Как найти общий знаменатель трех чисел. Нод и нок чисел - наибольший общий делитель и наименьшее общее кратное нескольких чисел. Нахождение НОК с помощью разложения чисел на простые множители


Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).

В реальной жизни нам необходимо оперировать обыкновенными дробями. Однако чтобы сложить или вычесть дроби с разными знаменателями, например, 2/3 и 5/7, нам потребуется найти общий знаменатель. Приведя дроби к общему знаменателю, мы сможем легко осуществить операции сложения или вычитания.

Определение

Дроби - одна из самых сложных тем в начальной арифметике, и рациональные числа пугают школьников, которые встречаются с ними впервые. Мы привыкли оперировать с числами, записанными в десятичном формате. Куда проще сходу сложить 0,71 и 0,44, чем суммировать 5/7 и 4/9. Ведь для суммирования дробей их необходимо привести к общему знаменателю. Однако дроби куда точнее представляют значение величин, чем их десятичные эквиваленты, а в математике представление рядов или иррациональных чисел в виде дроби становится приоритетной задачей. Такая задача носит название «приведение выражения к замкнутому виду».

Если и числитель, и знаменатель дроби умножить или разделить на один и тот же коэффициент, то значение дроби не изменится. Это одно из самых важных свойств дробных чисел. К примеру, дробь 3/4 в десятичной форме записывается как 0,75. Если умножить числитель и знаменатель на 3, то получим дробь 9/12, что точно также равняется 0,75. Благодаря этому свойству мы можем умножать разные дроби таким образом, чтобы они все имели одинаковые знаменатели. Как это сделать?

Поиск общего знаменателя

Наименьший общий знаменатель (НОЗ) - это наименьшее общее кратное для всех знаменателей выражения. Найти такое число мы можем тремя способами.

Использование максимального знаменателя

Это один из самых простых, но трудоемких методов поиска НОЗ. Вначале из знаменателей всех дробей выписываем самое большое число и проверяем его делимость на меньшие числа. Если делится, то наибольший знаменатель и есть НОЗ.

Если в предыдущей операции числа делятся с остатком, то необходимо самое большое из них умножить на 2 и повторить проверку на делимость. Если оно делится без остатка, то новый коэффициент становится НОЗ.

Если нет, то самый большой знаменатель умножается на 3, 4 , 5 и так далее, пока не будет найдено наименьшее общее кратное для нижних частей всех дробей. На практике это выглядит так.

Пусть у нас есть дроби 1/5, 1/8 и 1/20. Проверяем 20 на делимость 5 и 8. 20 не делится на 8. Умножаем 20 на 2. Проверяем 40 на делимость 5 и 8. Числа делятся без остатка, следовательно, НОЗ (1/5, 1/8 и 1/20) = 40, а дроби превращаются в 8/40, 5/40 и 2/40.

Последовательный перебор кратных

Второй способ - это простой перебор кратных и выбор из них наименьшего. Для поиска кратных мы умножаем число на 2, 3, 4 и так далее, поэтому количество кратных устремляется в бесконечность. Ограничить эту последовательность можно пределом, которое представляет собой произведение заданных чисел. К примеру, для чисел 12 и 20 НОК находится следующим образом:

  • выписываем числа, кратные 12 - 24, 48, 60, 72, 84, 96, 108, 120;
  • выписываем числа, кратные 20 - 40, 60, 80, 100, 120;
  • определяем общие кратные - 60, 120;
  • выбираем наименьшее из них - 60.

Таким образом, для 1/12 и 1/20 общим знаменателем будет 60, а дроби преобразуются в 5/60 и 3/60.

Разложение на простые множители

Этот способ нахождения НОК наиболее актуален. Данный метод подразумевает разложение всех чисел из нижних частей дробей на неделимые множители. После этого составляется число, которое содержит множители всех знаменателей. На практике это работает так. Найдем НОК для той же пары 12 и 20:

  • раскладываем на множители 12 - 2 × 2 × 3;
  • раскладываем 20 - 2 × 2 × 5;
  • объединяем множители таким образом, чтобы они содержали в себе числа и 12, и 20 - 2 × 2 × 3 × 5;
  • перемножаем неделимые и получаем результат - 60.

