Как получить из воды водород. Перспективы и проблемы водородной энергетики. Получение атомного водорода

Водородная энергетика возникла как одна из линий развития НТП в 70-х годах предыдущего столетия. По мере расширения области исследований, касающихся получения, перевозки и хранения, а также использования водорода, становились очевиднее экологические преимущества технологий получения водорода в разных сферах народного хозяйства. Эффективность развития некоторых водородных технологий (топливные элементы, металлогидридные системы, транспортные водородные системы и т.д.) показали, что применение водорода дает совершенно новые качественные показатели в функционировании агрегатов и систем.

Проведенные технико-экономические тестирования показали, что, несмотря на то, что элемент водород – вторичный носитель энергии, то есть он дороже по стоимости, чем природные топлива, его использование в некоторых случаях экономики уже сегодня целесообразно. Поэтому работы в отрасли водородной энергетики в большинстве странах, тем более с развитой промышленностью, считаются приоритетными направлениями развития техники и науки. Они все больше поддерживаются финансами со стороны государства и частного капитала.

Свойства водорода

При нормальных условиях в свободном состоянии водород представлен бесцветным газом, не имеющим и запаха. Водород имеет плотность относительно воздуха 1/14. Обычно он встречается в комбинации с остальными элементами, например, углерода в метане, кислорода в воде, в разных органических соединениях. Поскольку водород чрезвычайно активен химически, он редко находится в несвязанном виде.

Водород, охлажденный до состояния жидкости, занимает 1/700 объема состояния в газообразном виде. При его соединении с кислородом, водород имеет максимально большое содержание энергии на одну единицу массы: 120,7 ГДж/т. Это является одной из нескольких причин, почему водород в жидком виде применяется в качестве ракетного топлива и служит энергетикой для современных космических кораблей, для которой большое удельное содержание энергии водорода и малая молекулярная масса имеет большое значение. В чистом кислороде при сжигании единственные продукты – это вода и тепло высокой температуры. Так, в случае применения водорода не выделяются вредные парниковые газы и даже не происходит нарушение в природе круговорота воды.

Производство водорода

Ресурсы водорода, которые содержатся в воде и в органическом веществе, почти неисчерпаемы. Разрыв данных связей дает возможность для получения водорода, после чего водород применяется для топлива. Разработано множество процессов по разделению воды на составные части.

Вода при нагревании более 2500°С начинает разлагаться на кислород и водород (прямой термолиз). Такую высокую температуру получают, например, при помощи концентраторов энергии солнца. Здесь проблема состоит в том, чтобы не допустить рекомбинацию кислорода и водорода.

Сегодня в мире основная часть получаемого водорода в промышленном масштабе получается в ходе паровой конверсии метана (ПКМ). Таким образом, получение водорода дает возможность применять его как реагент для процесса очистки нефти и в качестве составляющей азотных удобрений и для ракетной техники. Тепловая энергия и пар при температурах 750-800°С необходимы для выделения водорода из углеродной основы в метане, что и случается на каталитических поверхностях в химических реформерах. Самая первая ступень ПКМ процесса разделяет водяной пар и метан на моно оксид углерода, а также водород. На второй ступени в процессе «реакции сдвига» моно оксид углерода и вода преобразуются в водород и диоксид углерода. Данная реакция протекает при 200-250°С.

В СССР в 30-е годы в промышленных масштабах получали синтез-газ благодаря паровоздушной газификации угля. Сегодня в ИПХФ РАН, расположенном в Черноголовке, создается технология для газификации угля в сверхадиабатическом режиме. Данная технология дает возможность преобразовывать энергию тепла угля в тоже тепловую энергию синтез-газа с КПД 98%.

Начиная с 70-х годов предыдущего века, в нашей стране были сделаны и получили научно-техническое объяснение и подтверждение путем эксперимента проекты гелиевых высокотемпературных реакторов (ВТГР) энерготехнологических атомных станций (АЭТС) для черной металлургии и химической промышленности: АБТУ-50, а затем – проект атомной энергетической станции с реактором ВГ-400, мощность которой 1060 МВт для химико-ядерного комплекса по получению водорода и смесей, содержащих его, по выпуску метанола и аммиака, еще несколько проектов в данном направлении.

Базой для всех проектов ВТГР стали разработки ядерных двигателей для ракет на базе водорода. Испытательные высокотемпературные реакторы, выпущенные в нашей стране для данных целей, а также ядерные демонстрационные двигатели для ракет показали работоспособность при нагревании водорода до максимальной температуры 3000К.

Высокотемпературные реакторы на основе гелиевого теплоносителя – новейший тип универсальных экологически чистых атомных энергетических источников, уникальные характеристики которых – способность получать тепло при температурах выше 1000°С и высочайший уровень безопасности – определяют невероятные возможности их применения для получения в газотурбинном цикле электрической энергии с большим КПД и для обеспечения высокотемпературным теплом и электроэнергией производственных процессов получения водорода, технологических процессов нефтеперерабатывающей, химической, металлургической и других отраслей, для процессов опреснения воды.

Самым современным в этой области считается международный проект ГТ-МГР, разрабатывающийся общими стараниями отечественных институтов и компании GA из США. Также с проектом сотрудничают компании Фуджи электрик и Фраматом.

Получение атомного водорода

Источником атомного водорода являются вещества, которые отщепляют атомы водорода при их облучении. В процессе облучения ультрафиолетом, например, йодистого водорода начинает протекать реакция с выделением атомного водорода.

Для выделения атомного водорода используется термическая диссоциация молекулярного водорода на палладиевой, платиновой проволоке или проволоке из вольфрама, нагретой при давлении меньше 1,33 Па в атмосфере водорода. Разделения водорода на атомы удается достигнуть также, применяя радиоактивные вещества. Есть метод синтеза атомного водорода в электрическом высокочастотном разряде с дальнейшим вымораживанием молекулярного водорода.

Физические варианты способов получения водорода из смесей, содержащих его

Водород в значимых количества имеется во многих смесях газов, в коксовом газе, например, который выделяется при пиролизе бутадиена, в получении дивинила.

Чтобы выделить водород из смесей газов, содержащих водород, применяют физические методы концентрирования и выделения водорода.

Фракционирование и низкотемпературная конденсация. Данный процесс описывается высокой степенью получения водорода из газовой смеси и выгодными экономическими показателями. Как правило, при давлении газа 4 МПа для выделения 93-94%-ного водорода температура должна составлять 115К. При содержании в исходном газе водорода больше 40% степень его получения может достигать 95%. Затрата энергии на концентрирование Н2 70-90% приравнивается к 22 кВт.ч на 1000 м3 получаемого водорода.

Адсорбционное выделение. Данный процесс происходит с помощью использования молекулярных сит, адсорберов, работающих циклически. Его можно реализовывать под давлением, равным 3-3,5 МПа с извлечением до 80-85% Н2 в виде 90%-го концентрата. В сравнении с низкотемпературным способом получения водорода для осуществления данного процесса нужно приблизительно на 25-30% меньше материальных затрат и на 30-40% меньше эксплуатационных.

Адсорбционное производство водорода с использованием жидких растворителей. В некоторых случаях способ подходит для получения водорода в чистом виде. Данный метод позволяет извлекать до 80-90% водорода, который содержится в первоначальной смеси газов, а также достигать его концентрации в конечном продукте до 99,9%. Затраты энергии на получение водорода достигают 68 кВт.ч на 1000 м3 Н2.

Получение водорода путем электролиза воды

Электролиз воды – это один из распространенных и хорошо изученных способов получения водорода. Он гарантирует получение продукта в чистом виде (99,6-99,9% Н2) за одну технологическую ступень. На получение водорода в затратах на производство стоимость электроэнергии составляет около 855.

Данный способ применяется в нескольких странах, которые имеют значительные запасы недорогой гидроэнергии. Крупнейшие электрохимические комплексы располагаются в Индии, Канаде, Норвегии, Египте, но созданы и функционируют множество мелких установок в разных странах мира. Этот способ считается важным еще и потому, что он наиболее универсален относительно применения первичных энергетических источников. В связи с распространением атомной энергетики стал возможен новый расцвет процессов электролиза воды за счет недорогой электрической энергии атомных электростанций. Ресурсы электроэнергетики сегодня недостаточны для синтеза водорода как продукта для дальнейшего использования в энергетике.

Электрохимический метод получения водорода из воды имеет следующие преимущества:

1. Высокая чистота водорода в конечном продукте – до 99,99% и более;

2. Легкость и постоянство технологического процесса, можно автоматизировать процесс, в электролитической ячейке нет движущихся частей;

3. Возможность получения очень ценных дополнительных продуктов – кислорода и тяжелой воды;

4. Неисчерпаемое и доступное исходное сырье – вода;

5. Возможность получения водорода прямо под давлением;

6. Физическое распределение кислорода и водорода в ходе электролиза.

Во всех приведенных примерах получения водорода путем разложения воды побочным продуктом являются большие объемы кислорода. Это открывает новые возможности для его использования. Он сможет найти свое место не только в качестве ускорителя процессов технологии, но и в качестве незаменимого очистителя водоемов. Данная область применения кислорода может распространиться и на почву, атмосферу и воду. Сгорание в кислороде увеличивающихся количеств бытовых отходов поможет решить вопрос твердых отбросов крупных городов.

Еще один ценный продукт электролиза воды – тяжелая вода – прекрасный замедлитель нейтронов во всех атомных реакторах. Данная тяжелая вода может применяться в качестве сырья для синтеза дейтерия, который служит материалом для термоядерной энергетики.

Производство водорода – одна из главных образующих цепочек водородной энергетики. Водород в чистом виде, практически не встречается в природе, поэтому он должен извлекаться из других химических веществ различными методами и способами.

Как получить водород: методы

  • Паровая конверсия метана и природного газа: водяной пар при высокой температуре (700 – 1000 градусов Цельсия) смешивается с метаном под давлением, в присутствии катализирующего вещества.
  • Газификация угля: один из старейших способов получения водорода. Без доступа воздуха, при температуре 800 – 1300 градусов Цельсия нагревают уголь вместе с водяным паром, при этом из воды уголь вытесняет кислород. На выходе получается углекислый газ и водород.
  • Электролиз воды.: очень простой способ получения водорода. В емкость наливается раствор соды, в который помещается 2 электрических элемента, один соответствует минусу – катод, другой плюсу – анод. В данный раствор подается электричество, которое разлаживает воду на составляющие – водород выделяется на катоде, а кислород на аноде.
  • Пиролиз: разложение воды на водород и кислород без доступа воздуха и при высокой температуре.
  • Частичное окисление: сплав металлов алюминия и галлия формируют в специальные брикеты, которые помещают в емкость с водой, в результате химической реакции образуется водород и окись алюминия. Галлий используется в сплаве для предотвращения окисления алюминия.
  • Биотехнологии: еще в 20 веке было обнаружено, что если водорослям хламидомонадам не будет хватать кислорода и серы в процессе жизнедеятельности, то они бурно начнут выделять водород.
  • Глубинный газ планеты: в недрах земли водород может находится в чистом газообразном виде, но его выработка оттуда не целесообразна.

