внутрь глаза.

И производителям, которые в большинстве своем параллельно занимались созданием специальных защитных покрытий для очковых линз, необходимо было каким-то образом объяснить «необходимость» такой фильтрации, так как устранить ее они еще не могли. Тогда и возникло учение о вреде синего света для сетчатки, получившее широкую известность и до сих пор пугающее непосвященных страшными мифами, так до конца и не доказанными.

Литература:

  1. Журнал «Веко», № 4/2014, «Осторожно, синий свет!», О.Щербакова.
  2. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans, C. Martyn Beaven, Johan Ekström PLOS ONE journal, October 7, 2013.
  3. Руководство для врачей «Фототерапия», В. И. Крандашов, Е. Б. Петухов, М.: Медицина 2001.
  4. Журнал «Наука и жизнь», № 12/ 2011.

При прохождении частицы через материальную среду со скоростью, превышающей скорость распространения света в этой среде, наблюдается характерное излучение.

При прохождении света через прозрачный материал, например стекло, свет распространяется медленнее, чем в вакууме. Как при перелете через континент с промежуточными посадками пассажир неизбежно теряет во времени по сравнению с беспосадочным перелетом, так и световые лучи затормаживаются, взаимодействуя с атомами среды, и не могут двигаться так же быстро, как в вакууме. Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолет, преодолевая звуковой барьер. Представить это явление нам поможет аналогия с волнами Гюйгенса (см. Принцип Гюйгенса), расходящимися вовне концентрическими кругами со скоростью света, причем каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова .

Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, физики могут рассчитать по нему скорость частицы. В сочетании с результатами других замеров это позволяет обнаруживать элементарные частицы на своем оборудовании. В современных лабораториях детекторы Черенкова установлены в комплексе с другими измерительными приборами на огромных многоэтажных стеллажах. В качестве примера можно привести детектор «Супер-Камиоканде» в лаборатории г. Камиока в Японии, который вмещает 50 000 тонн воды и оснащен 11 000 светочувствительных элементов. Излучение Черенкова можно наблюдать и невооруженным взглядом на небольших исследовательских ядерных реакторах, которые часто устанавливают на дне бассейна для обеспечения радиационной защиты. Сердечник реактора в этом случае окружен эффектным голубым свечением — это и есть излучение Черенкова под воздействием быстрых частиц, излучаемых в результате ядерной реакции.

Поскольку анализ этого излучения сыграл важнейшую роль в зарождающейся экспериментальной ядерной физике, в 1958 году Черенков, совместно с Игорем Таммом (1895-1971) и Ильей Франком (1908-90), был удостоен Нобелевской премии по физике. Тамм и Франк в 1937 году окончательно установили механизм возникновения свечения под воздействием электронов, движущихся быстрее скорости света в среде (например, в воде), а вслед за тем предсказали вскоре обнаруженное излучение Черенкова в твердых телах и газах.

Более точное название излучения Черенкова, принятое в российской научной традиции, — «излучение Черенкова—Вавилова» или «эффект Черенкова—Вавилова». Павел Черенков проводил свои исследования под руководством Сергея Ивановича Вавилова, который умер в 1951 г. и потому, согласно правилам присуждения Нобелевских премий, не был включен в число лауреатов. — Прим. переводчика.

Павел Алексеевич ЧЕРЕНКОВ1904-90

Советский физик. Родился в селе Новая Чигла Воронежской губернии в крестьянской семье. В 1928 году окончил Воронежский университет, два года работал учителем. С 1930 года и до конца своих дней работал в Физическом институте им. Лебедева Академии наук СССР (ФИАН). После работы, приведшей к открытию излучения Черенкова, занимался изучением космических лучей и разработкой ускорителей тяжелых частиц.