Прямая линия. Уравнение прямой. Способы аналитического задания. Деление отрезка в заданном соотношении

Деление отрезка в заданном соотношении.

Рассмотрим в пространстве две различные точки M 1 и M 2 и прямую, определяемую этими точками. Выберем на этой прямой некоторое направление. На полученной оси точки M 1 и M 2 определяют направленный отрезок M 1 M 2 . Пусть M – любая, отличная от M 2 точка указанной оси. Число

l=M 1 M/MM 2 (*)

называется отношением, в котором точка M делит направленный отрезок M 1 M 2 . Таким образом, любая, отличная от M 2 точка M делит отрезок M 1 M 2 в некотором отношении l, где l определяется равенством (*).

Уравнение прямой с угловым коэффициентом.

Пусть заданы две прямые и , (). Тогда, если , то угол между этими прямыми можно найти из формулы

Если , то прямые перпендикулярны.

Доказательство . Как известно из школьного курса математики, угловой коэффициент в уравнении прямой равен тангенсу угла наклона прямой к оси . Из рис. 11.10 видно, что .

Так как , , то при выполняется равенство

что дает формулу

Если же , то , откуда

Следовательно, и .

Общее уравнение прямой.

Докажем сначала, что если на плоскости П задана произвольная прямая линия L и фиксированная произвольная декартова прямоугольная систему Оху, то прямая L определяется в этой системе уравнением первой степени.

Достаточно доказать, что прямая L определяется уравнением первой степени при каком-то одном специальном выборе декартовой прямоугольной системы на плоскости П, ибо тогда она будет определяться уравнением первой степени и при любом выборе декартовой прямоугольной системы на плоскости П. Направим ось Ох вдоль прямой L, а ось Оу перпендикулярно к ней. Тогда уравнением прямой будет уравнение первой степени у=0. в самом деле, этому уравнению будут удовлетворять координаты любой точки, лежащей на прямой L, и не будут удовлетворять координаты ни одной точки, не лежащей на прямой L.

Докажем теперь, что если на плоскости П фиксирована произвольная декартова система Оху, то всякое уравнение первой степени с двумя переменными х и у определяет относительно этой системы прямую линию.



В самом деле пусть фиксирована произвольная декартова прямоугольная системы Оху и задано уравнение первой степени Ах+Ву+с=0, в котором А В С- какие угодно постоянные, причем из постоянных А и В хотя бы одна отлична от 0. уравнение заведомо имеет хотя бы одно решение х0 и у0, т.е. существует хотя бы одна точка М(х 0, у 0) координаты которой удовлетворяют уравнению Ах 0 +Ву 0 +С=0 . вычитая из уравнения первой степени уравнение где подставлена точка М(х 0, у 0), мы получим уравнение: А(х- х 0)+В(у- у 0)=0 (1) , эквивалентное уравнении первой степени. Достаточно доказать, что уравнение определяет относительно системы некоторую прямую. Мы докажем, что уравнение (1) определяет прямую L, проходящую через точку М(х 0, у 0) и перпендикулярную вектору n={A,B}. В самом деле, если точка М(х,у) лежит на указанной прямой L, то ее координаты удовлетворяют уравнению (1), ибо в этом случае векторы n={A,B} и М 0 М={x-x 0, у-у 0 } ортогональныи их скалярное произведение А(х- х 0)+В(у- у 0) равно нулю. Если же точка М(х,у) не лежит на указанной прямой, то ее координаты не удовлетворяют уравнению (1), ибо в этом случае векторы n={A,B} и М 0 М={x-x 0, у-у 0 } не ортогональны и поэтому их скалярное произведение не равно нулю. Утверждение доказано

Уравнение Ах+Ву+С=0 с произвольными коэффициентами А В иС такими, что А и В не равны нулю одновременно, называется общим уравнением прямой. Мы доказали, что прямая определяемая общим уравнением Ах+Ву+С=0 ортогональна к вектору n={A,B}. Этот последний вектор мы будем называть нормальным вектором прямой.