Как из воды получить водород

Наиболее простым способом получения водорода из воды является электролиз. Электролиз - химический процесс, при котором раствор электролита, под воздействием электрического тока, разделяется на составные части, то есть в нашем случае вода разделяется на водород и кислород. Для этого используется раствор соды в воде и два элемента – катод и анод, на которых и будут выделятся газы. На элементы подается напряжение, на аноде выделяется кислород, а на катоде водород.

Как получить водород в домашних условиях

Реактивы используются довольно простые – купорос (медный), поваренная соль, алюминий и вода. Алюминий можно взять из под пивных банок, но прежде, его нужно обжечь, чтобы избавится от пластиковой пленки, которая мешает реакции.

Потом отдельно готовится раствор купороса, и раствор соли, раствор купороса голубого цвета, смешивается с раствором соли, в итоге получается раствор зеленого цвета. Затем в этот зеленый раствор бросаем кусочек алюминиевой фольги, вокруг него появляются пузырьки – это водород. Также замечаем, что фольга покрылась красным налетом, это алюминий вытеснил медь из раствора. Для того, чтобы собрать водород для личных целей, используйте бутылку с пробкой, в которую заранее вставлена не широкая трубка, через которую и будет выходить газ.

А теперь, внимание! Меры предосторожности. Поскольку водород взрывоопасный газ, опыты с ним нужно проводить на улице, а во-вторых реакция получения водорода проходит с большим выделением тепла, раствор может разбрызгиваться и вас попросту обжечь.

Как получить перекись водорода

  • В лаборатории перекись водорода получают с помощью реакции: ВаО 2 + Н 2 SО 4 = BaSO 4 + H 2 O 2 .
  • В промышленных масштабах ее получают с помощью электролиза серной кислоты, в процессе которого образуется надсерная кислота, которую, в итоге, разлаживают на серную кислоту и перекись водорода.
  • Как получают водород в лаборатории еще: часто водород в лаборатории получают взаимодействием цинка и соляной кислоты: Zn + 2HCl = H 2 + ZnCl 2 .

Надеюсь, с этой статьи вы вынесли ту информацию, которая вам была необходима, и еще раз предупреждаю – будьте осторожны с любыми опытами и экспериментами с водородом!

Получение водорода электролизом воды.

Электролиз воды один из наиболее известных и хорошо исследованных методов получения водорода. Он обеспечивает получение чистого продукта (99,6-99,9% H 2) в одну технологическую ступень. В производственных затратах на получение водорода стоимость электрической энергии составляет примерно 85%.

Электролиз воды один из наиболее известных и хорошо исследованных ме­тодов получения водорода . Он обеспечивает получение чистого про­дукта (99,6-99,9 % Н 2) в одну технологическую ступень. Экономика про­цесса в основном зависит от стоимости электроэнергии. В производственных затратах на получение водорода стоимость электрической энергии составляет примерно 85 % .

Этот метод получил применение в ряде стран, обладающих значитель­ными ресурсами дешевой гидроэнергии. Наиболее крупные электрохимические комплексы находятся в Канаде, Индии, Египте, Норвегии, но созданы и ра­ботают тысячи более мелких установок во многих странах мира. Важен этот метод и потому, что он является наиболее универсальным в отношении ис­пользования первичных источников энергии. В связи с развитием атомной энергетики возможен новый расцвет электролиза воды на базе дешевой электроэнергии атомных электростанций. Ресурсы современной электроэнер­гетики недостаточны для получения водорода в качестве продукта для даль­нейшего энергетического использования. Если электроэнергию получать за счет наиболее дешевой атомной энергии, то при КПД процесса получения электроэнергии, равном 40 % (в случае быстрых реакторов-размножителей) и КПД процесса получения водорода электролизом даже 80 %, полный КПД электролизного процесса составит 0,8-0,4 = 0,32, или 32 %. Далее, если предположить, что электроэнергия составляет 25 % полного производства энергии, а 40 % электроэнергии расходуется на электролиз, тогда вклад этого источника в общее энергообеспечение составит в лучшем случае 0,25Х X 0,4-0,32 = 0,032, или 3,2%. Следовательно, электролиз воды, как метод получения водорода для энергоснабжения может рассматриваться в строго ограниченных рамках. Однако как метод получения водорода для химиче­ской и металлургической индустрии его следует иметь на технологическом вооружении, поскольку при определенных экономических условиях он может быть использован в крупнопромышленном масштабе.

Электролиз с успехом может быть использован на гидростанциях или в тех случаях, когда тепловые и атомные электростанции имеют избыточные мощности, и получение водорода является средством для использования, хра­нения и накопления энергии. Для этой цели могут быть использованы мощ­ные электролизеры производительностью до 1 млн. м 3 водорода в сутки. На крупном заводе электролиза воды мощностью 450 т/сут и выше рас­ход электроэнергии на 1 м 3 водорода может быть доведен до 4-4,5 кВт-ч. При таком расходе электроэнергии в ряде энергетических ситуаций электро­лиз воды даже в современных условиях сможет стать конкурентоспособным методом получения водорода .

Электрохимический метод получения водорода из воды обладает следующими положительными качествами: 1) высокая чистота получаемого водорода – до 99,99% и выше; 2) простота технологического процесса, его непрерывность, возможность наиболее полной автоматизации, отсутствие движущихся частей в электролитической ячейке; 3) возможность получения ценнейших побочных продуктов – тяжелой воды и кислорода; 4) общедоступное и неисчерпаемое сырье – вода; 5) гибкость процесса и возможность получения водорода непосредственно под давлением; 6) физическое разделение водорода и кислорода в самом процессе электролиза.

Во всех процессах получения водорода разложением воды в качестве побочного продукта будут получаться значительные количества кислорода. Это даст новые стимулы его применения. Он найдет свое место не только как ускоритель технологических процессов, но и как незаменимый очиститель и оздоровитель водоемов, промышленных стоков. Эта сфера использования кислорода может быть распространена на атмосферу, почву, воду. Сжигание в кислороде растущих количеств бытовых отходов сможет решить проблему твердых отбросов больших городов.

Еще более ценным побочным продуктом электролиза воды является тяжелая вода – хороший замедлитель нейтронов в атомных реакторах. Кроме того, тяжелая вода используется в качестве сырья для получения дейтерия, который в свою очередь является сырьем для термоядерной энергетики.

Электролитическое разложение воды.

2 H 2 O = 2 H 2 + O 2

Чистая вода практически не проводит тока, поэтому к ней прибавляются электролиты (обычно КОН). При электролизе водород выделяется на катоде. На аноде выделяется эквивалентное количество кислорода, который, следовательно, в этом методе является побочным продуктом.

Получающийся при электролизе водород очень чист, если не считать примеси небольших количеств кислорода, который легко удалить пропусканием газа над подходящими катализаторами, например над слегка нагретым палладированным асбестом. Поэтому его используют как для гидрогенизации жиров, так и для других процессов каталитического гидрирования. Водород, получаемый этим методом довольно дорог.

Экспериментально обнаружен и исследован новый эффект «холодного» высоковольтного электросмоса испарения и малозатратной высоковольтной диссоциации жидкостей.на основе этого открытия автором предложена и запатентована новая высокоэффективная малозатратная технология получения топливного газа из некоторых водных растворов на основе высоковольтного капиллярного электросмоса.

ВВЕДЕНИЕ

Эта статья – о новом перспективном научно-техническом направлении водородной энергетики. Она информирует о том, что в России открыт и экспериментально апробирован новый электрофизический эффект интенсивного «холодного» испарения и диссоциации жидкостей и водных растворов в топливные газы вообще без затрат электроэнергии- высоковольтный капиллярный электроосмос. Приведены яркие примеры проявления данного важного эффекта в Живой Природе. Открытый эффект является физической основой многих новых «прорывных» технологий в водородной энергетике и промышленной электрохимии. На его основе автором разработана, запатентована и активно исследуется новая высокопроизводительная и энергетически малозатратная технология получения горючих топливных газов и водорода из воды, различных водных растворов и водо-органических соединений. В статье раскрывается их физическая сущность, и техника реализации на практике, дана технико-экономическая оценка перспективности новых газогенераторов. В статье приведен также анализ основных проблем водородной энергетики и ее отдельных технологий.

Кратко об истории открытия капиллярного электроосмоса и диссоциации жидкостей в газы и о становлении новой технологии Открытие эффекта осуществлено мною в 1985 г. Опыты и эксперименты по капиллярному электроосмотическому «холодному» испарению и разложению жидкостей с получением топливного газа без расхода электроэнергии проводились мною в период с 1986-96 г.г.. Впервые о естественном природном процессе «холодного» испарения воды в растениях янаписал в 1988 г. статью «Растения–природные электрические насосы» /1/. О новой высокоэффективной технологии получения топливных газов из жидкостей и получения водорода из воды на основе данного эффекта я сообщил в 1997 г в своей статье «Новая электроогневая технология» (раздел «Можно ли сжечь воду») /2/. Статья снабжена многочисленными иллюстрациями (рис.1-4) с графиками, блок-схемами экспериментальных установок, раскрывающих основные элементы конструкций и электрических сервисных устройств(источников электрического поля) предложенных мною капиллярных электроосмотических генераторов топливного газа. Устройства представляют собою оригинальные преобразователи жидкостей в топливные газы. Изображены на рис.1-3 упрощенно, с детализацией, достаточной для пояснения сущности новой технологии получения топливного газа из жидкостей.

Перечень иллюстраций и краткие пояснения к ним приведены ниже. На рис. 1 показана простейшая экспериментальная установка «холодной» газификации и диссоциации жидкостей с переводом их в топливный газ посредством одного электрического поля. На рис.2 показана простейшая экспериментальная установка «холодной» газификации и диссоциации жидкостей с двумя источниками электрического поля (знакопостоянного электрического поля -для «холодного» испарения электроосмосом любой жидкости и второго импульсного(переменного) поля для дробления молекул испаренной жидкости и превращения ее в топливный газ. На рис. 3 упрощенно показанf блок-схема комбинированного устройства, которое в отличие от устройств(рис.1,2), обеспечивает еще и дополнительную электроактивацию испаряемой жидкости. На рис.4 приведены некоторые графики зависимости выходных полезных параметров (производительности) электроосмотического насоса- испарителя жидкостей (генератора горючего газа) от основных параметров устройств. На нем, в частности, показаны взаимосвязь производительности устройства от напряженности электрического поля и от площади капиллярной испаряемой поверхности. Названия рисунков и расшифровка элементов самих устройств дана в подрисуночных надписях к ним. Описание взаимосвязей элементов устройств и самой работы устройств в динамике даны ниже по тексту в соответствующих разделах статьи.

ПЕРСПЕКТИВЫ И ПРОБЛЕМЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

Эффективное получение водорода из воды- заманчивая давняя мечта цивилизации. Потому что воды на планете много, а водородная энергетика сулит человечеству «чистую» энергию из воды в неограниченных количествах. Тем более, что сам процесс сжигания водорода в среде кислорода, полученных из воды, обеспечивает идеальное по калорийности и чистоте горение.

