Будет ли гореть свеча на борту мкс. Огонь в невесомости горит совсем не так, как на земле - ученые столкнулись со странным явлением

Эксперимент FLEX, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.


Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.


Разница пламени на Земле (слева) и в условиях невесомости (справа) очевидна. Так или иначе, человечеству вновь придется осваивать огонь – на этот раз в космосе.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Огонь в невесомости September 12th, 2015

Слева - свечка горит на Земле, а справа - в невесомости.

Вот подробности …

Эксперимент, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.

Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение — холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Эксперимент FLEX, проведенный на борту Международной космической станции, дал неожиданные результаты – открытое пламя повело себя совсем не так, как ожидали ученые.

Как любят говорить некоторые ученые, огонь – это древнейший и самый успешный химический эксперимент человечества. Действительно, огонь шел с человечеством всегда: от первых костров, на которых жарили мясо, до пламени ракетного двигателя, который доставил человека на Луну. По большому счету, огонь является символом и орудием прогресса нашей цивилизации.


Разница пламени на Земле (слева) и в условиях невесомости (справа) очевидна. Так или иначе, человечеству вновь придется осваивать огонь – на этот раз в космосе.

Доктор Форман А. Уильямс, (Forman A. Williams), профессор физики в Калифорнийском университете в Сан-Диего, давно работает над изучением пламени. Обычно огонь – это сложнейший процесс тысяч взаимосвязанных химических реакций. Например в пламени свечи углеводородные молекулы испаряются с фитиля, расщепляются под воздействием тепла и соединяются с кислородом, производя свет, тепло, CO2 и воду. Некоторые из углеводородных фрагментов в форме кольцеобразных молекул, называемых полициклическими ароматическими углеводородами, образуют сажу, которая может также сгореть либо превратиться в дым. Знакомую каплевидную форму огоньку свечи придает гравитация и конвекция: горячий воздух поднимается вверх и затягивает в пламя свежий холодный воздух, благодаря чему пламя тянется вверх.

Но, оказывается, в невесомости все происходит иначе. В ходе эксперимента под названием FLEX, ученые изучали огонь на борту МКС, чтобы разработать технологии тушения пожаров в невесомости. Исследователи поджигали небольшие пузыри гептана внутри специальной камеры и смотрели, как ведет себя пламя.

Ученые столкнулись со странным явлением. В условиях микрогравитации, пламя горит по-другому оно образует маленькие шарики. Это явление было ожидаемым, поскольку в отличие от пламени на Земле, в невесомости кислород и топливо встречаются в тонком слое на поверхности сферы, Это простая схема, которая отличается от земного огня. Тем не менее, обнаружилась странность: ученые наблюдали продолжение горения огненных шариков даже после того, как по всем расчетам горение должно было прекратиться. При этом огонь перешел в так называемую холодную фазу – он горел очень слабо, настолько, что пламя невозможно было увидеть. Тем не менее, это было горение, и пламя могло мгновенно вспыхнуть с большой силой при контакте с топливом и кислородом.

Обычно видимый огонь горит при высокой температуре между 1227 и 1727 градусами Цельсия. Гептановые пузыри на МКС также ярко горели при этой температуре, но по мере исчерпания топлива и остывания, началось совсем другое горение - холодное. Оно проходит при относительно низкой температуре 227-527 градусов Цельсия и производят не сажу, CO2 и воду, а более токсичные моноксид углерода и формальдегид.

Похожие типы холодного пламени в лабораториях воспроизводились и на Земле, но в условиях гравитации сам по себе такой огонь неустойчив и всегда быстро затухает. На МКС, однако, холодное пламя может устойчиво гореть несколько минут. Это не очень приятное открытие, так как холодный огонь предоставляет собой повышенную опасность: он легче зажигается, в том числе самопроизвольно, его сложнее обнаружить и, к тому же, он выделяет больше токсичных веществ. С другой стороны, открытие может найти практическое применение, например в технологии HCCI, которая предполагает зажигание топлива в бензиновых моторах не от свечей, а от холодного пламени.

Российские космонавты впервые вынесли олимпийский огонь в открытый космос. Факел с символом дружбы и мира вынес ветеран отечественной космонавтики Олег Котов. Для того чтобы олимпийский огонь не был потерян на высоте в 420 километров над Землей, факел привязали к скафандру.

Исторический момент прямо в открытом космосе был снят космонавтом Сергеем Рязанским. На протяжении часа участники исторического события передавали друг другу факел, имитируя олимпийскую эстафету и позируя перед камерами коллег, снимающих из иллюминаторов МКС. Затем олимпийский огонь был занесен в шлюзовый отсек, а космонавты приступили к плановым работам в открытом космосе.