В третьем пункте мы объединяем множители без повторов, то есть двух двоек достаточно для формирования 12 в комбинации с тройкой и 20 - с пятеркой.

Наш калькулятор позволяет определить НОЗ для произвольного количества дробей, записанных как в обыкновенной, так и в десятичной форме. Для поиска НОЗ вам достаточно ввести значения через табуляцию или запятую, после чего программа вычислит общий знаменатель и выведет на экран преобразованные дроби.

Пример из реальной жизни

Сложение дробей

Пусть в задаче по арифметике нам необходимо сложить пять дробей:

0,75 + 1/5 + 0,875 + 1/4 + 1/20

Решение вручную производилось бы следующим способом. Для начала нам необходимо представить числа в одной форме записи:

  • 0,75 = 75/100 = 3/4;
  • 0,875 = 875/1000 = 35/40 = 7/8.

Теперь у нас есть ряд обыкновенных дробей, которые необходимо привести к одинаковому знаменателю:

3/4 + 1/5 + 7/8 + 1/4 + 1/20

Так как у нас 5 слагаемых, проще всего использовать способ поиска НОЗ по наибольшему числу. Проверяем 20 на делимость остальными числами. 20 не делится на 8 без остатка. Умножаем 20 на 2, проверим 40 на делимость - все числа делят 40 нацело. Это и есть наш общий знаменатель. Теперь для суммирования рациональных чисел нам необходимо определить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Дополнительные множители буду выглядеть так:

  • 40/4 = 10;
  • 40/5 = 8;
  • 40/8 = 5;
  • 40/4 = 10;
  • 40/20 = 2.

Теперь умножим числитель и знаменатель дробей на соответствующие дополнительные множители:

30/40 + 8/40 + 35/40 + 10/40 + 2/40

Для такого выражения мы можем легко определить сумму, равную 85/40 или 2 целых и 1/8. Это громоздкие вычисления, поэтому вы можете просто ввести данные задачи в форму калькулятора и сразу получить ответ.

Заключение

Арифметические операции с дробями - не слишком удобная вещь, ведь для поиска ответа приходится осуществлять множество промежуточных вычислений. Используйте наш онлайн-калькулятор для приведения дробей к общему знаменателю и быстрого решения школьных задач.

Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы рассмотрим способы нахождения НОК для трех чисел и более, разберем вопрос о том, как найти НОК отрицательного числа.

Yandex.RTB R-A-339285-1

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже установили связь наименьшего общего кратного с наибольшим общим делителем. Теперь научимся определять НОК через НОД. Сначала разберемся, как делать это для положительных чисел.

Определение 1

Найти наименьшее общее кратное через наибольший общий делитель можно по формуле НОК (a , b) = a · b: НОД (a , b) .

Пример 1

Необходимо найти НОК чисел 126 и 70 .

Решение

Примем a = 126 , b = 70 . Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК (a , b) = a · b: НОД (a , b) .

Найдет НОД чисел 70 и 126 . Для этого нам понадобится алгоритм Евклида: 126 = 70 · 1 + 56 , 70 = 56 · 1 + 14 , 56 = 14 · 4 , следовательно, НОД (126 , 70) = 14 .

Вычислим НОК: НОК (126 , 70) = 126 · 70: НОД (126 , 70) = 126 · 70: 14 = 630 .

Ответ: НОК (126 , 70) = 630 .

Пример 2

Найдите нок чисел 68 и 34 .

Решение

НОД в данном случае нейти несложно, так как 68 делится на 34 . Вычислим наименьшее общее кратное по формуле: НОК (68 , 34) = 68 · 34: НОД (68 , 34) = 68 · 34: 34 = 68 .

Ответ: НОК (68 , 34) = 68 .

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители.

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК (a , b) = a · b: НОД (a , b) . Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числе 75 и 210 . Мы можем разложить их на множители следующим образом: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . Если составить произведение всех множителей двух исходных чисел, то получится: 2 · 3 · 3 · 5 · 5 · 5 · 7 .

Если исключить общие для обоих чисел множители 3 и 5 , мы получим произведение следующего вида: 2 · 3 · 5 · 5 · 7 = 1050 . Это произведение и будет нашим НОК для чисел 75 и 210 .