Поэтому создание и промышленное освоение высокоэффективной технологии электролиза расщепления воды на Н2 и О2 является уже давно одной из актуальных и приоритетных задач энергетики, экологии и транспорта. Еще более насущная и актуальная проблема энергетики состоит в газификации твердых и жидких углеводородных топлив, конкретнее в создании и внедрении энергетически малозатратных технологий получения горючих топливных газов из любых углеводородов, включая органические отходы. Тем не менее, несмотря на актуальность и простроту энергетической и экологической проблем цивилизации, они пока еще эффективно так и не решены. Так в чем же причины высоких энергозатрат и малой производительности известных технологий водородной энергетики? Об этом ниже.

КРАТКИЙ СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОСТОЯНИЯ И РАЗВИТИЯ ВОДОРОДНОЙ ТОПЛИВНОЙ ЭНЕРГЕТИКИ

Приоритет изобретения по получению водорода из воды путем электролиза воды принадлежит русскому ученому Лачинову Д.А.(1888г.). Мною просмотрены сотни статей и патентов и по данному научно-техническому направлению. Известны различные методы получения водорода при разложения воды: термический, электролитический, каталитический, термохимический, термогравитационный, электроимпульсный и прочие /3-12/. С позиции энергозатрат наиболее энергоемкий– термический способ /3/, а наименее энергоемкий– электроимпульсный метод американца Стэнли Мэйера /6/. Технология Мэйера /6/ основана на дискретном электролизном способе разложения воды высоковольтными электрическими импульсами на резонансных частотах колебаний молекул воды (электрическая ячейка Мэйера). Она наиболее, на мой взгляд, прогрессивна и перспективна и по применяемым физическим эффектам, и по энергозатратам, однако ее производительность пока мала и сдерживается необходимостью преодоления межмолекулярных связей жидкости и отсутствием механизма удаления генерируемого топливного газа.из рабочей зоны электролиза жидкости.

Вывод: Все эти и иные известные методы и устройства производства водорода и иных топливных газов пока еще малопроизводительны из-за отсутствия действительно высокоэффективной технологии испарения и расщепления молекул жидкостей. Об этом ниже в следующем разделе.

АНАЛИЗПРИЧИН ВЫСОКОЙ ЭНЕРГОЕМКОСТИ И НИЗКОЙ ПРОИЗВОДИТЕЛЬНОСТИ ИЗВЕСТНЫХ ТЕХНОЛОГИЙ ПОЛУЧЕНИЯ ТОПЛИВНЫХ ГАЗОВ ИЗ ВОДЫ

Получение топливных газов из жидкостей при минимальных энергозатратах– весьма непростая научно-техническая задача Существенные энергозатраты при получении топливного газа из воды в известных технологиях тратятся на преодоление межмолекулярных связей воды в ее жидком агрегатном состоянии. Потому что вода- весьма сложна по структуре и составу. Причем парадоксально то, что, несмотря на ее удивительную распространенность в природе, структура и свойства воды и ее соединений во многом еще не изучены /14/.

Cостав и скрытая энергия межмолекулярных связей структур и соединений в жидкостях.

Физико-химический состав даже обычной водопроводной воды достаточно сложен, поскольку в воде присутствуют многочисленные межмолекулярные связи, цепочки и иные структуры молекул воды. В частности, в обычной водопроводной воде имеются различные цепочки особо соединенных и ориентированных молекул воды с ионами примесей (кластерные образования), различные ее коллоидные соединения и изотопы, минеральные вещества, а также многие растворенные газы и примеси /14/.

Oбъяснение проблем и энергозатрат на «горячее» испарение воды известными технологиями.

Именно поэтому в известных способах расщепления воды на водород и кислород необходимо тратить много электроэнергии для ослабления и полного разрыва межмолекулярных, а затем и молекулярных связей воды. Для снижения энергетических затрат на электрохимическое разложение воды часто используют дополнительный термический нагрев (вплоть до образования пара), а также- введение дополнительных электролитов, например, слабых растворов щелочей, кислот. Однако данные известные усовершенствования не позволяют до сих пор существенно интенсифицировать процесс диссоциации жидкостей (в частности разложения воды) из ее жидкого агрегатного состояния. Применение известных технологий термического испарения сопряжено с огромным расходованием тепловой энергии. Да и применение в процессе получения водорода из водных растворов дорогостоящих катализаторов для интенсификации данного процесса весьма дорого и малоэффективно. Главная причина высоких энергозатрат при использовании традиционных технологий диссоциации жидкостей теперь ясна, они расходуются на разрыв межмолекулярных связей жидкостей.

Kритика самой прогрессивной электротехнологии получения водорода из воды С. Мэйера /6/

Безусловно, самая экономичная из известных и наиболее прогрессивная по физике работы это электроводородная технология Стенли Мэйера. Но и его знаменитая электрическая ячейка /6/ также малопроизводительна, потому что все таки в ней нет механизма эффективного отвода молекул газа с электродов. Кроме того, этот процесс диссоциации воды в методе Мэйера замедлен из-за того, что при электростатическом отрыве молекул воды из самой жидкости приходится тратить время и энергию на преодоление огромной скрытой потенциальной энергии межмолекулярных связей и структур воды и прочих жидкостей.

РЕЗЮМЕ ПО АНАЛИЗУ

Поэтому достаточно ясно, что без нового оригинального подхода к проблеме диссоциации и превращения жидкостей в топливные газы эту проблему интенсификации газообразования ученым и технологам не решить. Реальное внедрение прочих известных технологий в практику до сих пор «буксует», поскольку все они намного более энергозатратны, чем технология Мэйера. И поэтому малоэффективны на практике.

КРАТКАЯ ФОРМУЛИРОВКА ЦЕНТРАЛЬНОЙ ПРОБЛЕМЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

Центральная научно- техническая проблема водородной энергетики состоит, на мой взгляд, именно в неразрешенности и необходимости поиска и осуществления на практике новой технологии для многократного интенсификации процесса получения водорода и топливного газа из любых водных растворов и эмульсий при резком одновременном снижении энергозатрат. Резкая интенсификация процессов расщепления жидкостей при снижении энергозатрат в известных технологиях пока невозможно в принципе, поскольку до недавнего времени не была решена главная проблема эффективного испарения водных растворов без подвода тепловой и электрической энергии. Магистральный путь совершенствования водородных технологий ясен. Необходимо научиться эффективно испарять и газифицировать жидкости. Причем как можно интенсивнее и с наименьшими энергозатратами.

МЕТОДОЛОГИЯ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ НОВОЙ ТЕХНОЛОГИИ

Почему пар лучше льда для получения водорода из воды? Потому что в нем намного свободнее движутся молекулы воды, чем в водыхрастоворов.

а) Изменение агрегатного состояния жидкостей.

Очевидно, что межмолекулярные связи водяного пара слабее, чем у воды в виде жидкости, и тем более воды в виде льда. Газообразное состояние воды еще более облегчает работу электрического поля по последующему расщеплению самих молекул воды на Н2 и О2. Поэтому методы эффективного перевода агрегатного состояния воды в водяной газ (пар, туман)- это перспективный магистральный путь развития электроводородной энергетики. Потому что путем перевода жидкой фазы воды в газообразную фазу достигают ослабление и(или) полный разрыв и межмолекулярные кластерных и прочих связей и структур, существующих внутри жидкости воды.

б) Электрический кипятильник воды- анахронизм водородной энергетики или вновь о парадоксах энергетики при испарении жидкостей.

Но не все так просто. C переводом воды в газообразное состояние. А как же быть с требуемой энергией, необходимой на испарение воды. Классический способ ее интенсивного испарения– это термический нагрев воды. Но он же весьма энергозатратен. Со школьной парты нас учили, что на процесс испарения воды, и даже ее кипячения требуется весьма значительное количество тепловой энергии. Информация о необходимом количестве энергии для испарения 1м³ воды есть в любом физическом справочнике. Это многие килоджоули тепловой энергии. Или многие киловатт-часы электроэнергии, если испарение проводить нагревом воды от электрического тока. Где же выход из энергетического тупика?

КАПИЛЯРНЫЙ ЭЛЕКТРООСМОС ВОДЫ И ВОДНЫХ РАСТВОРОВ ДЛЯ «ХОЛОДНОГО ИСПАРЕНИЯ» И ДИССОЦИАЦИИ ЖИДКОСТЕЙ В ТОПЛИВНЫЕ ГАЗЫ (описание нового эффекта, и его проявление в Природе)

Я долго искал такие новые физические эффекты и малозатратные способы испарения и диссоциации жидкостей, много экспериментировал и все же нашел способ эффективного «холодного» испарения и диссоциации воды в горючий газ. Этот удивительной по красоте и совершенству эффект подсказала мне сама Природа.

Природа — наш мудрый учитель. Парадоксально, но оказывается, что в Живой природе уже давно есть, независимо от нас, эффективный способ электрокапиллярной перекачки и «холодного» испарения жидкости с переводом ее в газообразное состояние вообще без подвода тепловой энергии и электроэнергии. И этот природный эффект реализуется путем воздействия знакопостоянного электрического поля Земли на жидкость (воду), размещенную в капиллярах, именно посредством капиллярного электроосмоса.

Растения – природные, энергетически совершенные, электростатические и ионные насосы-испарители водных растворов Мои первые опыты по реализации капиллярного электроосмоса для «холодного» испарения и диссоциации воды, проделанные мною на простых экспериментальных установках еще в 1986 г. мне не сразу стали понятными, но я стал упорно искать его аналогию и проявление этого явления в Живой природе. Ведь Природа — наш вечный и мудрый Учитель. И я нашел его вначале именно в растениях!

а) Парадокс и совершенство энергетики природных насосов- испарителей растений.

Упрощенные количественные оценки показывают, что механизм работы природных насосов-испарителей влаги у растений, и особенно у высоких деревьев, уникален по своей энергетической эффективности. Действительно, уже известно, и просто подсчитать, что природный насос высокого дерева (с высотой кроны порядка 40 м. и с диаметром ствола порядка 2 м.) перекачивает и испаряет кубометры влаги в сутки. Причем вообще без подвода извне тепловой и электрической энергии. Эквивалентная энергетическая мощность такого природного электрического насоса–испарителя воды, у этого обычного дерева по аналогии с применяемыми нами аналогичными по назначению традиционными устройствами в технике, насосов и электронагревателей -испарителей воды для произведения этой же работы составляет десятки киловатт. Такое энергетическое совершенство Природы пока нам трудно даже понять и пока сразу не под силу скопировать. А растения и деревья научилась эффективно делать эту работу миллионы лет назад вообще без подвода и трат применяемой нами повсюду электроэнергии.

б) Oписание физики и энергетика природного насоса- испарителя жидкости растений.