Символ олимпийских игр впервые побывал в открытом космосе. Организаторы мероприятия решили, что факел гореть не будет. В условиях открытого космоса это просто не возможно из-за отсутствия кислорода, а на борту МКС открытый огонь запрещен в целях безопасности. Факел вернется на землю 11 ноября. Именно от него будет зажжен в огонь Олимпийской Чаше во время открытия XXII Зимних Олимпийских игр в Сочи.

Публикации по теме

05 марта 2019, 09:32

Трое из пяти россиян теряют свои данные и деньги из-за некомпетентности программистов.По итогам 2018 года эксперты в области информационных технологий подсчитали, что почти 80% финансовых веб-приложений представляют опасность для собственных пользователей. К финансовым веб-приложениям эксперты...

23 февраля 2019, 12:43

Миро объясняет, что такую позицию имеют «курицы», которые больны идеей в 17-18 лет поскорее выскочить замуж и родить, а потом всю жизнь висеть на шее мужика.Лена Миро опубликовала в своем ЖЖ-блоге новый пост, который назвала «Чего курица никогда не простит». В нем девушка поделилась историей своей...

Так уж устроен любознательный человек: нет ничего лучше и занимательней интересного, необычного эксперимент. А если эксперимент называется «огонь в Космосе», ним заинтересуются миллионы. Те кто следит за научными новостями, помнят потрясающие фото и видео 11 июня 2017 г., как горел в невесомости грузовой корабль Cygnus OA-7 «Джон Гленн». Намеренный поджог и все происходящее записывалось на камеру. С какой целью? Об этом и стоит поговорить подробнее.

Суть игры с огнем в невесомости

Не стоит объяснять почему огонь в Космосе опаснее, чем на Земле. На Земле работают законы гравитации, в случае пожара есть куда убежать и чем погасить огонь. А как быть, если возникает огонь в открытом Космосе? Возможно ли это вообще? Даст ли пламя дым? И как быстро распространится?

Эти вопросы решили выяснить исследователи НАСА. Для создателей космических кораблей крайне важно знать горит ли огонь в Космосе, как поведет себя дым в невесомости. Фото и видео трех экспериментов присутствуют в открытом доступе.

Эксперименты на тему «как огонь горит в Космосе» (официально SAFFIRE) проводились с 2016 года. Суть заключалась в поджоге лоскута ткани из смеси хлопка и стеклопластика в стальной коробке размером 1 метр на 1,5 метра. При этом поджог осуществлялся в потоке воздуха вентиляторов. Делалось это чтобы понять, как огонь в вакууме поведет себя в разных условиях. Происходящее в ходе эксперимента снималось на фото и видео.

Справа огонь на Земле, слева огонь в невесомости

Во время второго эксперимента сожгли в такой же коробке в условиях невесомости девять образцов разных материалов, используемых в строительстве космических кораблей. Цель: определить огнестойкость образцов, влияние толщины материала на скорость распространения огня в Космосе.

При третьем и последнем эксперименте жгли повторно ткань с нитями из оргстекла, используемую для изготовления спецодежды, но при измененной скорости воздушного потока. Полученные после первого аналогичного эксперимента данные вводились в компьютер, который их обработал и выдал результаты предсказывающие вероятность и скорость возгорания материала. Теперь требовалось их проверить, чтобы убедиться в правильности работы компьютерного модуля.

Что показали результаты

Что же выяснилось в итоге? Компьютерный модуль ошибался, но в другую сторону: возгорание и распространение огня происходило медленнее, чем предполагалось. Лоскуты больших размеров сгорали медленнее, чем маленькие образцы, и давали меньше дыма. А это означает, что пожар обнаружат позже и устранить сложнее.

В целом установили: огонь в условиях невесомости горит иначе, чем на Земле. Отличия заключаются в следующем:

  • огонь в космосе тянет в себя кислород из воздуха в 100 раз медленнее чем на Земле;
  • пламя возгорается даже при низкой концентрации кислорода;
  • возгорание возможно при низких температурах;
  • в условиях невесомости огонь не выбрасывает продукты сгорания, так как не нагреваются газы кислорода;
  • если поджечь каплю метанола, горение продолжается даже после того, как огонь исчез.

Последний парадокс поразил исследователей больше всего, на данный момент ученые не могут объяснить его причины.

Ответ на вопрос есть ли огонь в космосе получили давно. А теперь благодаря опасным «зажиганиям» НАСА в невесомости еще и точно известно, как он ведет себя в разных условиях. Опыты с поджогами не окончились и вскоре будут оглашены новые результаты.