Пример 4

Найдите НОК чисел 441 и 700 , разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Получаем две цепочки чисел: 441 = 3 · 3 · 7 · 7 и 700 = 2 · 2 · 5 · 5 · 7 .

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 7 . Найдем общие множители. Это число 7 . Исключим его из общего произведения: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 . Получается, что НОК (441 , 700) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 = 44 100 .

Ответ: НОК (441 , 700) = 44 100 .

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.

Пример 5

Вернемся к числам 75 и 210 , для которых мы уже искали НОК в одном из прошлых примеров. Разложим их на простые множители: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . К произведению множителей 3 , 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210 . Получаем: 2 · 3 · 5 · 5 · 7 . Это и есть НОК чисел 75 и 210 .

Пример 6

Необходимо вычислить НОК чисел 84 и 648 .

Решение

Разложим числа из условия на простые множители: 84 = 2 · 2 · 3 · 7 и 648 = 2 · 2 · 2 · 3 · 3 · 3 · 3 . Добавим к произведению множителей 2 , 2 , 3 и 7 числа 84 недостающие множители 2 , 3 , 3 и
3 числа 648 . Получаем произведение 2 · 2 · 2 · 3 · 3 · 3 · 3 · 7 = 4536 . Это и есть наименьшее общее кратное чисел 84 и 648 ​​​​​​ ​.

Ответ: НОК (84 , 648) = 4 536 .

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a 1 , a 2 , … , a k . НОК m k этих чисел находится при последовательном вычислении m 2 = НОК (a 1 , a 2) , m 3 = НОК (m 2 , a 3) , … , m k = НОК (m k − 1 , a k) .

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140 , 9 , 54 и 250 .

Решение

Введем обозначения: a 1 = 140 , a 2 = 9 , a 3 = 54 , a 4 = 250 .

Начнем с того, что вычислим m 2 = НОК (a 1 , a 2) = НОК (140 , 9) . Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140 = 9 · 15 + 5 , 9 = 5 · 1 + 4 , 5 = 4 · 1 + 1 , 4 = 1 · 4 . Получаем: НОД (140 , 9) = 1 , НОК (140 , 9) = 140 · 9: НОД (140 , 9) = 140 · 9: 1 = 1 260 . Следовательно, m 2 = 1 260 .

Теперь вычислим по тому е алгоритму m 3 = НОК (m 2 , a 3) = НОК (1 260 , 54) . В ходе вычислений получаем m 3 = 3 780 .

Нам осталось вычислить m 4 = НОК (m 3 , a 4) = НОК (3 780 , 250) . Действуем по тому же алгоритму. Получаем m 4 = 94 500 .

НОК четырех чисел из условия примера равно 94500 .

Ответ: НОК (140 , 9 , 54 , 250) = 94 500 .

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий:

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.

Пример 8

Необходимо найти НОК пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение

Разложим все пять чисел на простые множители: 84 = 2 · 2 · 3 · 7 , 6 = 2 · 3 , 48 = 2 · 2 · 2 · 2 · 3 , 7 , 143 = 11 · 13 . Простые числа, которым является число 7 , на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2 , 2 , 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3 . Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48 , из произведения простых множителей которого берем 2 и 2 . Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2 · 2 · 2 · 2 · 3 · 7 · 11 · 13 = 48 048 . Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК (84 , 6 , 48 , 7 , 143) = 48 048 .

Нахождение наименьшего общего кратного отрицательных чисел

Для того, чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК (54 , − 34) = НОК (54 , 34) , а НОК (− 622 , − 46 , − 54 , − 888) = НОК (622 , 46 , 54 , 888) .

Такие действия допустимы в связи с тем, что если принять, что a и − a – противоположные числа,
то множество кратных числа a совпадает со множеством кратных числа − a .

Пример 10

Необходимо вычислить НОК отрицательных чисел − 145 и − 45 .

Решение

Произведем замену чисел − 145 и − 45 на противоположные им числа 145 и 45 . Теперь по алгоритму вычислим НОК (145 , 45) = 145 · 45: НОД (145 , 45) = 145 · 45: 5 = 1 305 , предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел − 145 и − 45 равно 1 305 .

Ответ: НОК (− 145 , − 45) = 1 305 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.