Каноническое уравнение прямой. Любой ненулевой вектор, параллельный данной прямой, будем называть направляющим вектором этой прямой. Поставим перед собой задачу: найти уравнение прямой, проходящей через данную точку М 1 (х 1 ,у 1) и имеющей заданный направляющий вектор q={l,m}. Очевидно точка М(х,у) лежит на указанной прямой тогда и только тогда, когда векторы М 1 М={x-x 1, y-y 1 } и q={m,l} коллинеарны, тогда и только тогда, когда координаты этих векторов пропорциональны, т.е.

Рассмотрим теперь полное уравнение плоскости и покажем, что оно может быть приведено к следующему виду. , называемому уравнением плоскости «в отрезках». Так как коэффициенты А В С отличны от нуля то мы можем переписать уравнение в виду и затем положить А=-С/А b=-C/B. В уравнении плоскости в отрезках числа a, b имеют простой геометрический смысл: они равны величинам отрезков, которые отсекает плоскость на осях Ох, Оу соответственно (отрезки отсчитываются от начала координат). Чтобы убедиться в этом, достаточно найти точки пересечения прямой, определяемой уравнением прямой в отрезках с осями координат. Например точка пересечения с осью Ох определяется из совместного рассмотрения уравнения прямой в отрезках с уравнением у=0 оси Ох. Мы получим координаты точки пересечения х=а у=0. Аналогично устанавливается, что координаты точки пересечения прямой с осью Оу имеют вид х=0 и у=b.

Уравнение прямой, проходящей через две заданные точки

M 1 (х 1, у 1) и М 2 (x 2, y 2)

Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.

Yandex.RTB R-A-339285-1

Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.

Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой.Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.

Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a , проходящей через две несовпадающие точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) , находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющего вид x - x 1 a x = y - y 1 a y , задается прямоугольная система координат О х у с прямой, которая пересекается с ней в точке с координатами M 1 (x 1 , y 1) с направляющим вектором a → = (a x , a y) .

Необходимо составить каноническое уравнение прямой a , которая пройдет через две точки с координатами M 1 (x 1 , y 1) и M 2 (x 2 , y 2) .

Прямая а имеет направляющий вектор M 1 M 2 → с координатами (x 2 - x 1 , y 2 - y 1) , так как пересекает точки М 1 и М 2 . Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение с координатами направляющего вектора M 1 M 2 → = (x 2 - x 1 , y 2 - y 1) и координатами лежащих на них точках M 1 (x 1 , y 1) и M 2 (x 2 , y 2) . Получим уравнение вида x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 или x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 .

Рассмотрим рисунок, приведенный ниже.

Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M 1 (x 1 , y 1) и M 2 (x 2 , y 2) . Получим уравнение вида x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ или x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ .

Рассмотрим подробней на решении нескольких примеров.

Пример 1

Записать уравнение прямой, проходящей через 2 заданные точки с координатами M 1 - 5 , 2 3 , M 2 1 , - 1 6 .

Решение

Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x 1 , y 1 и x 2 , y 2 принимает вид x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . По условию задачи имеем, что x 1 = - 5 , y 1 = 2 3 , x 2 = 1 , y 2 = - 1 6 . Необходимо подставить числовые значения в уравнение x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . Отсюда получим, что каноническое уравнение примет вид x - (- 5) 1 - (- 5) = y - 2 3 - 1 6 - 2 3 ⇔ x + 5 6 = y - 2 3 - 5 6 .

Ответ: x + 5 6 = y - 2 3 - 5 6 .

При необходимости решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.

Пример 2

Составить общее уравнение прямой, проходящей через точки с координатами M 1 (1 , 1) и M 2 (4 , 2) в системе координат О х у.

Решение

Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x - 1 4 - 1 = y - 1 2 - 1 ⇔ x - 1 3 = y - 1 1 .

Приведем каноническое уравнение к искомому виду, тогда получим:

x - 1 3 = y - 1 1 ⇔ 1 · x - 1 = 3 · y - 1 ⇔ x - 3 y + 2 = 0

Ответ: x - 3 y + 2 = 0 .

Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y = k x + b . Если необходимо найти значение углового коэффициента k и числа b , при которых уравнение y = k x + b определяет линию в системе О х у, которая проходит через точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) , где x 1 ≠ x 2 . Когда x 1 = x 2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М 1 М 2 определена общим неполным уравнением вида x - x 1 = 0 .

Потому как точки М 1 и М 2 находятся на прямой, тогда их координаты удовлетворяют уравнению y 1 = k x 1 + b и y 2 = k x 2 + b . Следует решить систему уравнений y 1 = k x 1 + b y 2 = k x 2 + b относительно k и b .

Для этого найдем k = y 2 - y 1 x 2 - x 1 b = y 1 - y 2 - y 1 x 2 - x 1 · x 1 или k = y 2 - y 1 x 2 - x 1 b = y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 1 или y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.

Пример 3

Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M 2 (2 , 1) и y = k x + b .

Решение

Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y = k x + b . Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M 1 (- 7 , - 5) и M 2 (2 , 1) .

Точки М 1 и М 2 располагаются на прямой, тогда их координаты должны обращать уравнение y = k x + b верное равенство. Отсюда получаем, что - 5 = k · (- 7) + b и 1 = k · 2 + b . Объединим уравнение в систему - 5 = k · - 7 + b 1 = k · 2 + b и решим.

При подстановке получаем, что

5 = k · - 7 + b 1 = k · 2 + b ⇔ b = - 5 + 7 k 2 k + b = 1 ⇔ b = - 5 + 7 k 2 k - 5 + 7 k = 1 ⇔ ⇔ b = - 5 + 7 k k = 2 3 ⇔ b = - 5 + 7 · 2 3 k = 2 3 ⇔ b = - 1 3 k = 2 3

Теперь значения k = 2 3 и b = - 1 3 подвергаются подстановке в уравнение y = k x + b . Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y = 2 3 x - 1 3 .

Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.

Запишем каноническое уравнение прямой, проходящей через M 2 (2 , 1) и M 1 (- 7 , - 5) , имеющее вид x - (- 7) 2 - (- 7) = y - (- 5) 1 - (- 5) ⇔ x + 7 9 = y + 5 6 .

Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x + 7 9 = y + 5 6 ⇔ 6 · (x + 7) = 9 · (y + 5) ⇔ y = 2 3 x - 1 3 .

Ответ: y = 2 3 x - 1 3 .

Если в трехмерном пространстве имеется прямоугольная система координат О х у z с двумя заданными несовпадающими точками с координатами M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , проходящая через них прямая M 1 M 2 , необходимо получить уравнение этой прямой.

Имеем, что канонические уравнения вида x - x 1 a x = y - y 1 a y = z - z 1 a z и параметрические вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ способны задать линию в системе координат О х у z , проходящую через точки, имеющие координаты (x 1 , y 1 , z 1) с направляющим вектором a → = (a x , a y , a z) .

Прямая M 1 M 2 имеет направляющий вектор вида M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) , где прямая проходит через точку M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , отсюда каноническое уравнение может быть вида x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 или x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1 , в свою очередь параметрические x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ z = z 1 + (z 2 - z 1) · λ или x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ z = z 2 + (z 2 - z 1) · λ .

Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве и уравнение прямой.

Пример 4

Написать уравнение прямой, определенной в прямоугольной системе координат О х у z трехмерного пространства, проходящей через заданные две точки с координатами M 1 (2 , - 3 , 0) и M 2 (1 , - 3 , - 5) .

Решение

Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 .

По условию имеем, что x 1 = 2 , y 1 = - 3 , z 1 = 0 , x 2 = 1 , y 2 = - 3 , z 2 = - 5 . Отсюда следует, что необходимые уравнения запишутся таким образом:

x - 2 1 - 2 = y - (- 3) - 3 - (- 3) = z - 0 - 5 - 0 ⇔ x - 2 - 1 = y + 3 0 = z - 5

Ответ: x - 2 - 1 = y + 3 0 = z - 5 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.