Так как же работает природный насос– испаритель воды у деревьев и растений и каков механизм его энергетики? Оказывается, что все растения давно и искусно используют этот открытый мною эффект капиллярного электроосмоса в качестве энергетического механизма перекачки питающих их водных растворов своими природными ионными и электростатическими капиллярными насосами для подачи воды от корней к их кроне вообще без подвода энергии и без участия человека. Природа мудро использует потенциальную энергию электрического поля Земли. Причем в растениях и деревьях для подъема жидкости от корней к листьям внутри стволов растений и холодного испарения соков по капиллярам внутри растений используются природные тончайшие волокна-капилляры растительного происхождения, природный водный раствор- слабый электролит, естественный электрический потенциал планеты и потенциальная энергия электрического поля планеты. Одновременно с ростом растения (увеличением его высоты) возрастает и производительность этого природного насоса, потому что повышается разность природных электрических потенциалов между корнем и верхушкой кроны растения.

в) Зачем иголки у елки – затем, чтобы ее электронасос работал и зимой.

Вы скажете, что питательные соки движутся врастениям из-за обычного термического испарения влаги с листьев. Да это процесс тоже есть но не он главный. Но что самое удивительное, многие игольчатые деревья (сосны, ели, пихты) морозоустойчивы и растут даже зимой. Дело в том, что в растениях с игольчатыми листьями или шипами (типа сосны, кактусов и прочее), электростатический насос- испаритель работает при любой температуре окружающей среды, поскольку иглы концентрируют максимальную напряженность природного электрического потенциала на кончиках этих игл. Поэтому одновременно с электростатическим и ионным перемещением питательных водных растворов по своим капиллярам, они еще и интенсивно расщепляют и эффективно эмиссируют (инжектируют, выстреливают в атмосферу с этих природных устройств со своих природных игольчатых природных электродов-озонаторов молекулы влаги, успешно переводя молекулы водных растворов в газы. Поэтому работа этих природных электростатических и ионных насосов водных незамерзающих растворов происходит и в засуху и в стужу.

г) Mои наблюдения и электрофизические эксперименты с растениями.

Путем многолетних наблюдений над растениями, в естественной среде и и экспериментов с растениями в среде помещенными в искусственное электрическое поле, мною были всесторонне исследован этот эффективный механизм природного насоса и испарителя влаги. Были также выявлены зависимости интенсивности движения естественных соков по стволу растений от параметров электрического поля и вида капилляров и электродов. Рост растения в экспериментах существенно возрастал при многократном повышении этого потенциала потому, что возрастала производительность его природного электростатического и ионного насоса. Еще в 1988 г. я описал свои наблюдения и опыты с растениями в своей научно- популярной статье «Растения- природные ионные насосы» /1/.

д) Учимся у растений создавать совершенную технику насосов – испарителей. Вполне понятно, что эта природная энергетически совершенная технология вполне применима и в технике перевода жидкостей в топливные газы. И я создал такие экспериментальные установки холоного электрокапиллярного испарения жидкостей (рис.1-3) по подобию электронасосов деревьев.

ОПИСАНИЕ ПРОСТЕЙШЕЙ ОПЫТНОЙ УСТАНОВКИ ЭЛЕКТРОКАПИЛЛЯРНОГО НАСОСА- ИСПАРИТЕЛЯ ЖИДКОСТИ

Простейшее действующее устройство по экспериментальной реализации эффекта высоковольтного капиллярного электроосмоса для «холодного» испарения и диссоциации молекул воды показано на рис.1. Простейшее устройство (рис.1) для реализации предложенного способа получения горючего газа состоит из диэлектрической емкости 1, с налитой в нее жидкостью 2 (водо-топливной эмульсии или обычной воды), из тонко-пористого капиллярного материала, например, волокнистого фитиля 3, погруженного в эту жидкость и предварительно смоченного в ней, из верхнего испарителя 4, в виде капиллярной испарительной поверхности с переменной площадью в виде непроницаемого экрана (на рис.1 не показан). В состав данного устройства входят также высоковольтные электроды 5, 5-1, электрически присоединенные в разноименным выводам высоковольтного регулируемого источника знакопостоянного электрического поля 6, причем один из электродов 5 выполнен в виде дырчато-игольчатой пластины, и размещен подвижно над испарителем 4, например, параллельно ему на расстоянии, достаточном для предотвращения электрического пробоя на смоченный фитиль 3, механически соединенный с испарителем 4.

Другой высоковольтный электрод (5-1), электрически подключенный по входу, например, к «+» выводу источника поля 6, своим выходом механически и электрически присоединен к нижнему концу пористого материала, фитиля 3, почти на дне емкости 1. Для надежной электроизоляции электрод защищен от корпуса емкости 1 проходным электроизолятором 5-2 Заметим, что вектор напряженности данного электрического поля, подаваемого на фитиль 3 от блока 6 направлен вдоль оси фитиля -испарителя 3. Устройство дополнено также сборным газовым коллектором 7. По существу, устройство, содержащее блоки 3, 4, 5, 6, является комбинированным устройством электроосмотического насоса и электростатического испарителя жидкости 2 из емкости 1. Блок 6 позволяет регулировать напряженность знакопостоянного («+»,»-«) электрического поля от 0 до 30 кВ/см. Электрод 5 выполнен дырчатым или пористым для возможности пропускания через себя образуемого пара. В устройстве (рис.1) предусмотрена также техническая возможность изменения расстояния и положения электрода 5 относительно поверхности испарителя 4. В принципе для создания требуемой напряженности электрического поля вместо электрического блока 6 и электрода 5 можно использовать полимерные моноэлектреты /13/. В этом бестоковом варианте устройства водородного генератора его электроды 5 и 5-1 выполняют в виде моноэлектретов, имеющих разноименные электрические знаки. Тогда в случае применения таких устройств-электродов 5 и размещения их, как было пояснено выше, необходимость в специальном электрическом блоке 6 вообще отпадает.

ОПИСАНИЕ РАБОТЫ ПРОСТЕЙШЕГО ЭЛЕКТРОКАПИЛЛЯРНОГО НАСОСА-ИСПАРИТЕЛЯ (РИС.1)

Первые опыты электрокапиллярной диссоциации жидкостей проводилсь с использованием в качестве жидкостей как простую воду, так и различных ее растворы и водо-топливные эмульсии различных концентраций. И во всех этих случаях был успешно получены топливные газы. Правда, эти газы были весьма различные по составу и теплоемкости.

Новый электрофизический эффект «холодного»испарения жидкости вообще без затрат энергии под действием электрического поля я впервые наблюдал в простейшем устройстве (рис.1)

а)Oписание первой простейшей экспериментальной установки.

Опыт реализуют следующим образом: вначале наливают в емкость 1 водо-топливную смесь (эмульсию) 2, предварительно смачивают ею фитиль 3 и пористый испаритель 4. Затем включают высоковольтный источник напряжения 6 и подают высоковольтную разность потенциалов(поряядка 20 кВ) к жидкости на некотором расстоянии от краев капилляров (фитиль 3-испаритель 4) источник электрическсого поля присоединяют через электроды 5-1 и 5, причем размещают пластинчатый дырчатый электрод 5 выше поверхности испарителя 4 на расстояние, достаточное для предотвращения электрического пробоя между электродами 5 и 5-1.

б)Kак работает устройство

В результате, вдоль капилляров фитиля 3 и испарителя 4 под действием электростатических сил продольного электрического поля дипольные поляризованные молекулы жидкости двигались из емкости в направлении к противоположному электрическому потенциалу электрода 5 (электроосмос), срываются этими электрическими силами поля с поверхности испарителя 4 и превращаются в видимый туман, т.е. жидкость переходит в другое агрегатное состояние при минимальных энергозатратах источника электрического поля (6).и по ним начинается электроосмотический подъем данной жидкости. В процессе отрыва и столкновения между собой испаренных молекул жидкости с молекулами воздуха и озона, электронами в зоне ионизации между испарителем 4 и верхним электродом 5 происходит частичная диссоциация с образованием горючего газа. Далее этот газ поступает через газосборник 7, например, в камеры сгорания двигателя автотранспорта.

В)Hекоторые результаты количественные измерений

В состав этого горючего топливного газа входят молекулы водорода (Н2)-35%, кислорода(О2)-35% молекулы воды-(20%) и оставшиеся 10%-это молекулы примесей иных газов, органические молекулы топлива и др. Экспериментально показано, что интенсивность процесса испарения и диссоциации молекул ее пара изменяются от изменения расстояния электрода 5 от испарителя 4, от изменения площади испарителя, от вида жидкости, качества капиллярного материала фитиля 3 и испарителя 4 и параметров электрического поля от источника 6. (напряженности, мощности). Измерялись температура топливного газа и интенсивность его образования(расходомер). И производительность устройства в зависимости от конструктивных параметров. Путем нагрева и измерения контрольного объема воды при сжигании определенного объема этого топливного газа вычислялась теплоемкость получаемого газа в зависимости от изменения параметров экспериментальной установки.

УПРОЩЕННОЕ ОБЪЯСНЕНИЕ ПРОЦЕССОВ И ЭФФЕКТОВ, ЗАФИКСИРОВАННЫХ В ЭКСПЕРИМЕНТАХ НА МОИХ ПЕРВЫХ УСТАНОВКАХ

Уже мои первые эксперименты на данной простейшей установке в 1986 г. показали, что «холодный» водный туман (газ) возникает из жидкости (воды) в капиллярах при высоковольтномэлектроосмосе вообще без видимых затрат энергии, а именно с использованием только потенциальной энергии электрического поля. Этот вывод очевиден, потому что в процессе экспериментов электрический ток потребления источника поля было одинаковым и было равно току холостого хода источника. Причем этот ток вообще не изменялся независимо от того, происходило ли испарение жидкости, или нет. Но никого чуда в моих нижеописанных опытах «холодного» испарения и диссоциации воды и водных растворов в топливные газы -нет. Просто мне удалось увидеть и понять аналогичный процесс, протекающий в самой Живой Природе. И удалось весьма полезно использовать его на практике для эффективного «холодного» испарения воды и получения из нее топливного газа.

Опыты показывает, что за 10 минут при диаметре капиллярного цилиндра 10 см. капиллярный электросмос испарял достаточно большой объем воды (1 литр) вообще без затрат энергии. Потому что потребляемая входная электрическая мощность (10 ватт). Используемого в опытах источника электрического поля- высоковольтного преобразователя напряжения (20 кВ) неизменна от режима его работы. Экспериментально выяснено, что вся эта потребляемая из сети мизерная по сравнению с энергией испарения жидкости, мощность тратились именно на создание электрического поля. И эта мощность не увеличивались при капиллярном испарении жидкости благодаря работе ионного и поляризационного насосов. Поэтому эффект холодного испарения жидкости удивителен. Ведь он происходит вообще без видимых затрат электроэнергии!

Струя водного газа (пара) иногда, особенно в начале процесса была видна. Она отрывалась от края капилляров с ускорением. Движение и испарение жидкости объясняется, по моему, именно благодаря возникновению в капилляре под действием электрического поля огромных электростатических сил и огромного электроосмотического давления на столб поляризованной воды (жидкости) в каждом капилляре.Которые и являются движущей силой раствора по капиллярам.

