Кусочно постоянная функция. Графики непрерывных функций. Область определения функции

7
Урок по алгебре в 9А классе учителя Микитчук Ж.Н. МОУ «СОШ №23» 19.03.07г Тема урока: «Кусочно-заданные функции» Цели:

    обобщить и совершенствовать знания, умения и навыки учащихся по указанной теме; воспитывать у учащихся внимательность, сосредоточенность, настойчивость, уверенность в своих знаниях; развивать мыслительные способности, логическое мышление; речевую культуру, умение применять теоретические знания.
В результате обобщения темы учащиеся должны знать:
    понятие кусочно-заданной функции; формулы различных функций, соответствующие названия и изображения графиков;
уметь:
    строить график кусочно-заданной функции; читать график; задавать функцию аналитически по графику.

Ход урока

I. Организационно-психологический момент. Начнем наш урок словами Д.К.Фадеева «Какую бы задачу вы не решали, в концевас ждёт счастливая минута – радостноечувство успеха, укрепление веры в свои силы.Пусть эти слова на нашем уроке обретут реальное подтверждение.II. Проверка домашнего задания. Начнем урок как обычно с проверки д/з.-Повторите определение кусочной функции и план исследования функций.1). На доске изобразить придуманные вами графики кусочных функций (рис.1,2,3)2).Карточки .№1. Расставьте порядок исследования свойств функций:
    выпуклость; четность, нечётность; область значений; ограниченность; монотонность; непрерывность; наибольшее и наименьшее значение функции; область определения.
№2.Изобразите схематически графики функций:

А) у = kx + b, k0; Б) y = kx, k0;

В) у = , k0.

3).Устная работа . – 2мин

    Какая функция называется кусочной?
Кусочной называется функция, заданная разными формулами на разных промежутках.
    Из каких функций состоят кусочные функции, изображенные на рис.1,2,3? Какие ещё названия функций вы знаете? Как называются графики соответствующих функций? Является ли графиком какой-либо функции, фигура, изображенная на рис.4? Почему?
Ответ: нет, т.к. по определению функции, каждому значению независимой переменной х ставится в соответствие единственное значение зависимой переменной у. 4) Самоконтроль - 3 минИз предложенных графиков и соответствующих формул, задающих функции, выберите верные. Из полученных букв ответов составьте знакомое слово. Ответ: ГРАФИК Где в жизни, в науке, в быту мы ещё встречаемся со словом ГРАФИК?-График зависимости массы от объёма,-объёма от давления;- график дежурства;- график движения поездов;-графики используются для представления различной информации, например, объём промышленного производства в Саратовской области в период с 1980 по 2002год.. По этому графику можно проследить за снижением и ростом производства в отдельные года.-Скажите, графиком какой функции представлена данная информация.Ответ: кусочная функция .III. Сообщение темы, цели урока. Тема урока: «Кусочно-заданные функции»Цель: - на примере кусочно-заданной функции вспомнить план исследования функций;
    повторить шаги построения кусочно-заданной функции; применять обобщенные знания при решении нестандартных задач.
IV. Актуализация ранее усвоенных знаний. Понятие функции впервые встретилось нам в 7 классе при изучении линейной зависимости. С точки зрения моделирования реальных процессов, эта зависимость соответствует равномерным процессам.Пример: Движение пешехода с постоянной скоростью за время t. Формула: s =vt, график – отрезки прямой, расположен в I четверти.
Основная тема 8-го класса – квадратичная функция, моделирующая равноускоренные процессы.Пример: изученная вами в 9-ом классе формула определения сопротивления нагретой лампы (R) при постоянной мощности (Р) и изменяющемся напряжении (U). ФормулаR = , график – ветвь параболы, расположен-ная в I четверти.
На протяжении трёх лет наши знания о функциях обогащались, количество изученных функций росло, пополнялся и набор заданий для решения которых приходится прибегать к графикам.Назовите эти типы заданий…- решение уравнений; - решение систем уравнений; - решение неравенств; - исследование свойств функций. V.Подготовка уч-ся к обобщающей деятельности. Вспомним один из типов заданий, а именно – исследование свойств функций или чтение графика.Обратимся к учебнику. Страница 65 рис.20а из №250.Задание: прочитать график функции. Порядок исследования функции перед нами.1. область определения – (-∞; +∞) 2. четность, нечётность – ни четная, ни нечётная 3. монотонность- возрастает [-3; +∞), убывает [-5;-3], постоянна (-∞; -5]; 4. ограниченность – ограничена снизу 5. наибольшее и наименьшее значение функции – у наим = 0, у наиб – не существует; 6. непрерывность- непрерывна на всей области определения; 7. область значений – , выпукла и вниз и вверх (-∞; -5] и [-2; +∞). VI. Воспроизведение знаний на новом уровне. Вы знаете, что построение и исследование графиков кусочно-заданных функций, рассматриваются во второй части экзамена по алгебре в разделе функции и оцениваются 4-мя и 6-ю баллами. Обратимся к сборнику заданий.Страница 119 - №4.19-1).Решение: 1).у = - x, - квадратичная функция, график – парабола, ветви вниз (а = -1, а 0). х -2 -1 0 1 2 у -4 -1 0 1 4 2) у= 3х – 10, - линейная функция, график – прямая Составим таблицу некоторых значений х 3 3 у 0 -1 3) у= -3х -10, - линейная функция, график – прямая Составим таблицу некоторых значений х -3 -3 у 0 -1 4)Построим графики функций в одной системе координат и выделим части графиков на заданных промежутках.
Найдем по графику, при каких значениях х значения функции неотрицательны. Ответ: f(x)  0 при х = 0 и при  3VII.Работа над нестандартными заданиями. №4.29-1), стр. 121. Решение: 1)Прямая (слева) у = kx + b проходит через точки (-4;0) и (-2;2). Значит,-4 k + b = 0,-2 k + b = 2;
k = 1, b = 4, у = х+4.Ответ: х +4, если х -2 у = , если -2 х £ 3 3, если х 3
VIII.Контроль знаний. Итак, подведём небольшой итог. Что мы повторили на уроке?План исследования функций, шаги построения графика кусочной функции, задание функции аналитически. Проверим как вы усвоили данный материал.Тестирование на «4»- «5», «3» I вариант№ У
2 1 -1 -1 1 Х
    D(f) = , выпуклая и вверх и вниз на , выпуклая вверх и вниз на , убывает на ________ Ограничена ____________ у наим не существует, у наиб =_____ Непрерывна на всей области определения Е(f) = ____________ Выпукла и вниз и вверх на всей области определения