Опыты доказывают, что в каждом из капилляров с жидкостью под действием электрического поля работает мощный бестоковый электростатический и одновременно ионный насос, которые и поднимают столб поляризованной и частично ионизированной полем в капилляре микронного по диаметру столба жидкости(воды) от одного потенциала электрического поля, поданного в саму жидкость и нижнему концу капилляра к противоположному электрическому потенциалу, размещенному с зазором относительно противоположного конца этого капилляра. В результате, такой электростатический, ионный насос интенсивно разрывает межмолекулярные связи воды, активно с давлением движет поляризованные молекулы воды и их радикалы по капилляру и затем инжектирует эти молекулы вместе с порванными электрически заряженными радикалами молекул воды за пределы капилляра к противоположному потенциалу электрического поля. Опыты показывают, что одновременно с инжекцией молекул из капилляров происходит и частичная диссоциация (разрыв) молекул воды. Причем тем больше, чем выше напряженность электрического поля. Во всех этих непростых и одновременно протекающих процессах капиллярного электроосмоса жидкости используется именно потенциальная энергия электрического поля.

Поскольку процесс такого превращения жидкости в водный туман и водный газ происходит по аналогии с растениями, вообще без подвода энергии и не сопровождается нагревом воды и водного газа. Поэтому я назвал данный природный а потом и технический процесс электроосмоса жидкостей – «холодным» испарением. В экспериментах превращение водной жидкости в холодную газообразную фазу (туман) происходит быстро и вообще без видимых затрат электроэнергии. Одновременно на выходе из капилляров, газообразные молекулы воды разрываются электростатическими силами электрического поля на Н2 и О2. Поскольку этот процесс фазового перехода жидкости воды в водный туман(газ) и диссоциации молекул воды протекает в эксперименте вообще без видимого расходования энергии (тепла и тривиальной электроэнергии), то, вероятно, расходуется каким то образом именно потенциальная энергия электрического поля.

РЕЗЮМЭ ПО РАЗДЕЛУ

Несмотря на то, что пока еще до конца неясна энергетика этого процесса, все же уже достаточно ясно, что «холодное испарение» и диссоциацию воды осуществляет потенциальная энергия электрического поля. Точнее, видимый процесс испарения и расщепления воды на Н2 и О2 при капиллярном электроосмосе осуществляют именно мощные электростатические Кулоновские силы этого сильного электрического поля. В принципе такой необычный электроосмотический насос-испаритель-расщепитель молекул жидкости это пример вечного двигателя второго рода. Таким образом, высоковольтный капиллярный электроосмос водной жидкости обеспечивает посредством использования потенциальной энергии электрического поля действительно интенсивное и энергически незатратное испарение и расщепления молекул воды на топливный газ(Н2, О2,Н2О).

ФИЗИЧЕСКАЯ СУЩНОСТЬ КАПИЛЛЯРНОГО ЭЛЕКТРОСМОСА ЖИДКОСТЕЙ

Пока его теория еще не разработана, а только зарождается. И автор надеется, что эта публикация привлечет внимание теоретиков и практиков и поможет создать мощный творческий коллектив единомышленников. Но уже ясно, что, несмотря на относительную простоту технической реализации самой технологии, все же реальная физика и энергетика процессов при реализации этого эффекта весьма сложна и не конца пока понятна. Отметим их основные характерные свойства:

А) Oдновременное протекание нескольких электрофизических процессов в жидкостях в электрокапилляре

Поскольку при капиллярном электросмотическом испарении и диссоциации жидкостей, протекает одновременно и поочередно много различных электрохимических, электрофизических, электромеханических и иных процессов, особенно при движении водного раствора по капилляру инжекции молекул с края капилляра в направлении электрического поля.

Б) энергетический феномен «холодного» испарения жидкости

Проще говоря, физическая сущность нового эффекта и новой технологии состоит в преобразовании потенциальной энергии электрического поля в кинетическую энергию движения молекул жидкости и структур по капилляру и вне его. При этом в процессе испарения и диссоциации жидкости вообще не потребляется электрический ток, потому что каким то пока непонятным образом расходуется именно потенциальная энергия электрического поля. Именно электрическое поле в капиллярном электроосмосе запускает и поддерживает возникновение и одновременном протекании в жидкости в процессе преобразования ее фракций и агрегатных состояний устройстве сразу многих полезных эффектов преобразования молекулярных структур и молекул жидкости в горючий газ. А именно: высоковольтный капиллярный электроосмос обеспечивает одновременно мощную поляризацию молекул воды и ее структур с одновременным частичным разрывом межмолекулярных связей воды в наэлектризованном капилляре, дробление поляризованных молекул воды и кластеров на заряженные радикалы в самом капилляре посредством потенциальной энергии электрического поля. Эта же потенциальная энергию поля интенсивно запускает механизмы формирования и движения по капиллярам выстроенных «в шеренги» электрически сцепленных между собою в цепочки поляризованных молекул воды и их образований(электростатический насос), работу ионного насоса с создание огромного электроосмотического давления на столб жидкости для ускоренного движения по капилляру и окончательному инжектированию из капилляра уже частично разорванных ранее полем (расщепленных на радикалы) неполных молекул и кластеров жидкости(воды). Поэтому на выходе даже самого простого устройства капиллярного электроосмоса уже получается горючий газ(точнее, смесь газов Н2,О2 и Н2О).

В) Применимость и особенности работы переменного электрического поля

Но для более полной диссоциации молекул воды в топливный газ необходимо заставить уцелевшие молекулы воды соударяться между собой и дробиться на молекулы Н2 и О2 в дополнительном поперечном переменном поле(рис.2). Поэтому для повышения интенсификации процесса испарения и диссоциации воды (любой органической жидкости) в топливный газ лучше применять два источника электрического поля.(рис.2). В них для испарения воды (жидкости) и для получения топливного газа потенциальную энергию сильного электрического поля (с напряженностью не менее 1 кВ/см) используют раздельно: вначале первое электрическое поле используется для перевода молекул, образующих жидкость, из малоподвижного жидкого состояния электроосмосом через капилляры в газообразное состояние (получают холодный газ) из жидкости с частичным расщеплением молекул воды, а затем, на втором этапе, используют энергию второго электрического поля, конкретнее, мощные электростатические силы для интенсификации колебательного резонансного процесса «соударения-расталкивания» наэлектризованных молекул воды в виде водяного газа между собой для полного разрыва молекул жидкости и образования молекул горючего газа.

Г) Pегулируем ость процессов диссоциации жидкостей в новой технологии

Регулировка интенсивности образования водного тумана (интенсивность холодного испарения) достигается изменением параметров электрического поля направленного вдоль капиллярного испарителя и (или) изменением расстояния между наружной поверхностью капиллярного материала и ускоряющим электродом, с помощью которого и создается электрическое поле в капиллярах. Регулирование производительности получения водорода из воды осуществляют изменением (регулированием) величины и формы электрического поля, площади и диаметра капилляров, изменением состава и свойств воды. Эти условия оптимальной диссоциации жидкости различны в зависимости от вида жидкости, от свойств капилляров, от параметров поля.и диктуются требуемой производительностью процесса диссоциации конкретной жидкости. Опыты показывают, что наиболее эффективное получения Н2 из воды достигается при расщепление молекул полученного электроосмосом водного тумана осуществлять вторым электрическим полем, рациональные параметры которого были подобраны преимущественно экспериментальным путем. В частности, выяснилась целесообразность окончательного расщепления молекул водного тумана производить именно импульсным знакопостоянным электрическим полем с вектором поля перпендикулярно вектору первого поля, используемого в электроосмосе воды. Воздействие электрических полем на жидкость в процессе ее преобразования в туман и далее в процессе расщепления молекул жидкости может осуществляться одновременно или поочередно.

РЕЗЮМЕ ПО РАЗДЕЛУ

Благодаря этим описанным механизмам при комбинированном электроосмосе и воздействии двух электрических полей на жидкость(воду) в капилляре удается достичь максимальной производительности процесса получения горючего газа и практически устранить электрические и тепловые затраты энергии при получении этого газа из воды из любых водо-топливных жидкостей. Данная технология в принципе применима для получения топливного газа из любого жидкого топлива или его водных эмульсий.

Прочие общие аспекты реализации новой технологии Рассмотрим еще некоторые аспекты реализации предлагаемой новой революционной технологии разложения воды, ее иные возможные эффективные варианты для развития базовой схемы реализации новой технологии, а также некоторые дополнительные пояснения, технологические рекомендации и технологические «хитрости» и «НОУ-ХАУ», полезные при ее реализации.

а) Предварительная активация воды (жидкости)

Для повышения интенсивности получения топливного газа, жидкость (воду) целесообразно вначале активизировать(предварительный нагрев, предварительное разделение ее на кислотную и щелочную фракции, электризация и поляризация и прочее). Предварительную электроактивацию воды(и любой водной эмульсии) с разделением ее на кислотную и щелочную фракции осуществляют частичным электролизом посредством дополнительных электродов, размещенных в специальной полупроницаемых диафрагмах для их последующего раздельного испарения (рис.3).

В случае предварительного разделения исходно химически нейтральной воды на химические активные (кислотную и щелочную)фракции, реализация технологии получения горючего газа из воды становится возможен и при минусовых температурах (до –30 град. Цельсия), что весьма важно и полезно зимой для автотранспорта. Потому что такая «фракционная» электроактивированная вода вообще не замерзает при морозах. Значит установка по получению водорода из такой активированной воды тоже сможет работать при минусовых температурах окружающей среды и в морозы.

б) Источники электрического поля

В качестве источника электрического поля для осуществления данной технологии вполне могут быть использованы разные устройства. Например, такие как известные магнито-электронные высоковольтные преобразователи постоянного и импульсного напряжения, электростатические генераторы, различные умножители напряжения, предварительно заряженные высоковольтные конденсаторы, а также вообще полностью бестоковые источники электрического поля – диэлектрические моноэлектреты.

в) Aдсорбция полученных газов

Водород и кислород в процессе получения горючего газа, могут аккумулироваться отдельно друг от друга путем размещения в потоке горючего газа специальных адсорбентов. Вполне возможно использование данного способа для диссоциации любой водо-топливной эмульсии.

г) Получение топливного газа электроосмосом из органических жидких отходов

Данная технология позволяет эффективно использовать в качестве сырья для выработки топливного газа любые жидкие органические растворы (например, жидкие отходы жизнедеятельности человека и животных). Как ни парадоксально эта мысль звучит, но использование органических растворов для производства топливного газа, в частности из жидких фекалий, с позиции энергозатрат и экологии, даже более выгоднее и проще, чем диссоциация простой воды, которую технически намного труднее разложить на молекулы.

Кроме того, такой гибридный топливный газ, полученный из органических отходов, менее взрывоопасен. Поэтому по сути, данная новая технология позволяет эффективно преобразовывать любые органические жидкости (в том числе и жидкие отходы) в полезный топливный газ. Таким образом, настоящая технология эффективно применима и для полезной переработки и утилизации жидких органических отходов.

ПРОЧИЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ОПИСАНИЕ КОНСТРУКЦИЙ И ПРИНЦИПА ИХ РАБОТЫ

Предлагаемая технология может быть реализована с помощью различных устройств. Самое простое устройство электроосмотического генератора топливного газа из жидкостей ранее уже было показано и раскрыто в тексте и на рис.1. Некоторые иные более совершенные варианты таких этих устройств, апробированных автором экспериментально, представлены в упрощенном виде на рис.2-3. Один из простых вариантов комбинированного способа получения горючего газа из водо-топливной смеси или воды может быть реализован в устройстве (рис.2), которое состоит по существу из комбинации устройства (рис.1) дополнительным устройством, содержащим плоские поперечные электроды 8,8-1, присоединенные к источнику сильного переменного электрического поля 9.

На рис.2 показана также более подробно функциональная структура и состав источника 9 второго (знакопеременного) электрического поля, а именно показано, что он состоит из первичного источника электроэнергии 14, присоединенного по силовому входу ко второму высоковольтному преобразователю напряжения 15 регулируемой частоты и амплитуды (блок 15 может быть выполнен в виде индуктивно-транзисторной схемы типа автогенератора Ройера), присоединенного по выходу к плоским электродам 8 и 8-1. Устройство снабжено также термическим нагревателем 10, размещенным, например, под днищем емкости 1. На автотранспорте это может быть выпускной коллектор горячих выхлопных газов, боковые стенки корпуса самого двигателя.

На блок-схеме (рис.2) источники электрического поля 6 и 9 более подробно расшифрованы. Так, в частности, показано, что источник 6 знакопостоянного, но регулируемого по величине напряженности электрического поля, состоит из первичного источника электроэнергии 11, например, бортовой аккумуляторной батареи, подключенного по первичной цепи электропитания к высоковольтному регулируемому преобразователю напряжения 12, например, типа автогенератора Ройера, с встроенным выходным высоковольтным выпрямителем (входит в состав блока 12), присоединенным по выходу к высоковольтным электродам 5, причем силовой преобразователь 12 по управляющему входу присоединен к системе управления 13, позволяющей управлять режимом работы данного источника электрического поля., конкретнее производительностью Блоки 3, 4, 5, 6 составляют в совокупности комбинированное устройство электроосмотического насоса и электростатического испарителя жидкости. Блок 6 позволяет регулировать напряженность электрического поля от 1 кВ/см до 30 кВ/см. В устройстве (рис.2) предусмотрена также техническая возможность изменения расстояния и положения пластинчатого сетчатого или пористого электрода 5 относительно испарителя 4, а также расстояния между плоскими электродами 8 и 8-1. Описание гибридного комбинированного устройства в статике (рис.3)

Это устройство в отличие от поясненных выше дополнено электрохимическим активизатором жидкости, двумя парами электродов 5,5-1. Устройство содержит емкость 1 с жидкостью 2, например, водой, два пористых капиллярных фитиля 3 с испарителями 4, две пары электродов 5,5-1. Источник электрического поля 6, электрические потенциалы которого присоединены к электродам 5,5-1. Устройство содержит также газосборный трубопровод 7, разделительный фильтровый барьер-диафрагму 19, разделяющий емкость 1 надвое.дополнительный блок регулируемого по величине знакопостоянного напряжения 17, выходы которого через электроды 18 введены в жидкость 2 внутрь емкости1 по обе стороны диафрагмы 19. Отметим, что особенности данного устройства состоят также и в том, что к верхним двум электродам 5 подведены противоположные по знаку электрические потенциалы от высоковольтного источника 6 в связи с противоположными электрохимическими свойствами жидкости, разделенными диафрагмой 19. Описание работы устройств (Рис.1-3)

РАБОТА КОМБИНИРОВАННЫХ ГЕНЕРАТОРОВ ТОПЛИВНОГО ГАЗА

Рассмотрим более подробно реализацию предложенного способа на примере простых устройств (рис. 2-3).

Устройство (рис.2) работает следующим образом: испарение жидкости 2 из емкости 1 осуществляют в основном термическим нагреванием жидкости от блока 10, например, с использованием значительной тепловой энергии выпускного коллектора двигателя автотранспорта. Диссоциацию молекул испаренной жидкости, например, воды на молекулы водорода и кислорода осуществляют силовым воздействием на них переменным электрическим полем от высоковольтного источника 9 в зазоре между двумя плоскими электродами 8 и 8-1. Капиллярный фитиль 3, испаритель 4, электроды 5,5-1 и источник электрического поля 6, как уже было описано выше превращают жидкость в пар, а прочие элементы в совокупности обеспечивают электрическую диссоциацию молекул испаренной жидкости 2 в зазоре между электродами 8,8-1 под действием переменного электрического поля от источника 9, причем изменением частоты колебаний и напряженности электрического поля в зазоре между 8,8-1 по цепи системы управления 16 с учетом информации с датчика состава газа регулируется интенсивность соударения и дробления этих молекул (т.е. степень диссоциации молекул). Регулированием напряженности продольного электрического поля между электродами 5,5-1 от блока преобразователя напряжения 12 через его систему управления 13 достигается изменение производительности механизма подъема и испарения жидкости 2.

Устройство (рис. 3) работает следующим образом: вначале жидкость (воду) 2 в емкости 1 под действием разности электрических потенциалов от источника напряжения 17, приложенных к электродам 18 разделяют через пористую диафрагму 19 на «живую» — щелочную и «мертвую» — кислотную фракции жидкости (воды), которые потом электроосмосом превращают в парообразное состояние и дробят его подвижные молекулы переменным электрическим полем от блока 9 в пространстве между плоскими электродами 8,8-1 до образования горючего газа. В случае выполнения электродов 5,8 пористыми из специальных адсорбентов появляется возможность накопления, аккумулирования в них запасов водорода и кислорода. Затем можно осуществлять и обратный процесс выделения из них данных газов, например, путем их подогрева, а сами эти электроды в таком режиме целесообразно размещать непосредственно в топливной емкости, связанной например, с топливо проводом автотранспорта. Отметим также, что электроды 5,8 могут служить и адсорбентами отдельных составляющих горючего газа, например, водорода. Материал таких пористых твердых адсорбентов водорода уже описан в научно-технической литературе.

РАБОСПОСОБНОСТЬ СПОСОБА И ПОЛОЖИТЕЛЬНЫЙ ЭФФЕКТ ОТ ЕГО РЕАЛИЗАЦИИ

Работоспособность способа уже доказана мною многочисленными опытами экспериментально. И приведенные в статье конструкции устройств (рис.1-3) являются действующими моделями, на которых и проводились эксперименты. Для доказательства эффекта получения горючего газа мы его поджигали на выходе газосборника (7) и измеряли тепловые и экологические характеристики процесса его горения. Имеются протоколы испытаний, которые подтверждают работоспособность способа и высокие экологическое характеристики полученного газообразного топлива и отходящих газообразных продуктов его сгорания. Эксперименты показали, что новый элеектроосмотический способ диссоциации жидкостей работоспособен и пригоден для холодного испарения и диссоциации в электрических полях весьма различных жидкостей (водо-топливных смесей, воды, водных ионизированных растворов, водо-масляных эмульсий, и даже водных растворов фекальных органических отходов, которые, кстати, после их молекулярной диссоциации по данному способу образуют эффективный экологически чистый горючий газ практически без запаха и цвета.

Главный положительный эффект изобретения состоит в многократном снижении затрат энергии (тепловой, электрической) на осуществление механизма испарения и молекулярной диссоциации жидкостей по сравнению со всеми известными способами-аналогами.

Резкое снижение энергозатрат при получении горючего газа из жидкости например, водо-топливных эмульсий путем электрополевого испарения и дробления ее молекул на молекулы газов, достигается благодаря мощным электрическим силам воздействия электрического поля на молекулы как в самой жидкости, так и на испаренные молекулы. В результате резко интенсифицируется процесс испарения жидкости и процесс дробления ее молекул в парообразном состоянии практически при минимальной мощности источников электрического поля. Естественно, регулированием напряженности данных полей в рабочей зоне испарения и диссоциации молекул жидкости, или электрическим путем, или путем перемещения электродов 5, 8, 8-1 изменяется силовое взаимодействие полей с молекулами жидкости, что и приводит к регулированию производительности испарения и степени диссоциации молекул испаренной жидкости. Экспериментально показана также работоспособность и высокая эффективность диссоциации испаренного пара поперечным знакопеременным электрическим полем в зазоре между электродами 8, 8-1 от источника 9 (рис.2,3,4). Установлено, что для каждой жидкости в ее испаренном состоянии существует определенная частота электрических колебаний данного поля и его напряженность, при которых процесс расщепления молекул жидкости происходит наиболее интенсивно. Экспериментально установлено также, что дополнительная электрохимическая активизация жидкости, например, обычной воды, которая является ее частичным электролизом, осуществляемая в устройстве (рис.3), и также повышают производительность ионного насоса (фитиль 3-ускоряющий электрод 5) и увеличивают интенсивность электроосмотического испарения жидкости. Термонагрев жидкости, например, теплом отходящих горячих газов двигателей транспорта (рис.2) способствует ее испарению, что также приводит к повышению производительности получения водорода из воды и горючего топливного газа из любых водо-топливных эмульсий.

КОММЕРЧЕСКИЕ АСПЕКТЫ ВНЕДРЕНИЯ ТЕХНОЛОГИИ

ДОСТОИНСТВО ЭЛЕКТРООСМОТИЧЕСКОЙ ТЕХНОЛОГИИ ПО СРАВНЕНИЮ С ЭЛЕКТРОТЕХНОЛОГИЕЙ МЭЙЕРА

В сравнении по производительности с известной и самой низкозатратной прогрессивной электрической технологией Стенли Мэйера для получения топливного газа из воды (и ячейки Мэйера) /6/ наша технологии более прогрессивна и производительна, потому что используемый нами электроосмотический эффект испарения и диссоциации жидкости в сочетании с механизмом электростатического и ионного насоса обеспечивает не только интенсивное испарение и диссоциацию жидкости при минимальном и одинаковом с аналогом энергопотреблении, но еще и эффективный отрыв молекул газа из зоны диссоциации, причем с ускорением от верхнего края капилляров. Поэтому в нашем случае вообще не образуется эффекта экранирования рабочей зоны электрической диссоциации молекул. И процесс генерации топливного газа не замедляется во времени, как у Мэйера. Поэтому газопроизводительность нашего метода при одинаковыхэнергозатратах на порядок выше данного прогрессивного аналога /6/.

Некоторые технико-экономические аспекты и коммерческие выгоды и перспективы реализации новой технологии Предлагаемая новая технология вполне может быть доведена в сжатые сроки до серийного выпуска таких высокоэффективных электроосмотических генераторов топливного газа практически из любых жидкостей, включая водопроводную воду. Особенно просто и экономически целесообразно на первом этапе освоения технологии реализовать вариант установки по переводу водо-топливных эмульсий в топливный газ. Себестоимость серийной установки получения топливного газа из воды с производительностью порядка 1000м³/час составит примерно 1 тысячу долларов США. Потребляемая электрическая мощность такого электрогенератора топливного газа составит не более 50-100 ватт. Поэтому такие компактные и эффективные электролизеры топлива могут быть установлены с успехом практически на любом автомобиле. В результате тепловые двигатели смогут работать практически от любой углеводородной жидкости и даже от простой воды. Массовое внедрение этих устройств на автотранспорте приведет к резкому энергетическому и экологическому совершенствованию автотранспорта. И приведет к быстрому созданию экологически чистого и экономичного теплового двигателя. Ориентировочные финансовые затраты на разработку, создание, и доводку исследование первой пилотной установки получения топливного газа из воды с производительностью 100 м³ в секунду до опытно- промышленного образца составляет порядка 450-500 тысяч долларов США. В состав этих затрат включены затраты на проектирование и исследования, стоимость самой экспериментальной установки и стенда для ее апробации и доводки.

ВЫВОДЫ:

В России открыт и экспериментально исследован новый электрофизический эффект капиллярного электроосмоса жидкостей -«холодного» энергетически малозатратного механизма испарения и диссоциации молекул любых жидкостей

Данный эффект существует независимо в природе и является главным механизмом электростатического и ионного насоса по перекачки питающих растворов (соков) от корней к листьям всех растений сих последующей электростатической газификацией.

Экспериментально обнаружен и исследован новый эффективный способ диссоциацию любой жидкости путем ослабления и разрыва ее межмолекулярных и молекулярных связей высоковольтным капиллярным электроосмосом

На основе нового эффекта создана и апробирована новая высокоэффективная технология получения топливных газов из любых жидкостей.

Предложены конкретные устройства для энергетически малозатратного получения топливных газов из воды и ее соединений

Технология применима для эффективного получения топливного газа из любых жидких топлив и водо-топливных эмульсий, включая жидкие отходы.

Технология особо перспективна для применения на транспорте в энергетике и. А также в городах для утилизации и полезного использования углеводородных отходов.

Автор заинтересован в деловом и творческом сотрудничестве с фирмами, желающими и способными своими инвестициями создать необходимые условия автору для доведения ее до опытно-промышленных образцов и внедрения данной перспективной технологии в практику.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА:

  1. Дудышев В.Д. «Растения — природные ионные насосы»- в журнале «Юный техник» №1/88 г.
  2. Дудышев В.Д. «Новая электроогневая технология — эффективный путь решения энергетических и экологических проблем»- журнал»Экология и промышленность России» №3/ 97 г.
  3. Термическое получение водорода из воды ”Химическая энциклопедия”,т.1, М., 1988г., с.401).
  4. Электроводородный генератор (международная заявка по системе РСТ -RU98/00190 от 07.10.97 г.)
  5. Free energy Generation by Water Decomposition in Highly Efficiency Electrolytic Process, Proceedings «New Ideas in Natural Sciences», 1996, Санкт-Петербург, стр.319-325, изд. «ПиК».
  6. Патент США 4.936,961 Метод производства топливного газа.
  7. Пат США 4,370,297 Метод и аппарат для ядерного thermochemical водного расщепления.
  8. Пат США 4,364,897 Многоступенчатый химический и лучевой процесс для производства газа.
  9. Пат. США 4,362,690 Pyrochemical устройство для разложения воды.
  10. Пат. США 4,039,651 Процесс закрытого цикла thermochemical производство водорода и кислорода от воды.
  11. Пат. США 4,013,781 Процесс для получения водорода и кислорода от воды, использующей железо и хлор.
  12. Пат. США 3,963,830 Thermolysis воды в контакте с zeolite массами.
  13. Г.Лущейкин “Полимерные электреты”, М.,”Химия”,1986г.
  14. ”Химическая энциклопедия”,т.1, М., 1988г., разделы «вода», (водные растворы и их свойства)

Дудышев Валерий Дмитриевич профессор Самарского технического университета, д.т.н., академик Российской Экологической Академии

В качестве перспективного горючего водород начал рассматриваться уже в середине прошлого века, а до этого он успел поработать в дирижаблях и сварочных аппаратах, ныне же часто трудится в роли одного из самых эффективных аккумуляторов энергии. Внедрение водорода в качестве горючего долго тормозилось его взрывоопасностью, а самое главное, себестоимостью его добычи. Но скоро ситуация может резко измениться
Впервые водород в чистом виде выделил 240 лет назад английский химик Генри Кавендиш. Свойства полученного им газа были настолько удивительны, что ученый принял его за легендарный «флогистон», «теплород» — вещество, по канонам науки того времени определявшее температуру тел. Он прекрасно горел (а огонь считался почти чистым флогистоном), был необычайно легок, в 15 раз легче воздуха, хорошо впитывался металлами и так далее. Однако другой великий химик, француз Антуан-Лоран Лавуазье, уже в 1787 году доказал, что полученное Кавендишем вещество — вполне обычный, хотя и очень интересный химический элемент. Свое название водород получил оттого, что при горении давал не дым, сажу и копоть, а воду. Кстати, именно эта его особенность больше всего привлекает сегодняшних экологов и «зеленых».
Вплоть до конца XIX века получение водорода было делом достаточно хлопотным. Добывали его в мизерных количествах, растворяя обычные металлы в кислотах, а также щелочные и щелочноземельные в воде. Только после того, как электричество начали производить в промышленных масштабах, появилась возможность относительно легко добывать его тоннами с помощью электролиза. Выглядит электролитический процесс примерно так: в ванну с водой опускают два электрода, на одном — положительный потенциал, на другом — отрицательный. На плюсе в результате прохождения тока выделяется кислород, а на минусе — водород.
Наработав в достаточном количестве этот легкий газ, люди сначала приспособили его для воздушных полетов. В этом качестве первый элемент Таблицы Менделеева применяли вплоть до 1937 года, когда в воздухе сгорел крупнейший в мире, в два футбольных поля размером, заполненный водородом немецкий дирижабль «Гинденбург». Катастрофа унесла жизни 36 человек, и на таком использовании водорода был поставлен крест. С тех пор аэростаты заправляют исключительно гелием. Гелий — газ, увы, более плотный, но зато негорючий.

Погремушка
В 1944 году американские военные попытались использовать его в качестве ракетного топлива. Помешала делу высокая взрывоопасность газа: стоило совсем немного отклониться от нормальной работы двигателей или допустить малейшую протечку, и мирный водород мигом превращался в зловещий «гремучий газ». В результате ракеты не долетали до цели, взрываясь прямо на старте. По той же причине американцам не удалось в 50-е годы прошлого века построить водородный самолет, а в 70-е, во времена нефтяного кризиса, — водородный эсминец.


В этом смысле дела в СССР, основном тогдашнем конкуренте Штатов в области водородной энергетики, были более успешны. Советские ученые решили добывать из водорода энергию в виде электричества, напрямую окисляя его в водной среде, а не поджигая в смеси с кислородом. Для этого они использовали топливные элементы, в которых водород на специальной ионообменной мембране соединялся с кислородом, в результате чего получались вода и электричество. Технология оказалась настолько удобной, что сейчас без участия топливных элементов не проходит ни одна серьезная космическая экспедиция.

Движки-универсалы
Немного позже ученые все же придумали, как использовать водород в качестве именно горючего и при этом не взорваться. В газ стали добавлять специальные присадки-ингибиторы (химические «тормоза»). Например, пропилен. Всего один процент этого дешевого газа — и водород из грозного оружия превращается в безопасный газ. В результате уже в 1979 году компания BMW выпустила первый автомобиль, вполне успешно ездивший на водороде, при этом не взрывавшийся и выпускавший из выхлопной трубы водяной пар. В эпоху усиливающейся борьбы с вредными выхлопами машина была воспринята как вызов консервативному автомобильному рынку. Вслед за BMW в экологическую сторону потянулись и другие производители. К концу века каждая уважающая себя автокомпания имела в запаснике хотя бы один концепт-кар, работающий на водородном топливе.
Баварские автомобилестроители в рамках программы CleanEnergy («чистая энергия») приспособили под езду на Н2 несколько «семерок» и MINI Cooper. Оборудованная 4-литровым двигателем водородная «семерка» развивает мощность в 184 лошадиные силы и проходит на одной заправке (170 литтров жидкого водорода «под завязку») 300 км. Mazda «подсадила» на водород свой знаменитый спорт-кар RX-8. В таком экологически чистом варианте он называется Mazda RX-8 HRE (Hydrogen Rotary Engine). Все эти машины могут ездить и на водороде, и на бензине.


Если BMW и Mazda пока чередуют два вида топлива, некоторые научились их совмещать. По дорогам США уже ездит множество седельных тягачей, в дизельных сердцах которых пылает соляро-водородная смесь. В результате мощность двигателя вместе с чистотой выхлопа растут, а расход топлива снижается на 10%. Оборудованную системой HFI (Hydrogen Fuel Injection — водородный топливный впрыск) машину не надо даже заправлять этим газом, достаточно залить в небольшой бачок несколько литров воды. Система сама проведет электролиз, соберет водород и направит его в камеру сгорания. Эффект заключается в том, что в смеси с водородом солярка сгорает значительно эффективнее.
Но большинство производителей пошли по пути создания электромобилей на топливных элементах. Ибо кроме «экологичности» у них есть масса других преимуществ. Например, гораздо более высокий (до нескольких раз) КПД двигателя или бесшумность.
А больше всех новым топливом заинтересовались японцы. И это понятно. Эта страна, практически лишенная хоть каких-нибудь природных запасов нефти и газа, обладает неограниченными объемами сырья для водорода (в виде океанской воды) и поистине завидной сообразительностью населения. А поэтому здесь водородные аналоги есть практически у любого вида техники — от работающего на топливных элементах локомотива до человекоподобного робота SpeecysFC. К тому же японцы вовсю ведут разработки топливных элементов для ноутбуков и мобильных телефонов. Компания NEC еще в 2001 году создала первый рабочий прототип мобильного топливного элемента PEFC. «Батарейка» выдает «на-гора» в 10 раз больше энергии, чем стандартный литиево-ионный аккумулятор. Правда, заряжается она метанолом: в специальной камере под действием катализаторов и температуры (85 градусов по Цельсию) из него извлекается водород, который и «допускается» к энергопроизводящей мембране. Такая система работы связана с тем, что хранить водород не так-то просто.