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №13

«Кусочные функции»

Сапогова Валентина и

Донская Александра

Руководитель-консультант:

г. Бердск

1. Определение основных целей и задач.

2. Анкетирование.

2.1. Определение актуальности работы

2.2. Практическая значимость.

3. История функций.

4. Общая характеристика.

5. Способы задания функций.

6. Алгоритм построения.

8. Используемая литература.

1. Определение основных целей и задач.

Цель:

Выяснить способ решения кусочных функций и, исходя из этого, составить алгоритм их построения.

Задачи:

— Познакомиться с общим понятием о кусочных функциях;

— Узнать историю термина «функция»;

— Провести анкетирование;

— Выявить способы задания кусочных функций;

— Составить алгоритм их построения;

2. Анкетирование.

Среди старшеклассников было проведено анкетирование на умение строить кусочные функции. Общее количество опрошенных составило 54 человека. Среди них 6% - работу выполнили полностью. 28% работу смогли выполнить, но с определёнными ошибками. 62% - работу не смогли выполнить, хоть и предпринимали какие-либо попытки, а оставшиеся 4% вообще не приступали к работе.

Из этого анкетирования можно сделать вывод, что ученики нашей школы, которые проходят программу имеют не достаточную базу знаний, ведь этот автор не уделяет особого внимания на задания подобного рода. Именно из этого вытекает актуальность и практическая значимость нашей работы.

2.1. Определение актуальности работы.

Актуальность:

Кусочные функции встречаются, как в ГИА, так и в ЕГЭ, задания, которые содержат функции подобного рода, оцениваются в 2 и более баллов. И, следовательно, от их решения может зависеть ваша оценка.

2.2. Практическая значимость.

Результатом нашей работы будет являться алгоритм решения кусочных функций, который поможет разобраться в их построении. И добавит шансы на получения желаемой вами оценки на экзамене.

3. История функций.

— «Алгебра 9 класс» и др.;

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in }