Энергетические консервы
Пока человек не научился получать дешевый водород напрямую, без использования электричества, к этому газу можно относиться лишь как к аккумулятору энергии — этакой копилке мегаджоулей. Ведь всего двадцать грамм водорода способны совершить столько же работы, сколько полностью заряженный автомобильный аккумулятор. Однако и в этом качестве у него существует множество конкурентов. Всю свою историю человек разрабатывал новые способы сбора и хранения энергии. С самым простым видом такого накопителя мы сталкиваемся всякий раз, когда заводим механические часы. Главное достоинство металлической пружины — простота конструкции, однако по плотности накопленного она стоит в самом конце рейтинга энергетических аккумуляторов. Самая лучшая пружина не может «сохранить» более 0,5 кДж на килограмм своего веса. Обычная резинка способна «собрать» в 8 раз больше. Еще более емкими являются детали, которые электрики часто так и называют «емкость». Правильное название — конденсатор. Тут уже можно с килограмма получить 12 кДж. Следом за конденсаторами в линейке накопителей идут газовые и гидрогазовые. Их конструкция довольно сложна, используют эти устройства довольно редко (исключение — гидравлические дверные доводчики). Зато электрические «пиробатарейки» с неводным электролитом (энергоемкость — до 70 кДж/кг) человек использует сплошь и рядом. При большой температуре емкость и энергоотдачу такого источника можно повысить на порядок. Промышленный «горячий электрический аккумулятор» «запасает» от 400 до 700 кДж на килограмм. Однако высокая, до 800 градусов, рабочая температура и выделение ядовитого хлора делают его малопригодным для гражданского использования. Зато огромный срок хранения в холодном состоянии и быстрый выход на рабочий режим очень нравятся военным, которые такие батареи активно используют в составе стоящих на боевом дежурстве ракет и прочей техники быстрого реагирования. Настоящим «королем накопителей» следует признать обычный маховик. Юлу, которую мы знаем с детства. Тут уже речь идет о цифрах в тысячи и десятки тысяч килоджоулей. Хороший промышленный накопитель из углепластика способен «запасать» таких килоджоулей до 15 000. И это не предел. На самом деле энергоемкость такого маховика определяется только прочностью конструкции. Незадолго до начала Великой Отечественной войны на одном из наших оборонных заводов разорвало установленный в подвале маховик. Осколок маховика весом примерно 300 кг, пробив все потолочные бетонные перекрытия, улетел в небо, а упав обратно, во второй раз, пробил крышу — такая огромная энергия была в нем накоплена.

Камеры хранения


Так выглядит 3d орбиталь в атоме водорода. Согласно квантовой механике у электрона нет четкой траектории движения, и орбиталь — это та область пространства, где его пребывание наиболее вероятно
Сейчас водородное топливо сберегают тремя способами: в сжатом виде, в сжиженном и в металлогидридах. Самое простое, конечно, — закачать водород в бак мощным компрессором. В баках той же Mazda водородное топливо содержится под давлением 350 атмосфер. Но способ этот, будучи самым дешевым, и самый небезопасный. При таком высоком давлении любая слабинка в системе грозит протечкой газа. А где протечка, там пожар, а то и взрыв.
Более надежный и практичный способ — держать водород в жидком виде. Но для этого его нужно охладить до -253 градусов Цельсия. В BMW топливо хранится именно в таком виде: поэтому почти половину топливной системы занимает мощнейшая теплоизоляция. И все равно, стоит оставить машину на стоянке, скажем, на недельку, и она встретит вернувшегося хозяина с пустыми баками. Никакая изоляция не может полностью защитить систему от нагрева. В результате водород начинает испаряться, давление в баке растет, и газ просто стравливается в атмосферу через предохранительный клапан. По техническим условиям полная заправка испаряется всего за три дня…
Самый перспективный способ — хранение в металлогидридных композициях. Водород, оказывается, очень хорошо растворяется металлами, как вода впитывается губкой. Причем он поглощается в огромных объемах, значительно превосходящих объемы «губки». Такие «напитанные» водородом металлы называются металлогидридами. При охлаждении они вбирают водород, при нагревании — активно его отдают. В прошлом году специалисты из американской Тихоокеанской северо-западной национальной лаборатории создали материал на основе борана аммиака, способный впитывать и отдавать уже при 80 градусах водород со скоростью, в сто раз превышающей те, что были доступны раньше. А Танер Иилдирим из американского Национального института стандартов и технологий вместе с Салимом Сайраки из турецкого университета Билкента разработали материал, способный впитывать газообразный водород в количестве до 9 000 литров на 10-килограммовый элемент! Это особый кристаллический нанокомплекс, состоящий из микроскопических, инкрустированных снаружи титаном, углеродных нанотрубок, каждая из которых в 5 000 раз тоньше человеческого волоса. Изготовить такой углеродно-титановый «накопитель» человек уже может, но стоит он слишком дорого. Пока. Однако заметим, что и персональный компьютер еще совсем не так давно стоил, как хороший автомобиль.
Казалось бы, человечество уже готово перепрыгнуть в водородную эпоху. Новое топливо устраивает и ученых, и экологов, и предпринимателей, и политиков, и простых людей. И перейти на него мешает всего одна проблема. Пока что совсем не понятно, где этот водород брать.

Как стать новым кувейтом
Получение водорода электролизом — малоперспективно. Ведь для того чтобы разложить воду на составляющие, нужно электричество, а его производят… правильно, сжигая в основном ту же нефть. Запасы природного газа, из которого можно выделять водород температурным разложением, тоже не бесконечны.
Экологи предлагают для производства водорода использовать только чистую энергию ветра и солнца, однако все эти прожекты не слишком реалистичны. Английские специалисты посчитали, что для того, чтобы перевести весь автотранспорт острова на такой «чистый» Н2, надо будет застроить несколькими рядами ветряков всю береговую полосу страны. С солнечной энергией тоже не совсем получается: фотоэлементы очень дороги, а при их производстве вредных отходов получается столько, что уж лучше нефть жечь. Строго говоря, самые популярные сейчас полупроводниковые солнечные батареи дороги прежде всего потому, что для выплавки, очистки и обработки кремния, из которого их делают, нужно больше энергии, чем они способны выработать в течение всего своего срока службы. Остается «мирный атом», но для того, чтобы произвести из воды необходимое английским автолюбителям количество водорода, на острове нужно построить более 100 новых АЭС — не самое привлекательное решение, если оценить размер необходимых инвестиций и проблему с утилизацией или захоронением отходов.
Ученые и изобретатели пытаются обойти проблему, выводя специальные породы бактерий, вырабатывающих водород, и покрывая крыши гаражей особыми солнечными элементами, в которых вода разлагается на водород и кислород без промежуточной электрической стадии. Химики из британского Университета Лидса предлагают даже извлекать водород из подсолнечного масла. Но очевидно, что все это — лишь временные решения.
Выходит, мы в тупике? Не совсем. Вообще, водород во Вселенной — самый распространенный элемент. Она состоит из него на 70%. А вот на Земле, как ни странно, этот элемент в свободном виде в дефиците: всего 3—4%. А может, его все-таки больше? Вот тут-то мы и подходим к самому интересному.
Еще в 70-х годах прошлого века известный геолог Владимир Ларин разработал теорию, поддержанную многими учеными и никем пока не опровергнутую, которая утверждает, что водорода у нас много больше. Не просто больше, его у нас — целый океан, до которого надо только добраться. И сделать это не так сложно. Достаточно пробурить несколько пяти-шестикилометровых скважин в нужных местах. За разработку этой концепции Ларин получил докторскую степень.
Суть теории заключается в том, что ядро нашей планеты состоит не из железа, как считалось ранее, а из металлогидридов. Из предельно насыщенных водородом магния и кремния и уж только потом — из железа. Собственно, никаких доказательств того, что ядро Земли железное, нет. Ученые еще в начале прошлого века выяснили, что оно состоит из некоего плотного металла, и посчитали, что этим металлом является железо. Зато доказательств металлогидридной теории — масса. Вулканы и земные разломы выбрасывают в атмосферу водород именно так, как требует металлогидридная теория и вопреки тому, что постулирует железная. На основе своей теории Ларин верно предсказал появление в базальтовых породах самородных металлов. Ею легко объясняются загадочные скачки плотности земной мантии на глубинах в 400, 670 и 1 050 км.
Но самое главное в этой теории вот что. На суше есть несколько точно установленных мест, в которых земная кора имеет толщину всего 5—10 км (обычно же — 100—150). Это так называемые области рифтогенеза. По теории Ларина, пробурив в этих местах несколько скважин, можно добраться до металлогидридного слоя. И тогда, закачивая в одну из скважин воду, из других можно будет получать чистый водород в практически неограниченных количествах. Причем нужный газ будет не только отдаваться металлогидридами, но и получаться благодаря соединению щелочноземельного магния с водой. Расчеты, сделанные учеными Сибирского отделения АН СССР в 1989 году, показали, что в случае правильности металлогидридной теории участок в 20 км2 даст за год водорода столько, что им можно будет заменить 400 млн. тонн нефти. А это, между прочим, больше, чем сейчас добывает вся Россия.
В том же 1989 году в Геологическом институте состоялось совещание под патронатом Академии наук, где заслушали доклад Ларина и постановили: «Рекомендовать сверхглубокое бурение (до 10—12 км) в области современного рифтогенеза… Предложить в качестве объекта Тункинскую впадину, где бурение может иметь исключительно большое значение для энергетики и экологии, так как позволит оценить и проверить научно обоснованную возможность обнаружения принципиально нового и экологически чистого энергоресурса, могущего составить конкуренцию традиционным энергетическим источникам…» Тункинская впадина — место недалеко от Байкала, где толщина земной коры составляет всего 4—5 км. На Земле подобных мест немного. Кроме этой впадины подходящие для бурения зоны есть в Исландии, Израиле (на зависть арабским нефтешейхам), на западе Канады и в США, в штате Невада.
Жаль, но тогда, в конце 80-х и начале 90-х, до «водородного» бурения дело не дошло. Стране стало не до экспериментальных скважин. Сегодня, когда нефть является «нашим всем», никто добывать водород особо не стремится, предлагая, как в том старом анекдоте, изобретателю бесплатного нефтезаменителя в награду за открытие на выбор либо расстрел, либо четвертование. Единственный из российских олигархов, вкладывающий серьезные деньги в развитие водородной энергетики, — абсолютно не нефтяной никелевый король Владимир Потанин. В апреле этого года он купил за 241 млн. долл. 35% акций убыточной американской компании Plug Power, занимающейся выпуском топливных элементов. Аналитики говорят, что это самые большие частные инвестиции из тех, что знает история водородной энергетики. А в 2003 году партнер олигарха Михаил Прохоров на совместном заседании президиума АН России и правления «Норильского никеля» заявил, что «если страна уже сегодня не предпримет попытки дерзкого прорыва в «водородную эру», то через пятнадцать лет она окажется в тяжелейшей депрессии, ибо ее нефть окажется ненужной миру».
Не исключено, что он был прав. Человеку свойственно быстро расставаться с менее удобными вещами в пользу более удобных. Вспомните, сколько лет ему понадобилось на то, чтобы сменить виниловые пластинки на компакт-диски. А сколько ушло на то, чтобы опутать мир сетью Интернет? А за какой срок нашу цивилизацию покорили мобильные телефоны? Что бы там ни говорили скептики, но если человечество получит дешевый водород в достаточных количествах, то переход на него произойдет не более чем за десятилетие. Это — всего лишь среднее время «жизни» обычного автомобиля.
Для нас главное — успеть пробурить к тому времени Тункинскую скважину.